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1. Introduction 

ESR (like NMR) has for many years been utilized successfully in the study of rotatio­
nal dynamics in liquids [1-4]. Our aim in this chapter is to present a reasonably up­
to-date prospectus on the subject. I have chosen to do this with a variety of recent 
examples, largely from our laboratory, since I am most familiar with them. 

Thus, in Section II, I describe the results of pressure and temperature-depend­
ent spin-relaxation studies which led us to propose a new 11 quasi-hydrodynamic11 model 
of rotational reorientation: the expanded-volume model. In Section III, ESR observa­
tions of deviations from Debye spectral densities at higher frequencies are described, 
and interpretations in terms of localized dynamic cooperativity are suggested. These 
studies are based upon the traditional measurements of T2

1s or linewidths of motional­
ly-narrowd ESR spectra. In Section IV we introduce experiments that require a more elab­
orate analysis than those required for the T1 and T2 of motfonally-narrowed spectra. 
These are slow-motional ESR studies of rotational dynamics. They are representative of 
a subject I li k.e to refer to as "Beyond T 1 and T 2 

11 
, for which cons i derab1y more 

sophisticated analyses may be required, but more microscopic details about the motions 
may be forthcoming. After first illustrating the special features of rotational motions 
in liquid crystals in Section Y, I review in Section VI our theoretical approach for 
analyzing slow {and fast} motiona1 spectra in both isotropic and ordered fluids. In the 
first part I sunnarize the formulation of the theory in ternis of the stochastic-Liou­
ville equation; then I describe the powerful modern computational algorithm that we 
employ to solve the lineshape problem; this is followed by some of our current ideas on 
modeling of rotational dynamics and dynamic cooperativity. 

The precise nature of the changes in molecular dynamics at a phase transition 
is a fascinating one, part;cularly at a second-order phase transition where the mcro­
scopic equilibrium and transport properties appear to diverge. I sunmarize in Section 
VII our recent studies on spin-relaxation at the nematic to smectic A phase transi­
tion, which includes our mdel proposed to exp1ain the observed critical divergences. 
This model emphasizes the special importance of rotational-translational couplings in 
highly ordered phases such as smectic phases. This suggests that a complete understand­
ing of rotational motions requires that we also understand the translational motions in 
such phases. Thus, in Section VIII, I sunnarize our recent efforts to study the trans­
lational diffusion of ESR probes in ordered phases. 

To illustrate the importance of rotational dynamics in fields other than chemical 
physics, I describe in Section IX our recent studies on rotational motions in model 11e1t 

brane systems. These are of biophysical interest, but we show how the methods and appli­
cations described in the previous Sections can be employed effectively for these more 
complex •ordered fluidsn. In particular I discuss the dynamic molecular structure and 
phase transitions in oriented lipid multilayers and lipid-macromolecule interactions. 
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Finally. In Section x. I describe new electron-spin-echo techniques that are 
being developed to deal more effectively with the "beyond T1 and T

2 
• regime of 

study, and which have the promise of revolutionizing how ESR is utilized in the study 
of rotational motions. 

II. Quasi-Hydrod1namic Models of Rotational Reorientation 

In an extensive study of the pressure and temperature dependence of the electron-spin 
relaxation of the small nitroxide spin probe PD-Tempone in toluene solvent [5], we 
found significant deviations from Stokes-Einstein (SE) behavior for the rotational cor­
relation time TR,whereTR ranged over more than two orders of magnitude (cf. Fig. 1). (We 
shall mean by the SE relation that TR=ve1'llk8T where ve is an "effective molecular vol-
11ne•. n is the solvent viscosity and T the temperature.) These deviations were found 

lxl09 

PO-Tempone in toluene-de 

o 51.&•c1 • I • 25.1 C 
a 1.e·c Variable pressure 0 

• •-24.1•c I 
0 

0-39.ztc • a• 
Ot, 

1 Variable temperature • 1D 0 

0 
.,, 

TR (sec) O 90 
a• 

I :• • • oR ··-,. 
IX IOfl aAo 

a• AO O 

1.0 
,x 

a 
I 

-12 
lxlO !'"fZ 

lxl0-11 Ix l0-IO Ix lxlO 
!!l.(sec) 
kaT 

Fig. la: TR vs. ve1'llk8T for PD-Ten.,one in toluene-dB. Variable pressure and tempera­
ture results. T varied from -4QOC to +so0c. P varied from 1 bar to 5.5 kbar. 
(From Ref. [51.) 
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Fig. lb: ~R vs. (ven/k8T)' for PD-Tempone in toluene-dB. Variable pressure and temper­
ature results. The identity line is included for comparison. {~)' = d + a p + a p2+ 

_? • . II.Bl 1 2 
b21- + cPT where coeffic1ents were fit by least squares. (From Ref. 5 ). 

to be inconsistent with hydrodynamic and molecular models previously used to interpret 
rotational relaxation in liquids [6-8). These include the quasihydrodynalllic free-space 
model of Dote et al. which has had some success in correlating a range of experimental 
results [7) ,swell as the eapfrical approach of Alms et al. (81 who modified the SE 
expression to be i:R•ven/k8T+i:R0 such that the data are fit to the two adjustable 
parameters ve and i:Ro (cf. Table 1). 

Instead, we were able to establish a simple empirical expression relating ~R 
to basic hydrodynamic and thermodynamic properties [5): 

(1) 

where ~ is the isothenaal c~ressibility of the solvent, and p is the solvent 
density. There are just two eq,irical constants: C and the reference density p, 
( = 0.819 gm/cm3) needed to accurately fit the ntaerous data points obtained under a 
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Table I: Least-squares results for LR(T) vs. ~(T)/T at constant pressure. The 
approach of Alms et al. [9] i~lies that TRo should be the same and positive for all 
isobars (fTOII Ref. (51). 

Pressure (kbar) Slope (10-7 sK/P)a Intercept (lo-12 s )a 

0.001 2.47 :t: 0.06 -0.0 :t 0.3 

0.5 2.89 :t: 0.09 -1.6 :t 0.6 

l 2.94 :t 0.05 -3.3 :t 0.5 

1.5 2.54 :t 0.07 -2.9 :t 0.9 

2 2.52 :t: 0.05 -4.3 :t 0.9 

2.5 2.36 :t 0.09 -4.4 :t: 2.5 

3 2."6 :t: 0.2 -12 :t 7 

3.5 2.7 :t: 0.2 -21 :t 12 

4 2.7 :t 0.2 -30 :t 17 

4.5 2.8 :t 0.2 -49 :t 26 

a) Uncertainties represent avera~e deviations. 

wide range of T and P (cf. Fig. 2). (The accuracy was as good as shown in Fig. lb 
which was just an expansion in powers of P and T and required five parameters.) 
This empirical equation could be interpreted in tenns of an "expanded volume" model. 
That is, V = p-l is a solvent reference volume,the uexpanded volllDE!11

, such that 
- -1 as the solvent volume V ➔ V (where V = p ), then LR ➔ O. Actually this is an 

~ reference state, not realized in real systems, because Eq. (1) relates to purely 
viscous 110tion, and as V .. i, the liquid is becoming more gaslike, so inertial effects 
would take over. Over the range of our experiments, it was demonstrated that PO-Tempone 
exhibits purely viscous behavior, so no inertial effects were present to complicate the 
viscous dynamics. The expanded volume expression takes into account in a natural way 
the concept of slip of the rotating molecule in the solvent, which is often introduced 
in an ad-hoc 11anner (6,7]. In another point of view we can rewrite Eq. (1) based on 
r:cognizfng l¾-«c-2, where c is the sound velocity in the solvent. Then the ratio 
(Y-V)/c2 would appear 1n Eq. (1), and it is a measure of the importance of the an­
isotl"Opic intennolecular interactions acting on the solute (proportional to V -Y) 
relative to the total intennolecular interactions between molecules in the liquid 
(proportional to c2 ). This point of view is consistent with earlier theoretical ana­
lyses of Kivelson and co-workers [10). 

We believe this result is potential}Y important in improving our understanding 
of 110lecular rotational dynamics in liquids. Further experiments are most certainly 
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Fig. 2: Plot of average value of ~RT/~ for each constant density group of data 
from Fig. 1 vs. density, p, {from Ref. 151). 

required. One should test the applicability of Eq. (1) over a wide range of solvents 
and solutes by means of pressure-dependent studies. Furthennore, the role of vp/vs 
(i.e. the ratio of probe-1110lecule volume to solvent-molecule volume), which should 
be important, needs to be studied in some detail. This ratio plays an important role 
in the theory of Dote et al. [71. In our expanded volume model we expect that the re­
ference volume V = V(vp/vs>• (i.e. it is a function of vp/vs) and that it probably 
also depends on the shape (i.e. deviation from sphericity) of the probe molecule. As 
vlvs ➔ "", we would expect V/V ➔"" consistent with the approach to a Stokes-Einstein 
limit of Eq. (1), Based upon the partial success of the theory of Dote et al. to a range 
of data [71. and to our success using Eq. (1) to the very precise and detailed data ob­

tained as a function of P and T, we believe that a "quasi-hydrodynamic• model for 
rotational relaxat;on in liquids can be developed, which can fairly accurately fit a 
wide range of data. 
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When one compares our results [51 to previous pressure-dependend ESR studies of 
VO(acac)2 (i.e. Vanadyl acac) in toluene and other solvents [111 and to NMR studies 
on neat liquids [12], one notes that for the fonner, the solvent molecules were small 
compared to the solute molecules, which favors Brownian rotational diffusion, while 
for the latter, where solvent and solute are the same, there are inertial effects. Our 
results of PD-Tempone in toluene probably represent an intermediate case, where the 
solute molecule is only a little larger than the solvent molecule, with somewhat dif­
ferent shape and intennolecular interaction with the solvent, and yet one is still in 
a regime of T and o where inertial effects are negligible. This regime would thus 
be a very favorable one for further study on molecular dynamics. 

III. Non-Debye Spectral Densities 

Our group has in recent years obtained extensive data on the frequency-dependence of 
the spectral densities due to rotational motion of probes such as PD-Tempone and 
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Fig. 4: Comparison of experimental and calculated values of C vs. B for PD-Tem­
pone in n-decane. (From Ref. [13).) 

peroxylamine disulfonate (PADS) (5,13-15]. We find, quite generally. that we must 
modify the Debye spectral density with a dimensionless factor t * 1 (cf. Figs. 3&4): 

(2) 

We have interpreted this &-correction as due to the effects of fluctuating 
torques·acting on the probe, which relax on a time scale of the order of TR itself. 
More phenomenologically, an t • 1 can be attributed to viscoelastic effects in the 
liquid. Thus, the fluctuating torque model is a particular model for "explaining• the 
viscoelesticity in these cases. We have found an inverse correlation between t and 
solvent polarity that is consistent with this model (cf. Fig. 5) [9]. Also Patron et 
al [16] have reported results which show t > 1 for the larger probe VO(acac)2 in 
long chain hydrocarbons, which would be consistent with our model. 
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Fig. 5: £ vs. ET for PD­
Tempone in several solvents. 
(The line is drawn to guide 
the eye.) ET, the molar 
transition energy, is a 
measure of solvent polarity. 
(From Ref. [13].) 

One should note that it is very difficult to study the c-correction of Eq. (2) 
by NMR. because the lower frequencies lead to the extreme narrowing condition for li­
quids. Blicharska et al. [17] have succeeded, in a study of CH30H in (CD3)2so to 
reach the carR ~ 1 regime. They observed definite anomalies, which we find to be 
consistent with an c > 1 . 

Further work on varying probe size and solvent to distinguish between the rela­
tive i~rtance of solvent polarity and relative solute size would be valuable, as 
would frequency-dependent experiments to properly study Eq. (2) and its variations. 

In our attempts at interpreting Eq. (2) we have also considered another model 
which leads to non-Oebye spectral densities [13). It is referred to as the slowly 
relaxing local structure (SRLS) model, originally introduced (18] in studies on li­
quid-crystalline solvents. In this model. the slowly fluctuating components of the 
anisotropic intermolecular potential are regarded as a local structure, which presists 
for a mean time Tx, and with respect to which the probe rotates, since 'tx >TR. 
Then. on this longer time scale Tx. the local structure relaxes (or else the probe 
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diffuses - or jumps - away). 

Our results (5,13) were generally better represented by the fom of Eq. (2) with 
a constant £ than with SRLS, although our analyses could not be regarded as conclusive. 
Recently van der Drift and Smidt (19] working with a specially constructed cw ELDOR 
spectrometer obtained results that offered a systematic test to the £-model of Eq. (2). 
They found that their data could not be fit with just a constant £, but instead re­
quired a significant SRLS component even for PD-Tempone in toluene. Also, in analyzing 
their data, they could obtain good agreement between "R and .J (the angular-vel­
ocity correlation-function obtained from the spin-rotational relaxation tenns) accord­
ing to the Hubbard-Einstein relation: •R•J = I/6kT (where I is the moment-of-in­
ertia of the probe). The apparent breakdown of this relation in many ESR and rt4R studies 
has been a matter of significant theoretical concern (14,20). Further work with modern 
ESR techniques, such as the spin-echo methods described in Section X should be very 
rewarding on these matters. 

IY. Slow Motional ESR Studies of Rotational Dynamics 

Over a nunber of years we have developed highly sophisticated methods for simulating 
ESR (and NMR) slow motional spectra [14,15,18,21). Such spectra are important in the 
study of molecular rotational dynamics by ESR in viscous media such as in liquid crys­
tals, in spin-labeling applications in biophysics, and in polymer physics. By the slow-
1110tion regime, we mean that the rotational motions which can average the orientation­
dependent spin Ham;ltonian ff{o) (see Section VI) are too slow, i.e. we are in the 
regime where .; H2(o} > 1. These spectra are no longer simple Lorentzians but are, 
in general, more complex in shape. 

Such spectra provide considerably more information about the microscopic models 
of rotational dynamics than motionally narrowed spectra. Thus. for example, jump models 
of rotatio"al reorientation lead to slow motional spectra which are distinguishable 
from Brownian reorientational models. PD-Tempone, in particular, showed deviations from 
Brownian rotation that appeared to be fit by a model of moderate jumps [14,15,21) (but 
see Section X). We have, however, suggested that a more fundamental analysis of the 
motional dynamics may be required as the experimental results associated with slow 
tumbl;ng become more precise [14]. That is. fluctuating torques or else SRLS may be 
;niportant. and the slow-motional spectra could be providing unique information on these 
microscopic details. vo2+ COIIIJ)lexes with a vanadyl nuclear sp;n of I= 7/2 were found 
to be more sentitive to motional model than are nitroxides with I= 1 (22], (cf. 
Fig. 6). In particular. the slow tumbling lineshapes seem to be strongly dependent 
upon the nature of the ligands and of the solvent (cf. Fig. 7). Furthermore, because 
the vanadyl magnetic tensor coq>onents are about an order of magnitude greater than 
those for nitroxides, the vanadyl spectra exhibit slow motional (hence model-dependent) 

-10 effects for .R > 10 sec. (at X-band), i.e., an order of magnitude sooner. Thus a 
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greater range of liquids may be studied ;n the slow-motional region (before they freeze) 
by use of vanadyl probes. 

B 
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2~4G ,...... 
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f!g_J: Collll)arison of experimental and sina,lated spectra from the rapid motional 
lolfie rigid limit for VO(acac2(pn)) in toluene. All simulations use a Brownian 
rotational diffusion model. {A) TR= 2.06 x 10-lls, (B) 2.63 x 10-10s, 
(C) 5.00 x 10-10s, (D) 2.25 x 10-10s, (E) 5.0 x 10-Bs, 
(F) rigid limit. (From Ref. (22).) 
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Fig. 7a: Model dependence of VO(H20)5
2+ in sucrose. {Series A) Comparison of experi­

ment with moderate jump diffusion. (Series B) Comparison of moderate jump diffusion 
(solid lines) with its free (dashed lines) and Brownian {dotted lines) diffusion ~ui­
valent. (Moderate jump gave best agreement in all cases.) {Al) "RJ = 3.4 x 10-lOs, 
(A2) 6.0 x 10-lOs, (A3) 9.0 x 10-lOs. (A4) rigid limit. 

V. Liquid Crystals 

The important new feature of molecular rotational dynamics in liquid crystals is that 
it must occur relative to a mean orienting potential. This is readily included in the 
theoretical analysis as described in Section VI. 

In our studies on liquid-crystalline solvents we found it necessary to introduce 
the slowly-realxing local structure {SRLS) model in addition to the effects of the mean 
orienting potential [18,23,24]. In this SRLS model (as noted above) the slowly fluctua· 
ting components of the anisotropic intermolecular potential are regarded as a local 
structure, which persists for a mean time •x , and with respect to which the probe 
rotates, since •x » "R. Then, on this longer time-scale •x, the local structure 
relaxes (or else the probe diffuses or jumps away). This seems a reasonable model for 
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Fig. 7b: Model dependence of VO(NCS)4
2- in ethyl acetate. Note that A is approxi­

mately fit with moderate jump, B with free diffusion, and C with Brownian diffu­
sion. (From Ref. [22].) 

probes that are smaller than the liquid crystalline molecules, since they reorient in 
times Rich shorter than the surrounding solvent oolecules. Again the evidence cooaes 
from our detailed linewidth studies of smaller probes such as PD-Tempone [18,23,24). 
In particular, in a pressure-dependent study of PD-Tempone in the nematic Phase V 
solvent, we concluded that the SRLS contribution to the linewidths might be comparable 
to the normal reorientational contribution from which ~R is estimated [23). Thus, 
~R•s calculated from j(CI.)) might be significantly larger than the true value, but 
the data just from the linewidth coefficients are insufficient to be definitive on 
this latter point. In our studies of smectics we find even more substantial linewidth 
anomalies attributable to the SRLS model [24]. This is reasonable in the context of 
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our model (discussed below) for the smaller probe in the smectic phases; viz. these 
probes are now located in the more flexible alkyl-chain regions, experiencing the 
slow (cooperative} fluctuations of these chains. 

Acronym 

PD-Tempone 

p 

MOTA 

CSL 

Name 

2,2', 6,6'-tetramethyl-4-
piperidine N-oxyde 

(perdeuterated) 

2,2', 6,6'-tetramethyl-4-
(butyloxyl)-benzylamino­

piperidine 1-oxyl (perdeuterated 
piperidine ring) 

4-methylamino 2,2', 6,6'-tetra­
methyl-piperidine-1-oxyl 

(perdeuterated ring) 

3,3'-dimethylorazolidinyl-N-oxy 
2'3-5a-cholestane 

Fig. 8: Structures of spin probes in our studies. 

Structure 

H ( ~ 3 '-c,.....N N-0 
II 
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We show in Figs. 8 and 9 some spin probes used in our studies and some liquid 
crystals we have used, In Fig. 10 we illustrate how ESR lineshapes are sensitive to 
both the orienting potential and the rotational dynamics relative to this potential 
for the P-probe, which is comparable in size and shape to a liquid crystal molecule (25], 
The variations in ordering and rotational rates for the isotropic, nematic, smectic A 

and smectic B phases are illustrated in Fig. 11. This probe experiences an orienting 
alignment similar to that of liquid crystalline molecules (except that there is some 
flexibility for internal rotational motion of the nitroxide moiety). Shown in the in-
set to Fig. 11 is the related data (24] for the small PD-Tempone probe. The unusual 
observation here is the very low activation energy for rotation of this probe in the 
two smectic phases even though it is substantially higher in the isotropic and nematic 
phases. This is taken as significant evidence to support the model [24] that this probe 
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Name 

4-cyano 4'-n-hexyloxybiphenyl 

4-cyano 4'-n-octyloxybiphenyl 

N-(p-butoxybenzylidene)-
p-n-hexylaniline 

N-(p-butoxybenzylidene)-
p-n-octylaniline 

4-cyano 4'-n-octylbiphenyl 

Eutectic mixture of: 
50% 4-cyano 4'-n-octylbiphenyl 
39% 4-cyano 4'-n-decylbiphenyl 
11% 4-cyano 4'-n-decyloxybiphenyl 

Transition Temperatures of some Liguid Crlstals: 

a. 27% 60CB - 73% 80CB K (24°) N {31°) SA (45°) 

b. 40,6 K (18°) 58 (48°) SA (55°) 

c. BCB K (21°) SA (34°) N (41°) 

d. S2 : K (-10°) SA (48°) N (49°) I 

Fia. 9: Some liquid crystals used in our studies. 

Fonnula 

NC-4>-4>-0C6H13 

NC-f-♦-0Cefil7 

H9c4o-4>-CHN-4>-C9H13 

NC-4>-4>-C8H17 
Nc-c>-4>-C10"21 
NC-4>-cj,-OC10H21 

N (79°) I 

N (78°) I . 

is expelled into the chain region of the smectic layers, since it is known that the 
activation energy for reorientation for PO-Tempone in neat aliphatic hydrocarbons is 
just 2-4 kcals (13]. 

Additional strong evidence for this "expulsion effect" in the smectic phases is 
shown in Figs. 12 and 13. In Fig. 12 we show the ordering of PD-Tempone (in 40,8) in 
the different phases (24]. In the SA phase this probe experiences a reduction in its 
ordering as the temperature decreases which is contrary to the increasing ordering of 
the liquid crystal molecules (cf. Fig. 11). This is readily interpreted as due to the 
probe being increasingly expelled into the less ordered aliphatic chain region. In 
Fig. 13 we show a plot of the PD-Tempone hf splitting for different solvents arranged 
according to their relative polarity [24]. Aliphatic hydrocarbons, being the. most non­
planar, yield the lowest hf splitting. Indeed PD-Teq>one in 40,6 and 40,8 shows a de­
crease in its hf splitting as the temperature is lowered into the smectic phases in 
a manner consistent with its being dissolved more into the aliphatic hydrocarbon region. 
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Fig. 10: ( ) Experimental and(---) calculated ESR spectra of P probe dissolved 
in 40,6 oriented between plates and in the smectic BA phase of 42.5°c. The angle e 
between the magnetic field 8 and the plate nomal is denoted in the Figures. The 
ordering parameters and rotational rates (given by R.l. the perpendicular component 
of the rotational diffusion tensor, and N • R /R the rotational asynnetry) are 
on the figures. (a) corresponds to cylindri- 11 i cally synmetric ordering given by 
A(5/4n)112 ■ E:~/kT, while in (b) an asynnetry tenn of p(5/4n) 112 • E~/kT [cf. 
Eq. (7)] is allowed. (From Ref. (25].) 

VI. Theoretical Approach 

A) Stochastic Liouville Equation 

The basis for our analysis in the above studies is the stochastic Liouville equation 
(SLE). One starts with the spin density-matrix equation of motion for p: 

~ = -i[H(t),p] (3) 

where H(t) is the time-varying spin-Hamiltonian due to fluctuations of Euler angles 
o of the molecule with respect to the lab frame. A classical stationary Markovian 
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description for the orientational probability distribution P(C,t) ts assumed. 
That is we let 

(4) 

where rn is the ttme-independe_nt "diffusion• operator. Then one can show that the 
composite set of spin and space variables obeys the SLE: 

(5) 
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where now p(O,t) is simultaneously the quantum~mechanical spin-density matrix and 
the classical probability distribution function in molecular orientation. To simplify 
the analysis one typically chooses [18,21,281 a Smoluchowski equation for ra: 

(6) 

Here M is the vector space for infinitesimal rotation, R is the rotational diffu-
= 

sion tensor, and U(o) is the equilibrium potential for the orientation of the probe, 
which may be expanded in spherical Harmonics, Y~(D) according to: 

U(D) = ; {e~ y~ (D) + i £~ [ Y~(D) :t y~K(c)l}. (7) 
even K>O ~ 
L 

Typically only the L = 2 terms are kept (but sometimes terms through L = 4 are 
included [29], cf. Fig. 14). One can even allow for dynamic cooperativity by letting 
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U(D) ➔ U(t} such that the probe reorients in the instantaneous potential field of its 
surroundings. This approach is used for SRLS and for coupling to hydrodynamic and 
critical IIIOdes [30,311. In smectic phases the orientational potential felt by a 1110le­
cular probe should depend upon the probe location within the smectic bilayer in order 
to be consistent with the observation of reduced ordering for some probes as they are 
expelled into the alkyl chain region. (Related NMR observations have also been made 
[32-34)).0ther evidence exists that translational diffusion perpendicular to the smec­
tic layers is highly hindered in the smectic phase [33]. Thus the probe will experi­
ence a coupled orientation-position potential as it diffuses in the spatially non-uni­
form smectic. Moro and Nordio have studied this [35] using as their combined potential: 

U/kT: {A+ Bcos(2rtz/d)} Y~(~) + Ccos{2nz/d) (8) 

which is of the fom utilized by McMillan [36) in his mean-field theory of the smectic 
phase transition. (Here p is the angle of orientation between the nematic director 
and the principal axis of ordering of the probe, while z measures the position in a 
smectic layer of thickness d). They consider small probes of dimension d

0 
<< d, so 

that they undergo many reorientations in the time they translate across a smectic layer. 
This mdel then has all the ingredients of a SRLS model. Indeed their detailed calcula­
tions showed that •the relaxation mechanism due to this order modulation is similar to 
those often referred to as 'slowly relaxing local structures' ... • [18). 

In sunnary, the fundamental problem in slow-motional ESR spectroscopy is to 
c0111pare solutions of the SLE (Eq. (5)) with experimental spectra so as to extract out 
the correct stochastic operator r and obtain the magnitude of the relevant physical 
parameters. We may refer to this as solving for the "inverse stochastic Liouville Trans­
form• {by analogy with the "inverse scattering transfonn• in the quantum mechanical the­
ory of scattering). In practice this is not possible, so one constructs simple models 
for r

0 
as illustrated above, and then one calculates predicted spectra to compare 

with experiment as illustrated (cf. Figs. 6, 7, 10, 11). 

B. Coq:,utational Algorithm 

It follows from Eq. (5} that in the linear response regime, the absorption intensity 
I(t.c.>) is given by [21,26,27): 

(9) 

where 6w is •the sweep variable", ~ is the Liouville operator associated with the 
spin Hamiltonian H{D) of the spin probe. and r is the diffusion operator for the 
reorientation that modulates the magnetic interactions. Also jv> is the so-called 
•starting vector• constructed from the spin transition moment averaged over the equi­
librium ensemble. The vectors and operators are defined in the direct product space 
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of the ESR transitions and of the functions of the Euler angles c. (In ESR we usually 
have tJJA ~ w - w

0 
where (.)

0 
is the Lannour frequency at the center of the spectrum 

and ~ is the angular frequency of the applied radiation field.) We may rewrite 
Eq. (9) as: 

I(oo) =.! Re <vlu(&.>)> 
" 

where (u(&.>) is the solution of the equation 

!' lu> = Iv> 

(10) 

(11) 

the matrix ~• is defined as ~• = i&> ! + ~ where ~ = r -i h. Eq. (9) can be 
solved either by inversion of a'(Aw) for a range of values of Aw. or alternatively 
by diagonalizing a only once [21]. 

The matrix ~ is in general very large and sparse. The conventional methods 
[21) for solving Eq. (11) by inversion or by diagonalizing ~ prove to be too cumber­
s0111e. One soon runs out of memory even on mainframe computers, and the solution re­
quires prohibitive amounts of computer time. To remedy this situation the Lanczos al­
gorithm has been developed for coraplex-synnetric matrices, since ~ is typically of 
this fonn [37.38]. It is an efficient method for tri-diagonalizing ~ and is particu­
larly suited to the solution of large-sparse matrices. We have shown that it can 
lead to at least order of magnitude reductions in computation time, and it yields sol­
utions of Eq. (9) to a high degree of accuracy [37,391. This Lanczos algorithm is also 
appropriate for the general class of Fokker-Planck equations (including models of rota­
tional motion) which can be represented by a complex synmetric Fokker-Planck operato; 
~ (after symmetrization). For such cases, Eq. {9) would be associated with the spec­
tral density, which is the Fourier transform of the time correlation function of a 
dynamical variable v(t) [37,38]. In fact. more generally. it is possible to establish 
the close connection between the Lanczos algorithm based upon a scheme of projection 
operators in Hilbert space, and the Mori projection scheme in statistical mechanics 
[38,40). 

The LA tri-diagonalization proceeds by recursive steps or projections. If we 
let N be the dimension of the matrix, and n

5 
• the number of recursive steps needed 

to converge to an accurate spectrum, then we find ns << N. This inequality becomes 
more dramatic the more complicated the problem. In this sense. the Lanczos projections 
rapidly seek out, from an initial finite subspace of dimension N, a smaller subspace 
spanned by the Lanczos vectors. That is the LA constructs subspaces that progressively 
approximate the "optimal reduced space" for the problem. These subspaces, spanned by 
the lanczos vectors are related to Krylov subspaces [41.42] and are generated from the 
sequence ~k-llv> for k = 1, ...• n. Thus, the choice of Iv> as the "starting vec­
tor• biases the projections ;n favor of this "optimal reduced space". It is easy to 



110 

show that this Krylov sub-space can only contain eigenvectors of A with a non-zero 
component along Iv>. In general, the time required for the LA tri-diagonalization 
goes approximately as nsN(2nE + 21), where nE is the average number of non-zero 
matrix elements in a row of A [37). 

very recently [43) we have learned how to blend the LA with the conjugate gradi· 
ent method to "turbo-charge" the Lanczos Algorithm. TMs more powerful version supplies 
objective criteria for truncation of basis sets and recursive steps. 

We briefly summarize the Lanczos algorithm. We first identify the starting vec­
tor Iv> as the first Lanczos vector li111> . Then a Schmidt orthogonalization on the 
Krylov sequence ~k-llv> for k = 1, ... ,n allows one to iteratively generate the set 
of orthononnal Lanczos vectors lek> according to 

where ak+l is the nonnalizing coefficient such that 

and ~k is the projection operator on the Krylov subspace spanned by lillj> 
j = 1 •... ,n given by: 

k 
pk "' I: lillj><illj I . 

j=l 

Eq. (11) leads to a three-ten1 recursive relation for generating the lillj 

where 

and 

(12) 

(14) 

(15) 

(16) 

(17) 

It may easily be shown that ~ has a tridiagonal representation, In 1n the basis 
of Lanczos vectors la,j> such that 

(18) 

while Eqs. (16) and (17) give the non-zero matrix elements. That is, given the vectors 
lek> in terms of their components xj,k in the original basis set, lfj>" j = 1 •... ,N 
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1~k> = ~ x. kif.> 
j J. J 

xj,k = <fj ll)e 

(19a) 

(19b) 

then the column vectors !k fonn the orthogonal matrix Yn such that g~rgn = !n 
and 

(20) 

We have described the conventional Lanczos algorithm for real synnetric (or Hennitian) 
matrixes ~ such that Eq. (13) involves the usual norms in Hilbert space. 

For our present applications to ESR (and Fokker-Planck equations) for which A 
is complex synnetric (or else can be transformed to complex synwnetric fonn (37,38,40)) 
libro and Freed [37,381 showed that one must introduce the Euclidean pseudo-nonn. That 
is, first consider the general non-Hermitian case. One must introduce a biorthononnal 
set of functions l)j and cv'i' such that 

<cvi 
1 

11).> = 6. • I 
J J .J 

(21) 

or alternatively (letting xj' and ~j be their collffllfl vector representations): 

x.1_· 
1 

• x. = 6- ·, . 
-J J .J 

(22) 

However, for the case of (non-defective [42)) complex synmetric matrices ~. it is 
possible to let 

(23) 

such that Eq. (22) becomes: 

x~r • v. = 6
3 

. , -J gJ ,J (24) 

and then the recursion method of Eqs. {12) - (18) remains applicable with Eq. (24) 
defining the Euclidean pseudo-nonn, whereby the bra vectors are defined without the 
usual coq>lex conjugation in.a Hilbert space. 

Finally we note that the complex symnetric tridiagonal matrix In can easily 
be diagonalized by one of several methods [42 1 44]. This is not necessary for cw-ESR 
spectra (or for simple spectral densities from Fokker-Planck equations), since one 
can use a continued-fraction solution, but it is needed for 20-ESE spectra (cf. 
Sect. X). 

The computational algorithms for simulating magnetic resonance spectra in terms 
of molecular dynamics as well as for spectral densities for molecular dynamics have 
recently been reviewed (83). 
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c. Modeling of Rotational Dynamics 

In recent years [45] we have developed a useful method of stochastic modeling. which 
has been slllll\8rized elsewhere [46). It is a generalization of the stochastic-Liouville 
method whereby the basic physics of the "relevant• degrees of freedom and their coup­
lings may be introduced in a transparent manner. in conjunction with the stochastic 
features of the bath variables. The resulting incomplete stochastic liouville equation 
is then subjected to the constraints required for detailed balance in order to correct­
ly include the •back-reaction" of the bath on the nrelevant• degrees of freedom. The 
resulting augmented stochastic Liouville equation may then be efficiently solved by 
the Lanczos algorithm. By means of this approach one can develop expressions for fluc­
tuating torque. SRLS, and related models. Partially based on such ideas. we have devel­
oped soluble models for coupled reorientation of rod-like liquid crystal molecules in 
order to improve on the hydrodynamic model used for describing spin relaxation by di­
rector fluctuations [47}. Also, we have developed an approach. the dynamic cluster 
model (DCM}, to incorporate the dynamic localized cooperativity in the rotational 
relaxation of liquid crystal molecules in nematics. 

D. Modeling of Dynamic Cooperativity 

Our past ESR analyses in tenns of local cooperativity were based upon the slowly relax­
ing local structure (SRLS) model, which has now been improved by using our augmented 
Fokker-Planck approach. But in the highly ordered phases typical of liquid crystals, 
the cooperativity in reorientation may well be too great to be modeled in such a simple 
fashion. With the recent theoretical and computational advances, it could be feasible 
to analyze more realistic models of cooperative dynamics for the longer time scales 
(i.e. >>lo·12 sec) that are important for our magnetic resonance studies (48]. In this 
sense, such methods could be a useful alternative to full molecular dynamics calcula­
tions [49,50]. The particular model we have been studying is a "dynamic cluster model" 
(DCM) (48]. There have already been treatments of the role of short range order on the 
equilibrium properties of liquid crystalline phases using various fonns of Bethe's 
cluster method [51]. In this method a central molecule is surrounded by y nearest neigh­
bors which fom the outer shell. The central molecule interacts with this cluster through 
pairwise potentials U(c

0
,n;) i = 1.2, ...• y. with the Qi being the Euler angles 

for the i-th molecule. While they-neighbors do not interact with each other, they all 
feel an orienting potential V(oi) representing the mean potential of the fluid. Then 
a self-consistency relation is introduced so that the central molecule orders exactly 
in the same way as do the outer shell molecules. Th1s leads to non-trivial integral 
equations for solving for V(o1). Ypma and Vertogen [51) obtain best results for this 
model for y R 3 or 4. 

The DCM we have been studying is just the dynamical version of this. We model 
the y+l particle system by the appropriate set of coupled Smoluchowski equations 
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for the joint probability distribution P(a
0 

••• 0.y.t). These coupled Smoluchowski equa­
tions are then solved for correlation functions such as 

by means of the Lanczos algorthim. If we regard the central molecule as a probe. then 
in a sense, it is not necessary to achieve self-consistency. However. the matter of 
self-consistency is conveniently dealt with by solving numerically the Ypma-Vertogen 
integro-differential equations. These equations then give us the self-consistent 
values of V(o1) for a given value of U(0

0
,ci). In our solution of the several-body 

diffusion equation aP/at = rP, (actually we solve the symaetrized form). we use the 
analogy to the problf'III of the quantum mechanics of a many-electron atom. Let us call 
the operator r for the dynamic cluster problem rcluster' while the standard problem 
of the diffusion of a single particle in the mean-field of its surrounding is repre­
sented by the operator rMF (and is typically given in the fom of Eq. (6)). We first 
solve the conventional mean field problem for P1(c1.t) in the usual manner (i.e. 
Eq. (4)) to yield the one-particle mean-field eigenvalues and eigenvectors appropriate 
for a given meanfield potential. Then we select the mean-field solution corresponding 
to order parameter S = <Y~> which is (nearly) equal to that for the cluster problem 
to be solved. That is, we regard these rMF as the diffusional analogue of (Hartree) 
SCF theory, i.e. an approximation to the best one-particle solution. Then we solve for 
rcluster by methods analogous to configuration-interaction starting with these one­
particle solutions of rMF. That is, the basis states are products of the one-particle 
states from rMF. and we then diagonalize r in thfa basis. The problem with this 
method, as in any configuration interaction. is whether we have chosen enough excited 
•configurations• for the calculation to converge. 

Utilizing approximate basis sets (suitable for computation on a PDPll mini-com­
puter), we have obtained initial results for the correlation function for v!<Di>• and 
we have compared them to the mean-field results as illustrated in Fig. 15. Interest­
ingly enough. we find that for the nematic phase, the results for the full DCM lie 
rather close in shape to those for the simple MF problem. However, this is not so for 
the isotropic phase. especially for the phase transition region for y = 3 or 4 
(where y is the number of cluster particles). 
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VII. Molecular Dynamics at the Nematic to Smectic A•Phase Transition 

A) Experfaients 

We studied in considerable detail the N/SA phase transition with several nitroxide 
probes in two different liquid crystalline solvents: 40,6 and a mixture of 80C9-60CB, 
which exhibits a re-entrant nematic phase [31,52-54]. Our X-band ESR spectrometer is 
designed for milliKelvin temperature control. What we measure are the ESR linewidths 
6M of the three hyperfine lines (due to 14N), and we study B and C, which are ap­
propriate linear cOfllbinations of them (i.e. 6M = A+ BM+ cM2, where M is the z-com­
ponent of 14N spin). These show divergences at the various phase transitions [31,42,54). 
we Sllllllilrize in Tables 2a and 2b critical exponents and their magnitudes, which are 
obtained by non-linear least squares fits to the data after one subtracts off the back­
ground widths due to spin relaxation associated with the overall reorientation. For 
the smaller probes PDT and MOTA (cf. Fig. 8),we observe a universal result in the ne­
matic phase, just above the SIIIA phase, viz. a critical exponent of y = -1/3, within 
experimental error. 

However, the larger spin probe P-probe showed no discemable critical effect 
at this transition in the nematic phase. On the other hand, it did show a critical 
exponent of -.22 * 0.03 on the sinectic phase side of this transition in 40,6 solvent 
{the only solvent studied with this probe); whereas PDT and MOTA show no clear criti­
cal effect, only a weak hint of a pre-transitional anomaly on the smectic phase side. 

The re-entrant nematic-s111ectic (RN-SA) transition in 60CB-80CB was also studied, 
and it showed a critical exponent of nearly -1/3 for PDT but only -0.13 for MOTA on 
the smectic side of this phase transition. Again, there is only a weak hint of a pre­
transitional anomaly on the re-entrant nematic side. 

Critical-type divergences are also observed on both sides of the 1-N transition. 
The 1-N phase transition is characterized (on either side) by spin relaxation para-
111eters which diverge with exponent close to -1/2 as is consistent with a Landau - de 
Gennes mean-field theory of fluctuations in the orientational order parameter [55). 
This results in a slowly-fluctuating orientational potential at the site of the probe 
a>lecule, which is able to IROdulate the rotational reorientational of the probe, there­
by leading to the observed critical-type of effect on the spin relaxation [30.55). 
our virtually universal observations of -1/2 for the critical exponent on either side 
of the I-N transition is in support of the reliability of the technique. 

While the weak first order 1-N phase transition is generally well-characterized 
by mean-field theory, this is not so for the N-SA transition, which is most likely 
second-order for 40,6 [56} and to which scaling lawas analogous to the A-transition in 
He have been applied [57,58). In the dynamic scaling approach of Brochard [58] and of 
J~hnig and Brochard (59), the coherence length E characterizing fluctuations in the 
smectic order parameter ~(r,t), which is complex, is predicted to diverge as (T-Tc)-0•66 



Table 2as CRITICAL EFFECTS: 40,6 

PDTeapoae I MOTA I B C B C 
ISOTROPIC PHASE (Hr. Nematic) 

ka 7.6 :t 1.7 17.4 t 2. 1 58 t 5 68 :t 6 

y I -0 • 49 t O • 11 -0.45 t .09 -o. 47 .t • 02 -o. so :t .02 

NEMATIC PHASB (Nr. Isotropic) 

kz 4.46 t .os 9., :t 0.2 I 43.0 t 0.15 u.o t 0.2 

l I -0. 48 :t . 01 -0.54 t .02 -0.48 t 0.01 -0.50 :t 0.01 

I 
NEMATIC PHASB (Nr. Smeotic A) 

ks 4. 1 :t 1. 7 6.o t o.e I e.o :t 0.2 5.2 t 0.4 I 
yz -o. 33 t .07 -O.J8t 0.06 -0.32 t 0.01 -0.33 t 0.02 

SHBCTIC PHASB (Nr. Nematic) 

k; 
No Critical Effects Observed No Critical Effects Observed 

' : 
Above Based on Fi ts to Form 

e,c • k(T-T*)' (in mG.) 
Errors shown are from the non-linear 

least squares fits 
(Fran Ref. 52) 

P-Probe 
B C 

161 :t 49 66 t 37 

-0.49 :t .12 -o. so :t • 15 

210 :t 1 12S :t 1. 5 

-0.51 :t 0.1 -0.49 :t .02 

No Critical Effects Observed 

713 :t 3 

-0.21 t .03 

702.8 t .7 

-o. 23 t .02 

.... .... 
0, 
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Table 2b: CRITICAL EFFECTS: 60CB - 80CB 

B 

le: 14 :!:: 2 

y: -0.43 :t .09 

k: 16. 2 :t .03 

y: -0.50 ± .01 

lt: 17 :t 3 

y: -0. 30 :t .02 

k: 19 t 3 

y: -0.33 t .02 

PDT MO'fA 
C B C 

ISOTROPIC PHASE (Nr. Nematic) 

46 :t 2 42 :t 5 39 ~ 16 

-0.40 t .03 -0.48 :t 0.08 -0.48 ± 0.04 

NEMATIC PHASE Nr . Isotropic) 

29.9 t • 03 
No Critical Effects Observed 

-o. 56 :t .01 

NEMATIC PHASE Hr. Smectic A) 

12.S :t 1.2 75 :t 8 

-o. 36 :t .03 -0.36 :t .02 

SMECTIC PHASE (Nr. Re-entr. Nematic) 

32 :!:: 3 

-o. 38 :1: .02 

207 t 10 

-o. 13 ± 0. 01 

Above Based on Fits to form 
B,C • k(T-T"")y (in mG) 

(Fran Ref. 52) 

77 :t 6 

-0.35 t .02 

262 :t 33 

-o. 13 ± 0. 02 
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[66). The true story is actually more complicated. involving separate critical expo­
nents for E11 and E.1. the coherence lengths parallel and perpendicular, respect­
ively to the nemcttic director, and these exponents appear to vary from one liquid­
crystal to another [56,60]. 

B) Proposed Model 

We have proposed the following model to explain our principal results [31). As dis­
cussed above, the probe has a preference to be located in the lower density regions 
of the smectic layer, i.e. the alkyl chain region [24]. As the smectic phase is ap­
proached from higher temperature, and smectic layering forms as a pre-transitional 
phenomenon (i.e. cybotactic clusters), there is "expulsion" of the probe to the lower 
density regions of the transitory smectic layer. Molecular parameters which affect 
spin relaxation (e.g. the nematic ordering parameters SP and/or "R) are affected 
by this expulsion effect. The onset of smectic layers near the transition is described 
by density fluctuations: p(r,t) which also affects the translational motion of the 
probe. Since the critical fluctuations in p(r,t) occur on a much longer time-scale 
separation of the two types of motions which simplifies the analysis. Thus, as cybo­
tactic clusters fonn and break up in different regions, molecular dynamics and there­
fore the spin relaxation of the probe is modulated. 

In our fonnal approach, we first expand the relevant relaxation parameter Q 
(= e.g. Sp or "R) as a Taylor's series in the deviation of the density from its 
mean value Po I i.e. .llf;>(r,t) • p(t,t) - Po. That is 

(25) 

where the subscript B refers to the location of the probe. The translational diffu­
sion of the probe is taken to obey a Smoluchowski equation with a time-dependent 
potential [301: 

In Eq. (26) P(r8.t) is the probability density of finding the probe at 18 at 
time t, Q is the translational diffusion tensor with components 011 and D.l. 
while the potential of mean force on the probe is a functional of the density fluc­
tuations, i.e. 

Now .llf:>(t) is related to the complex order parameter 11,(r) in the usual 
manner [79,801: 
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p [ iq zl p I I iqs[z-u(r)J 
.6p(t) = ~ Re '1i(1)e s = ~ \ll{t) Re( e ) • {28) 

Here qs = l. where d is the smectic layer spacing, and the phase. q
5
u(r) of 

\l,(r) locates the smectic layer's density maxima and minima in each part of the sample. 
If for simplicity we follow dynamic scaling according to Jahnig and Brochard [58.59), 
we obtain for the q-th Fourier component of \l,(r) the time correlation function: 

( 29) 

{30) 

Here qll and qi are the components of q parallel and perpendicular {to the nematic 
director), V is the sample volume, and A is the coefficient in the tenn quadratic 
in \l,{t) in the Landau expansion of the smectic free-energy. ( A goes to zero almost 
as ~-2). The damping rq of the q-th mode is given by: 

(31) 

with TM a characteristic relaxation time for the cybotactic clusters and x = 3/4. 
The relaxation time Tm is expected to diverge as f 312 

z {T-Tc)-l. 

In the spirit of a Landau expansion we consider only the lowest order terms 
in 6'>(r8} to represent the time-dependent fluctuations in Q. That is: 

(32) 

where 

{33) 

The method of approach for calculating C(t) including the critical hydrodynamics of 
the phase transition and the translational diffusion of the probe is based upon methods 
we have previously developed [30). The dominant contribution to the ESR linewidths 
should be from terms involving J(w) "'J{O) yielding (in the limit qs ➔ 0): 

Mk T z~ 
J(O) = ¾ + (1 + zl/2)-1 

z << 1 (34) 
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where z • (1 + DtJtlf 1 measures the relative importance of translational diffusion 
over the coherence length E vs. relaxation of the order parameter in providing aver­
aging the fluctuations in Q. Here z; 1 corresponds to relaxation dominated by di· 
rector fluctuations, while z << 1 corresponds to relaxation dominated by molecular 
translational diffusion. The limiting form for z ~ 1 predicts the experimentally 
observed critical divergence of -1/3. 

In the second case we keep qs z l but introduce other simplifications. Then 
for J(O) we obtain 

vI+c -1 
C 

(35) 

Here c 9 qs2°nTm measures the relative importance of averaging out the effects of 
density fluctuations .6J>(r) in a single smectic-like layer through diffusion of the 
probe in the direction nonnal to the layer vs. the relaxation of the smectic layers. 
As c ➔ 0, corresponding to probe diffusion being unimportant, one obtains essentially 
the previous result for z,., 1. For c » 1, J(O) a: Tm112tE 11 a: e-1/ 4 • and it does 
not diverge, but rather goes to zero. 

Based upon measurements of e11 (561 and D [52,61,62] we estimate e
11
~10-5 cm 

for T-Tc = 0.1°K and D ~10-6crn2/sec. Also we estimate •m ~ 10-5 to 10-6 sec at 
o 2 -2 -1 o 2 

T-Tc = 0.1 C [311, so o,fr/~ - 10 to 10 (for T-Tc ~ 0.1 C), while D1rmqs~l0 
to 102. Thus, while it may be reasonable to ignore the averaging effects of transla­
tional diffusion over the distance of e1• this is questionable for diffusional aver­
aging over a single smectic layer of thickness d. 

However, the above sillll)le model, i.e. Eq. (32), implicitly ignores the potential 
of mean force U(r8,t) in Eq. (26). If U is a very sensitive functional of .6i>(t) 

{cf. Eq. (27)), then as .tip(t) diverges as the critical point is reached, Eq. (26) 
would predict virtually no diffusion parallel to the nonnal to the smectic phases in 
the cybotactic clusters. Instead, the probe would reside entirely in the alkyl chain 
regions in such clusters, i.e. the "expulsion effect• referred to above. Thus, the 
modulation of the parameter Q would be primarily determined by the formation and 
break-up of the cybotactic clusters, with the probe rapidly adjusting its location 
within the layers accordingly. This effect would be measured by the correlation func­
tion: <~(r8,t)~(r8,0}> and we would obtain Eq. (34) for the (simplified) spectral 
densities. 

Our model for cooperative molecular dynamics and critical effects at the N-S 
phase transition is still a rather simple one, and we have not yet explicitly conside~ 
ed the role of a finite U[~:,(18,t)) despite its presumed importance. On the other hand, 
we recall the Moro-Nordio theory [35) for spin-relaxation within the smectic phase. 
These two theoretical analyses are really related to one another. The more general 
approach would yield smectic-1ike fluctuations experienced by the spin probe near the 
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N-S phase transition, but a well-defined smectic-like potential deep in the smectic 
phase. It may be written in tenllS of a potential with the following form: 

If we assume that 8'[4>(t8)J and C'[tip(r8)J are linearly proportional to 

4>{t8), then deep in the smectic .we can let B' « ~ l~
0

jcos l z so that 
B' = B cos ~ z {and similarly for C' ) . This is just the fom Moro and Nordio use 
(cf. Eq. (8)). This suggests that near the phase transition we should use as an ex­
plicit form for U[4>(r8),t]: 

(36) 

in conjunction with the Fourier analysis of tip(t8) outlined above. 

Such a model would more explicitly describe how the probe ordering and combined 
rotational-translational dynamics is modulated by the smectic-like pre-transitional 
fluctuations. It may also enable one to correlate observations at the N-S phase tran­
sition with SRLS type of behavior deep in the smectic phase. 

VIII. Translational Diffusion 

our primary motivation here is to obtain the translational diffusion coefficients for 
the probe in liquid crystals in conjunction with studies of cooperative rotational 
dynamics and phase transition studies. The mechanism of Heisenberg Spin exchange can 
be used to study translational diffusion over molecular dimensions, while the new ESR 
imaging technique measures diffusion over macroscopic dimensions and can detect an­
isotropies in the diffusion coefficient. 

A) Heisenberg Spin-Exchange 

Our results [52,611 with PDT {cf. fig. 16) show trends that are consistent with the 
110del we have proposed [24) that in mono-layer smectics like 40,6 the PDT probes are 
gradually 11expelled 11 from the central aromatic core regions to the aliphatic chains 
as one proceeds to lower temperature phases; but for cyanobiphenyls the probe expul­
sion takes place prior to the fonnation of the smectic mesophase, as is evidenced by 
translational diffusion coefficients, which show no discontinuities (in magnitude or 
activation energy) at the phase transitions in the latter case. Also the low activa­
tion energy of about 2.5 kcal/mole for 6OCB-80CB and the decreasing activation energy 
of 4.7 to 1 kcal/mole for 40,6 are more characteristic of diffusion through aliphatic 
chains. This emphasizes the important role such studies can play in developing an 
understanding of motional dynamics. 
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B) ESR Imaging and Macroscopic Diffusion 

The relaxation techniques for measuring translational diffusion as discussed above for 
HE are based on bimolecular collisions of spin probes. As such, they measure diffusion 
over dimensions of (several) molecular length(s). However, they do not provide direct 
means for measuring diffusional anisotropy. Also, the analysis leading to the diffusion 
coefficient depends upon the choice of molecular model. It is therefore useful to have 
measurements of diffusion that do not depend upon one's choice of model and that can 
be used to study anisotropiy in diffusion. Such studies could then be compared with 
the sub-microscopic ones to understand much better the nature of the molecular model. 

We have developed a technique employing ESR imaging, which we have found to be 
convenient for measurement of D in the range of 10-8<0<10-5 cm2/sec, and we have 
succeeded in measuring the anisotropy of D in the liquid crystal 5,4 where 
D~S x 10-7 cm2/sec [32). In the nematic phase we find ~1/DJ_ = 0.71 z 0.1 which is 
consistent with a pre-transitional smectic-like effect (331 that could be expected, 
since 5,4 does exhibit a N-S transition. 

Utilization of such an imaging technique to study the anisotropic translational 
diffusion properties of the various smaller and larger spin probes in the different 
liquid crystalline phases would be useful for comparing with studies of sub-microscopic 
rotational dynamics (and sub-microscopic translational dynamics). Also one might hope 
to observe pre-transitional anomalies at the liquid crystalline phase transitions 
{e.g. a decrease in 011 as the N-SA phase transition is approached from the nematic 
phase, cf. Ref. [31]). 

IX. Rotational Dynamics in Model Membranes 

A) Dynamic Molecular Structure and Phase Transitions in Lipid Multilayers 

The use of defect-free oriented samples enabled us to clearly observe lipid phase 
transitions through the appearance of composite spectra in the transition (two-phase) 
region (63]. From ESR observations on low-water content DPPC and DMPC (cf. Fig. 17) 
three phase transitions were found over a temperature range below 1so0c: two were as­
signed to the main .transition and to the isotropic transition by reference to the 
transition temperatures in the literature. The remaining one, at 100-110°c, was char­
acterized as a •chain-orientational• transition. 

The ordering and the rotational diffusion tensor of the various spin labels 
could be determined accurately as a function of temperature,% H2o, and phase (e.g. 
Table 111). CSL, 5PC, and 16PC exhibit in all phases decreasing order parameters S, 
according to CSL> SPC > 16PC and increasing 1110tional rate (measured by R the ~ 
rotational diffusion coefficient) again according to CSL< 5PC < l6PC, while the aniso­
tropy in rotational motion obeys CSL< SPC < 16PC, consistent with the wel 1-known concept 
of the increased flexibilicy as one proceeds down the chain [64]. However, we have been 



124 

16PC CSL 5PC 

Fig. 17: Sche111Btic structures of CSL, SPC, 16PC (from Ref. [63]). 

able to quantify this flexib;lity gradient in terms of its reduced ordering and its 
s,Yllllletry. as we 11 as th& increased 1110ti ona 1 rate [ 63 l . 

Using these results we can characterize the ma;n (or gel-to-La(l)) transition as 
primarily a "chain-diffusional• transition, while, as noted above, the new high-tempen• 
ture one is characterized as a •chain-orientational• transition: the ordering para■eter 
S experiences a 110re significant relative reduction at the second transition compared 
to that at the main transition, whereas the diffusion coefficient R! for the chain 
probes (i.e. 5PC and 16PC) experiences a more significant relative increase at the 11in 
transition. Thus, a relatively smaller reduction in molecular ordering more effectively 
•unfreezes" the chain 110t;ons at the main transition compared to the second one. The 
relative increase in R! for CSL at the two transitions is, however, C0111Parable sug­
gesting that while local chain motion increases more significantly at the main transi­
tion, the overall molecular motions exhibit comparable relative changes at both phase 
transitions. Also, whereas R! shows substantial change at the phase transitions. 
R11 = NR!, which measures the motion about the long chain axis. is much less affected. 
This undoubtedly reflects the existence of significant motion of this type in the gel 
phase, which may be due to its relatively unhindered nature. Finally, we find that at 



Table III; Para•ters for Molecular Ordering and Anisotropic Rotation of CSL in DPPC d 

-
t, 0c phase (D~)d 2 2 d 

(D02 + 00-2) Rl.,c s·l R,,c s·l N E
8

.kcal/mol *-1 7'2 ,G 

(A) Hydrated to 3 wt I 

40 I 0,90 -0.01 2.9 105 4.4 107 
50 0.90 -0.01 4.0 105 6.0 107 150 7.7 1.5 
60 0.90 -0.01 6.2 105 9.3 107 
70 0.90 -0.01 8,3 105 1.2 108 
80 II 0.76 -0.03 6.8 106 3.4 108 
85 0.73 -0.03 8.0 106 4.0 108 50 (8.7) 1.2 
90 0,67 -0.03 9,6 106 4.8 108 

110 III 0,28 0.08 1.1 108 1.7 109 
120 0.21 0.06 1.5 108 2.4 109 

16 9.2 l.O 130 0.14 0,03 2.0 108 3.2 109 
140 0.13 0.03 2.5 108 4.0 109 
160 IV 0 0 5.8 108 2.9 109 
170 0 0 6.7 108 3.4 109 

5 5.0 1.0 180 0 0 7.5 108 3.8 109 .... 
bl 

(B) Hidrated to 7 wt% 
40 I 0.88 -0.005 5 107 3.0 105 4.5 
50 0.88 -0.005 5.0 105 7.5 107 

150 (8.7) 1.5 60 0.88 -0.005 7 .o 106 10.5 107 
70 II 0.78 -0.007 9.0 107 4.5 108 
80 0.74 -0.009 1.2 107 6,0 108 

50 (7.0) 1.2 90 0.65 -0.015 1.6 10 8.0 108 

aEstfmated errors: :t2% in (D&>), :t301 in (0~2 + 0~_2}, :tlOS in Rl., :t20S in N, :t20S in Ea, and :tOl. G in 2';-t, 
Note R11 = NRl.. br, biaxial gel phase; II and III, liquid-crystalline phases; IV, isotropic phase. cCorrelation times: 
-rl. • 1/6RJ.' "'u = l/6RII' and "f • 1/6~ = l/6(~

1
Rl.) 1l 2. dnie relationship between (D~) and A and p is given by the 

following expressfon: 
(D~) = f••fa,P(e',$'}1/2(3cos2e• - l)sina' de' dt' 

and (D~2 +D~_2) = ft,f8,P(8',t')(6112t2)sin2a• cos2,;• sine' de' dt', where a' denotes the angle beteen the principal 
axis z' of the ordering tensor and the principal axis z" of the director frame. P{e',t')sine' de' dt' is the distribu-
tion of z' relative to z" given by P(e',•'> « exp[- 1/2(3cos2e• - 1} + (61/ 2)p sin2e• cos2$']. (From Ref. [65].) 
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both phase transitions there is a more significant relative reduction in ordering at 
the end of the chain but a smaller increase in fluidity (as measured by Ri). Thus 
while there is greater •melting• of orientational order at the end of the chain, the 
end-chain motions are not as significantly tied to the ordering. 

B) Lipid-Gramicidin Interactions 

Given that the ESR spectra from dispersions is somewhat ambiguous to interpret, we 
adapted our aligrnent methods of sample preparation to prepare very well-aligned uni­
fom samples containing the stable polypeptide gramicidin A (DA). This polypeptide 
is frequently used to mi■ic the effects of protein on phospholipid bilayers (65]. 
Its advantages are its known chemical structure and its known helical conformations. 
its considerable stability, and its ready availability. Chapman and co-workers have 
found that the dimeric GA is incorporated into the lipid bilayer, and they regard 
it as a 1110del for the interactions of the polypeptide segnlents of transmembrane pro­
teins within the hydrocarbon regions of the lipid bilayers [65]. 

Our principal findings are the following [66]: 1) In the gel phase we observed 
distinct two-component spectra which could be assigned to highly oriented bulk lipids 
and to a disordered component, and the latter was fit by a model of •molecular dis­
order" such that the ordering of these molecules is greatly reduced, but its rotatio­
na1-1110tional properties are not appreciably changed (cf. Figs. 18A and 19A). The dis• 
ordered region at lowest concentration of GA is estimated to consist of about 30-40 
lipid pairs, or about five times the number required to coat the GA dimer. This corre­
sponds to a disordered region in the bilayer extending radially about 3 lipid mole­
cules. This effect of disordering is significantly reduced by increasing the wt.I of 
water, but it appears to be independent of temperature. 2) In the liquid crystalline 
phase, heterogeneity is not distinguished from the ESR spectrum. Instead, the priNry 
effect of GA is to significantly reduce the observed ordering of all the lipids, with 
only a very small decrease in 1110tional rates (cf. figs. 18B. 198). However, in the 
high-temperature weakly-ordered phase, addition of GA actually leads to significant 
increase in ordering. This increase in ordering is also observed in high-water-content 
dispersions in the liquid crystalline phase. There is no hint of features usually as­
signed to 11 i111110bilized11 species in any of the spectra obtained from well-aligned saq,les 
However, such features are present in dispersion samples of 4 M% GA prepared from 
the same materials as the well-aligned ones. If we associate these spectral features 
with •trapped lipids" due to aggregation of GA, then it follows that microscopically 
well-aligned samples do not allow for such aggregation. 

We conclude fro11 these findings that the principal lipid-GA interaction is that 
of a boundary effect such that the GA induces disorder in the low-temperature and low 
water content lipids, but it induces order for high-temperature and high water content 
(i.e., less ordered) lipids. It has only slight effects on lipid fluidity, in general 
reducing only slightly the rates of rotational reorientation. 
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We believe that these various effects can be explained as the consequence of 
two competing features of the lipid-GA interaction: a •disordering feature" and a 
•hardening feature•. The former induces a disordering of the lipids in their vicinity, 
while the latter makes them more solid-like, as exemplified by s0111eWhat reduced fluid­
ity and by increasing the order. Further110re, we require that disordering is dominant 
under conditions of low fluidity, while hardening is dominant when there 1s high fluid­
ity. The notion of two apparently opposite effects of the macromolecule on the ordering 
of lipids has been incorporated into a simple model by Jahnig [67). He proposed that 
the ordering at the boundary of a protein should be lower than that for the "ordered• 
phase but greater than that for the •fluid" phase. Our low water content results are 
consistent with this model when we apply it to the La(l) to high-temperature-liquid­
crystal phase transition. 

The heterogeneity induced by GA at very low concentrations is a distinctly dif­
ferent phenomenon from the one usually assigned to "innobilized" or "trapped" lipids. 
The clear discrimination of the heterogeneity in the bilayer induced by the GA, and 
the determination of the 1110lecular properties of this heterogeneity should be signi­
ficant in understanding the polypeptide - lipid interaction. 

X. Electron-Spin Echoes and Rotational Relaxation 

It is our expectation that over the next several years the modem electron-spin echo 
(ESE) technique will become increasingly important in the study of spin relaxation and 
rotational dynamics. The possibilities have been greatly enhanced by instrumental de­
velopments in several laboratories around the world including our own [4, 68-73]. 

The principal 110tiovations for applying ESE techniques to spin relaxation studies 
include: (1) the ability to separate homogeneous from inhomogeneous contributions to 
the linewidths (or T2) as well as to profit from the resulting increase in resolution; 
(2) the ease of simultaneously performing T1 measurements; (3) the possibility that 
special ESE techniques could provide infol"'llliltion on motional dynamics in addition to 
that from cw-studies; and (4) the possibility of extending the range of study to slower 
110tions. 

(A) ESE and Slow Motional Theory 

Wfh11e ESE work on nitroxides in liquids showed good agree.nt with the 1110tionally• 
narrowed line widths extracted by cw-techniques, we were especially R10tivated by the 

-7 -6 initial observation [741 that in the slow rootional regime, for TR - 10 to 10 sec. 
the phase memory time, TM was found to be proportional to (TR)a with a- 1 (cf. 
Fig. 20). Simple argunents suggest this was to be expected. That is, in the slow mo­
tional regime, reorientational juq>s should lead to spectral diffusion wherein each 
JIIIIP takes place between sites of different resonance field. This would be an uncer­
tainty-in-lifetime broadening that is analogous to the slow exchange limit in the 
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classic two-site case. and it contributes to TM. The broadening would then be given 
by TR-l• the jllllP frequency. This result suggested that studies of the ESE TM in 
slow-110tional spectra would supply COfllPlementary infonMtion on motional dynamics to 
cw-1ineshape studies. 

A rigorous theoretical basis for the analysis of s1ow-11>tiona1 ESE was developed 
in ordertointerpret such experiments with confidence [75]. It is based on the same 
stochastic Liouville equation (SLE) which is used to predict cw-1ineshapes (cf. 
Sect. VI). This emphasizes that echoes relate to the same type of motional effects 
as do the cw-1fneshapes. 

Our theoretical results on simple 90° -T - 180° - T echoes ~~nstrated that [751: 
1) the ESE decay envelopes show a short-time behavior with an e CT dependence on T 

and a long-tir.ie behavior of e-T/TM•. 2) The asymptotic phase-memory decay constant 
T; shows a significant dependence on models, and this was traced to the different 
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Fig. 20: Graph of TM (or T2 ) 
vs. T-l for PD-Tempone in 85S 
g1ycero1/151 water. The circles 
show TM data. The triangles show 
the TM from 2D ESE. The dif­
ferent lines represent TM in the 
central spectral regime calculated 
for the models of jump diffusion 
(solid line), free diffusion 
(dashed line), and Brownian dif­
fusion (dashed-dotted line). The 
calculations employed the values 
of TR extrapolated from them­
tional narrowing regime. 
(From Ref. [76a].) 
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11echan1sms of spectral diffusion induced by these models. 3) The TM obtained fJ'OIII 
selective echoes on different parts of the (nitroxide) spectrwa show significant dif­
ferences. 4) The short-time behavior yields a c ac TR-l, and c is independent of 
diffusion 1110del. 

We also showed that in an ideal two-pulse ESE experiment, the decay envelope is 
described by [751: 

* S(T) = Re I: al,j exp [,¾ + Aj 1 -r 
1,j 

(38) 

which is the real part of a sum of complex exponential functions. The relevant para­
meters are determined from the SLE, and the Aj are the eigenvalues of the stochastic 
Liouville operator in the rotating fra11e. Their i11aginary parts (i.e. 11111\j = (l)j) re­
present the resonance frequencies of the associated •dynamic spin packets", while the 
real parts (i.e. ReAj • T2,j

1 ) represent their natural or homogeneous widths and 
are associated with the observed T2 . The relative contribution of the various spin 
packets depends upon the coefficients a1,J, also provided by the theory. One finds 
fr0111 the silllllations that the nitroxide slow-motional cw-spectrum will typically con­
sist of 50-200 such spin packets which make significant contributions. These spin 
packets overlap with one another (especially when the inhomogeneous width is included), 
and the typical broad envelope, i.e., the cw-spectrum, is observed. Thus if the ReAj 

are different in magnitude from one another, one may expect to observe a T2 that 
varies across the spectrum. We have developed a two-dimensional ESE technique speci­
fically designed to study variations of the natural width across the spectrum. 

A) Two-Dimensional ESE 

In our original experiments [76,771, we utilized a standard 90°--r-180° two-pulse echo 
sequence and 110nitored the echo height at 2-r while slowly sweeping through the ESR 
spectrum by sweeping the de-magnetic field. This generates an •echo-induced ESR spec­
tnna• for each value of -c. The resonant microwave field H1 is kept small enough 
that it does not introduce any distortion into the echo-induced field-swept ESR spec­
tNI (i.e., yeHl « «->s , where &.>s is a measure of the width of spectral detail 
in the cw-spectrum). After collecting a family of such spectra, a Fourier transfonn 
with respect to T is performed at each field value. The resulting 20 spectrwa yields 
the inholllogeneously broadened absorption-like echo-induced ESR spectrum in one dimension 
and the holnogeneous lineshape in the other di•ns1on. The two-dimensional spectrum is 
given by: 

(39) 

where ea,
0 

= yeHo and a Gaussian inhollogeneous broadening of width Ii has been as­
s1111edt and we have included the effect of the finite dead-time ~d. Note that for 



132 

., ■ o we al110st recover the expression for an ESR-like absorption spectrum with Gaus­
sian inhomogeneous broadening. Along the (!)-axis one observes a blend of Lorentzian 
line-shapes from the various •dynamic spin packets•. In general, we find that while T2 
varies across the spectrum, the observed 2D-ESE line-shape at each position 00

0 
is 

close to a si111ple Lorentzian in 6>. Examples of such 2D-ESE spectra appear in Fig. 21. 

It is preferable, however, to study the normalized contours to obtain useful in­
fol'llllltion. This representation is developed by dividing every slice of the spectrum 
along the •width" (or w)- axis by its corresponding amplitude at O MHz and then gen­
erating contour lines at every 101 change in height. The resulting map reveals the 
homogeneous line-shape as a function of field location unaffected by differences in 
signal height. One finds that these contours are very sensitive not only to the rate 
of reorientation but also to the 1110del of molecular reorientat;on, (e.g. whether it 
is by jumps, free diffusion, of Brownian motion) with different characteristic pat­
!!!:!!! for each! We show in Fig. 22 an actual experimental demonstration of the sensi­
tivity to motional anisotropy by comparing the results for tempone, whfch tumbles nearly 
isotropically vs. those for CSL. whose motion is anisotropic. While the r2's are 
comparable, the shapes are significantly different, emphasizing the large anisotropy 
for CSL. 

It should also be eq,hasized that Fig. 22 shows patterns that are consistent with 
a Brownian reorientation model, since jump models predict parallel contours with no 
features [76a]. 

We have already applied the 20-ESE technique to or;ented lyotropic liquid crystal­
line samples [76b] (cf. Ffg. 21). In Fig. 23, we show a sequence of experimental con­
tours from oriented multi layers of low water-content DPPC-doped with CSL for different 
temperatures and angle of tilt 8, and in Fig, 24 we show typical simulations which 
re.late to these results showing specific sensitivities to the orienting potential as 
well as details of the dynam;cs. 

We wish to emphasize the importance of the latter. Our studies with the CSL spin­
label in the oriented saaples (cf. Section IX) have shown that even in the slow-1110-
tional region, where cw-spectral simulations are only slightly sensitive to motion, 
it is very difficult to obtain a unique set of parameters characterizing the system 
under study. The 2D-ESE results are much more sensitive to these matters as illustrated 
in the simulations of Figs. 25. In Fig. 25a we show a cw-ESR simulation for high order­
ing (S • 0.87) and very slow motion R,.,, 104 sec-1. We superimpose the results for 
isotropic (N • 1) and very anisotropic (N = 100) motions to demonstrate that they are 
almost indistinguishable. However, in Fig. 25b we show the 2S-ESE contours and O Ntz 
slices for the salll! parameters. They clearly differ both in magnitude and shape and 
are very easily distinguishable! 

As described above, the 2D-ESE spectrum is obtained by monitoring the height of 
a spin echo from a two-pulse sequence, as the magnetic field is scanned. 
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orientation of the director with respect to the external and applied magnetic field H. 
(From Ref. [76b].) 
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Fig. 22: Nonnalized contours from spectra of two different nitroxides. (a) shows 
the spectn.111 of Tempone in 85S glycerol/HzO at -75°c. (b} shows the spectrum of 
CSL in n-butylbenzene at -135°c. The TM's for these spectra, under these conditions, 
are approximately the same. (This result was obtained by G.L. Millhauser in these 
laboratories.) 

Two difficulties arise from this approach. First. to avoid so-called FFT window ef­
fects, it is necessary to collect data over a considerable time range. This means that 
a considerable 11110unt of time is spent collecting data when the signal-to-noise ratio 
is low. and, hence, the spectral resolution is low. This effect is more pronounced in 
curves with rapidly relaxing components, and so, the resulting distortions are not 
uniform across the spectrum. The second difficulty arises from the spectrometer dead 
time, which tends to filter out the more rapidly relaxing components. 

To remedy these problems we have found that a linear prediction method (LPSVD 
(77,78]) for processing the data is very useful for these two dimensional spectra 
(79) (cf. Fig. 26). 
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Fig. 23: Normalized contours of experimental spectra from oriented multilayers of 
low water content -DPPC doped with CSL spin probe. 

(a) 0 = oO
, T = oOc; (b) 0 = oO

, T = -20°c; (c) 0 = 90°, T = - 20°c; 

(d) e = 45°, T = -20°c. (From Ref. [76b].} 
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Normalized contours of simulated DPPC/CSL oriented spectra (8 = o0 ) to 
4 -1 illustrate the sensitivity to motion and ordering. (a) Rn= 4 x 10 s • 

4 -1 2 4 -1 R.1 = 0.8 x 10 s , or N = 5, 71:
0 

:: 8,0i (b) R
11 

= 2 >< 10 s , 
4 -1 2 4 -1 R.1. = 0.5 x 10 s , N = 4, >..

0 
"' 8.0; (c) R

11
"' R.L = 1 x 10 s • 

2 4 -1 2 
11.0 = 4.0; (d) R11 = RJ.. = 1 x 10 s , >..

0 
= 12.0. The effects of an 

intrinsic r;s (0.7 I.IS) due to "solid-state" contributions and inhomo­
geneous broadening (3.2 gauss) have been included. (From Ref. [76b].) 
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Fi9. 25: A comparison of the relative sensftivity of cw vs. 2D ESE to 1110tiona1 
anisotropy. (a) Two superimposed spectral simulations where one spectrum 

4 -1 has R.l = 10 s and N = 1, and the other has the same R.1. but with 
N = 100. The markers on the x-axis are 9.77 Gauss apart. The noraalized 
contours are siaulated from the same parameters whh (b) N = 100 and 
(c} N = 1. Case of high ordering, S = 0.87 and 8 = o0
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Normalized contours showing the resolution enhancement obtained from the 
LPSVD treatment. (a) is from data of Tempone in 851 glycerol/HO at 
-75°c treated by conventional FFT. (b) is from the same data s~t. but 
treated with LPSVD. (c) is a different data set that was collected 
from the same system 1n a manner that maximizes the efficiency of the 
LPSVD algorithm. (From Ref. [79].) 
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C. Newer Techniques 

The 2D ESE technique has now been appl;ed to give a map of the rate of magnetization 
transfer out of each spectral position [80,811. It 1s produced by analogy to the 
•r2 maps" described above, but is based on the stimulated echo, and ;t requires one 
to subtract out the simple T1 decay. It can produce dramatic indication of the 1110-

tional model without even requiring sophisticated analysis. We illustrate this in 
Fig. 27 for the case of physisorbed N02 (on a crushed vycor surface), since it 
dramatically demonstrates anisotropic reorientation (about an axis parallel to the 
line through the two oxygen atoms labelled as the y-axis. (The study of slow motions 
on surfaces by a variety of these new methods has recently been reviewed [82).) 

Most recently Fourier-Transfonn (FT) ESR techniques have been developed [71-731, 
which hold the promise of revolutionizing the use of ESR to study motional dynamics 
[72,821. It should permit one-to-two orders of magnitude reduction in experimental times 
for the 2D-ESE techniques described above, as well as new magnetization transer experi­
ments, in which one could directly correlate the transition rate from one molecular 
orientation to another by an FT-2D exchange-transfer technique [72). 
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Fig. 27: 2D-ESE contours from the Stimulated Echo sequence for NO /Vycor at 35°K 
snowing rates of magnetization transfer. The exponential decay tehn in T1 has been 
subtracted out (fro11 Ref. [80)). 
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