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CHAPTER 12

ESR AND MOLECULAR MOTIONS IN LIQUID CRYSTALS: MOTIONAL NARROWING
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ABSTRACT. Theoretical and experimental aspects of spin relaxation in liquid crystals are considered here,
with primary emphasis on the motional narrowing regime. ESR studies of translational motion in
mesophases are also described.

1. The ESR Spin Hamiltonian: g and A Tensors

The total spin hamiltonian H expressed in angular frequency units, can be separated into three
components,

H@) = H, + H{Q) + &) (n
In the high-field approximation the orientation independent component H, is:
‘hHD = YeBDSZ -ﬂE?iBOfi,z +ﬁve2aiszj;,z (2)
i i

which gives the zeroth-order energy levels and transition frequencies. In this equation the first
term is the electron spin Zeeman interaction involving the electron spin operator, S, and the DC
magnetic field B,, with vy, the electronic gyromagnetic ratio. The second term is the nuclear spin
Zeeman interaction summed over all nuclei with spin operators [, and gyromagnetic mtios y,. The
third term is the hyperfine interaction between the electron spin and the nuclear spins and g, is the
hyperfine coupling constant. The orientation dependent part, A, (Q), can be expressed as the scalar
product of two tensors [1], ie.,

HEQ =Y ¥ (IFP D, (@ 4,", )
wo Lamk

F**) and A" are irreducible tensor components of rank L.The F* " are spatial functions in
molecule fixed coordinates, while the A,{,’T"’ arc spin operators defined in the laboratory axis
system. The subscripts u and i refer to the type of perturbation and to the different nuclei,
respectively. The generalised spherical harmonics D:(Q) include the transformation from the
laboratory axis system (xyz) into the molecule-fixed axis system (x™y*z™). For the analysis of
most ESR spectra of simple free radicals (S = 1/2) only second rank tensors are important, ie.,
the A and g tensors.

For nitroxides, there are three allowed ESR transitions and six forbidden transitions which must
be considered; these are illustrated in figure 1. The g tensor, g, and the hyperfine tensor, A, yield
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Figure 1. Energy levels and transitions for a nitroxide in high magnetic fields. Here S=1/2 and I= 1, and
the notation is | M_, M,>. (From [6]).

an H(Q) (neglecting non-secular terms which tend to be unimportant in liquid crystals due to
their relatively high viscosities) given by,

H(Q) = Dy@IF, + DLJ$, + [P} 0) + DY)

X (F, + DU 1), + DY) I, - D) 1] DS,

4
+[pu@ + Di@|pe 18,
- [pr.@) + DL@)De 1S,
where
Fi = Eg(l}h B ﬂQBD’
go = ‘% [Zg,- -{g. *+ gy_)],
®)

1
g% = 5lg- - gl

D = (14, 1/2{6)4,. + 4, ~24,),

1
D® = 7 1Y, | (A4, -4,

D' = - (8/3)" D and D™ = - (8/3)'* D®, We have written the principal components of the
hyperfine tensor, 4,~,4,,4,~ and those of the g tensor Zom &y, &, n the molecular coordinate
frame (x™y™z*) in which they are diagonal. In addition,

80) = %'y. B[S, exp(-iw) + §_explio)] ©)

is the interaction of the electron spin with an oscillating magnetic field of frequency /2. [When
more than one oscillating field, (i.e., for such double resonance techniques as ELDOR or ENDOR,
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and/or when field modulation effects are to be explicitly incorporated), then equation (6) may be
appropriately modified to include these effects.]

1.1. ANISOTROPIC LIQUIDS

Suppose now that the liquid has a preferred axis of orientation, i.c., the director. We now write
the perturbing hamiltonian (3) as

H@Q#) =Y ¥ (1 Do) Du D F 4,7 M
wio Lmm'k

This equation is based on two sets of rotations of the coordinate systems, first from the laboratory
axis system (xyz) into the director axis system (x*y”z") with Euler angles ¥ and then into the
molecular axis system (x’y’z’) with Euler angles Q(= afy). The orientation of the director
relative to the laboratory frame can be specified by the two polar angles @ and ¢’ such that
¥ = (0,8,¢'). More precisely, we mean by the molecular coordinate system (x'y’z’) the
principal axis system for the orientation of the molecule in the mesophase, which is usually taken
by symmetry to correspond to the principal axes of R, the rotational diffusion tensor. It may also
be necessary to transform from the principal axis system of the magnetic interactions (x*"y'z*}
to the (x'y'z’) system with Euler angles &(= o’$'y’) according to

F'% =Y Dif@)F. ®)
I3

2. Effective Spin Hamiltonian and Order Parameters

In ordered systems, an effective spin hamiltonian is used

H=H, +F(Q), ©
where
K, =H, + <H(Q)> (10)
and
F(Q) = H(Q) - <H{Q)>, (£8))

where the averaging implied by the angular brackets is over cnsemble variables (i.e., the space of
Euler angles describing the relative orientation of the molecule in the laboratory frame). Thus,
from equation (7) we have for uniaxial liquid crystals

HE@) = ¥ D) Do) F AL (12)

Lok, gy i

The solution of this hamiltonian is formally identical to that for a single crystal hamiltonian with
axially symmetric magnctic parameters, ie., for a single mucleus such as “N
feo

D STC V{2 I ()7 ongh (13)

Thus,
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00+ |2 DreotcroL) "

a =ay, - J%‘Z 2n &, DY (-1{D;, (€0, )

where §, DY are the irreducible components of the hyperfine tensor, and

—
- 2
g =8+ N 3 Eg(k) (_IY(Di-k(g)>s (16)
]
g =8 - |- Xe® -1/ Diu), a7
N6 5§
with g¥ the frreducible components of the g tensor. We may write
<g> = 0 = (& cos* 8 + & sin’ BY, (%)

and when the g values deviate only slightly from g, we can write
<a> = 4(6) = (G cos* @ + d_ sin’ 6)* (19)

then the resonant field is given by:

- a ~d
a, + a(&)’)aL

B(O) = g,B,[2 - E@] - d(OM, - ( [+ 1) - M
g, 4a(ey
(20)
wl3 280 _pp |G- ATy, 20)| e g
g, 84d(6Y B, i

When the ordering is weak and when <D}(Q) >, and <D} + DI, >, are non-zero these
equations simplify to
2

<g> ay
-<g>M, - | +1
N ZBD[( )]

&

)

The apparent g and g values, ie, <g> and <> may then be used to cbtain the order
parameters <Dy, > and < Dj, + D, ,> according to

B(§) = B, [2 -
@n
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<a> -a)(g, -g) -(<g> g)a, -a)

<Dy> = . (22)
DDD(O’ 8’0) [(ﬂz - a) (g; = gy) = (gz - g) (a; - ay)]
and
<DL 4 DL> - 2J6'<<a> @ -9 - <g> 9 -9 @)
Dy(0,6,0)[(a, - a)g, - g) - (g, - 8)a, - a)]
where @ is the angle between director and the external magnetic field B, and
DL(0,6,0) = (3cos* 8 - 1)/2. (24)

Ly ey

[In equation {11) and hereafter we shall refer to magnetic tensor components in the x",y*,z" axes
as the x,y,z components, or ¢lse some cyclic permutation of the (x*,y™,z™) axes provided there
is no confusion with the laboratory axes.]

3. Spectral Densities and Linewidths

Spin relaxation in the motional narrowing regime is determined by the reduced correlation
function

<H(Q) H, (Q,t = 0> - <H(Q)><H, () >, 25)

where H,(Q) is the time dependent part of the spin hamiltonian, Since the time dependence of
H(Q) is then carried entirely by the Di (&) for weak ordering [or coincident laboratory {x,y,z)
and director (x™,y™,z") axes] (see later), we need only consider the correlation functions of the
D}, () given by

Crr D) = <D D2UQY> - <DUQ)>< DY) >. (26)

i
The spectral densities are Fourier-Laplace transforms of these correlation functions, ie.,
jm‘.k.k'(m) = Re L-dt Cn-;-',u'(t) e SM" (27)

where §,,,. appears because for a uniaxial phase m = m’ Although the fundamental spectral
densities important for spin relaxation are indeed given by equations (26) and {27), it is convenient
to define spectral densities directly from equations (3) and (25) for case of relating to observables.
Thus we obtain the measurable spectral density
J@) = L F (@), (28)
b
where u and v indicate the magnetic tensors associated with the particular interactions.

In general the spectral densities of equation (27) are derived from a stochastic time evolution
operator I" via the resolvent
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Jomsp(®@) = Re{&8D% | (i@ + )" | P3DL,>), (29)

where P is the unique equilibrium probability distribution obeying the relation
P =0 (30)
and the bra <8D 7, | is defined by

<DL | Q> = DLIQ) - <DLQ)>. 3

Thus 8D 2, denotes the deviation from the thermal average < D?, >. In the following sections the
spectral densities are given explicitly or they are derived from a stochastic operator I utilising

equation (29).
For a single nucleus of spin [ we have for the dependence of T, on the z component of nuclear
spin, M;

T(M)" = A + BM, + CM;, (32)

where

4-4" = %I(I+ DYy, E DD, ﬁwl,(me) + 3 pd@) + 6jzu,(w=)}
T

bty (33)

Yo , .

* lﬁﬁi ; Fk F-k’ {4-10#‘(0) + 3.’1#‘({0,)}

B =- uk YD F {4, A0) + 3, {w,)} (34)
\/gﬂ. rrili b 1k A e

C - ?T zij,D-., 8i0n O = Jopud©) *+ 6,,,{0) = ¥, (0) - 6,,,(0)} (35)

where the D, and F, are the spherical tensor components of the electron-nuclear dipolar and
Zeeman tensors in the diffusion temsor principal axis system (x"y’,z"), and where
w, =(/aly,|te, with o the nuclear Larmor frequency. For the case of perdeuteriated
tempone-d,, the y axis of the magnetic tensor principal axis system is coincident with the z’ axis
of the diffusion tensor principal axis system, and the probe is said to be y ordered. In terms of
measurable spectral densities (cf. equation (28)) we obtain

A-4" = 2" (), + 2BV (@) + 4%(w) + BR0) + 2 (e) (36)

B = (16/3},°(0) + 477%(w,) (37
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C = @BY."(0) - 1"(@) + 2(e) - (13 (0) - 27(w) (38)
A" i equations (33) and (36) includes all other nuclear spin independent line broadening
mechanisms, which for homogeneous 7,'s is predominantly spin rotation [5] for low

concentrations of probe, whereas Heisenberg spin exchange becomes important for higher
concentrations [6]. For the nuclear spin transition rate 2/, we have

W, =J () =7, Y, (D, D), (o) (39)
&
and for the terms involving electron spin transitions we obtain [6]
W(M) =W, + 2 (0) + 41 (0)M, + 27"(e )M, (40)
W, = (213)J5° (@), @1
W, =47;"(0), (42)

where #_ and W_ are the cross-relaxation rates associated with S, 7_and S, I,, respectively.
Equatlons (33-42) are applicable when the director is aligned pa:ailel to the magncﬂc field. If
the director is rotated by an angle @ with respect to the field we obtain

Jrapl@,8) = X0 1 d2(0) 1Py @), “3)
or alternatively
T 0.8 = ¥ 1du 8 '), “4)

where the d2, (8) are the reduced Wigner rotation matrix clements of rank two, which can be
evaluated in terms of their Clebsch-Gordan series expansions [7],

| do® I = CL= Y C2,.2,L;m,-m) C2,2,L;m’",-m") d( 6). (43)
Ledld

The spectral densities in equation (44) have the property [5] that
T @) = N w) (46)

and hence the angular dependence of J*"(w,8) is fully described by the spectral densities J; "(w), J} "(w),
and J{"(w). In this version of the motional-narrowing theory, the “N spin is assumed to be
quantised along the laboratory z axis. Luckhurst and Zannoni [8] point out that the form of
equation (44} is accurate only when the orientational ordering of the probe is weak {5 < 0.3}, such
that the axis of “N spin quantisation does not deviate substantially from the laboratory z axis.
Thus we have for the orientation dependent J {w,0) in the case of weak probe ordering:
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J{@,8 = (14)(1 -3 cos’ ) J (@) +3 cos’ Bsin® 8J,(w)+(3/4) sin* 8] (w) (47}

J(@,8) = (3/2) cog® Bsin*0.J () +(1/2) [(1 -2 cos® B) +cos? 6]J(w)

(48)
+ (1/2)(1 - cos* 6) J{w)
J (0,0 = (3/8) sin* 8J(0) +(1/2)(1 -cos* 6) J (@)
(49
+ (18} [(1 +cos® 8) +4 cos’ 8]/ {w).
Thus for example, for 2 (6) we have:
2W(8) = (3/2) cof® Bsin® 8J,"(w) + (12)[(1 -2 cos® 6F + cos® 8. (w,)
49

+ (1/2)(1 - cos* §)J; ().

Thus the orientation dependent spin relaxation rates such as the W (6) yield with the application
of equations (47-49) the three spectral densities J; (), Ji () and J;" (). We will see in the
following sections that an experimental detcrmination of these three spectral densities allows for
a much closer comparison of theoretical models of the dynamics with experiment than is possible
without the orientation dependent data.

4. Rotational Dynamics in Liquid-Crystalline Phases

The diffusion of a solute molecule in a liquid-crystalline environment is influenced by the
orienting potential as described in Chapters 3 and 4. However, since in liquid crystals several
kinds of motions may occur simultaneously (those occuring at the molecular level, i.e., rotations,
translations and conformational changes, as well as those that involve large numbers of molecules
leading to collective motions and order fluctuations), the dynamics is considerably more
complicated than in simple isotropic liquids. In contrast to the latter, the environment of the spin
probe is highly anisotropic cven though the rate of molecular reorientation may be fast. The
linewidths depend on both the rotational correlation time as well as on the ordering. Changes in
the activation energy for rotational meotion can reflect the changes in the dynamic molecular
structure experienced by the probe molecule as the liquid crystal undergoes phase transitions. A
chart ssammarising the various models for rotational diffusion appears as table 1.

4.1. MAGNETIC PARAMETERS

The relaxation data obtained from ESR studies of spin probes in liquid crystals, such as linewidths
and line shifts, require an accurate knowledge of the g and A4 tensors of the probe in the solvent
in order to obtain information leading to order parameters and rotational correlation times [9].
Although the magnetic tensors arc most commonly obtained through simulations of the rigid limit
spectra, cooling the liquid crystal to the rigid limit may freeze-in some order, and therefore a traly
isotropic powder spectrum may not be obtained. Furthermore, the isotropic values of the g and
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Table 1. Summary of Rotational Relaxation Mechanisms. [From D.J.Schneider and J.H.Freed,
in "Lasers, Molecules and Metheds", J.O.Hirschielder, R.E.Wyatt, R.D.Coalson, Eds. John
Wiley & Sons, New York (1989), Chapter 10].

Mechanism

Characteristic

Parameters

1 Anisotropic
diffusion

2 Anisotropic
viscosity

3 Fluctating
torques

4 SRLS

Unequal reorientation rates about
principal axis system fixed in
molecule; when reorientation rates
are equal, this becomes isotropic
brownian diffusion.

Unequal reorientation rates about
principal axis system fixed in
laboratory (i.e., dc magnetic field
axis}

Anisotropic torques that induce
reorientation are themselves
relaxing at rate that is not much
faster than reorientation of probe
molecule

Probe molecule relaxes in local
potential field, while latter averages
out isotropically at significantly
slower rate than rate of probe
molecule reorientation

5 Jump diffusion Molecule reorients by random

jumps of arbitrary angle

DL = (6th)?  rotational diffusion
coefficients about molecular
symmetry axis; Dy = (613)™
rotational diffusion coefficient about
molecular axes perpendicular to
symmetry axis; N = Ta/1k

B = (61" rotational diffusion
coefficient about orienting axis in
laboratory frame; D, = (615)
rotational diffusion coefficient
petpendicular to orienting axis in

Al

laboratory frame; N =il

7, = relaxation time for rotational
diffusion of probe molecule; 1, =
relaxation time for fluctuating torques
inducing reorientation of probe
molecule; & = (1 + t,/1,); may be
combined with analogues of models 1
(requiring additional specification of
1!, and 1) or 2 (requiring 3}, and

ty)

S, = <P(cosé)> order parameter of
probe relative to local anisotropic
potential field (ic., local structure);
1, = relaxation rate of local structure
(may also be combined with
analogues of models 1 or 2)

D = (&9, /61, where t = time
between jumps and (e?),, = mean-
square jump angle; can be generalised
to include anisotropic diffision
tensots by analogy with models 1 or 2
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Table 1. Continued

Mechanism Characteristic Parameters

6 Free diffusion Molecular reorientation is partially 1, and 7, where 1, = angular
due to free gaslike motion that is momenturn relaxation time; they are
perturbed by frictional effects of often related by the Hubbard-Einstein

surroundings relation; t,1, = //6k.T, I = moment
of inertia; also, t; = B, friction
coefficient
7 Director Hydrodynamic effect in which t, = Kq%m, where t, = relaxation
fluctuations  nematic director fluctuates in its time of gth Fourier component of
orientation with respect to director fluctuation, with K =
applied magnetic field average elastic constant of liquid

crystal and n = viscosity

8 Critical Pretransitional effects near (almost) 1, = w(/ + ¢° Y, where, for
fluctuations  second/ order phase transition; leads isotropic-nematic {nematic-smectic)
to apparent divergences in spin transitions, w, = L/vE, with L =
relaxation due to divergences in force constant for order fluctuations
correlation length and/or relaxation and v = associated viscosity
time for order parameter. (0, = 15, with 1, = relaxation time

of smectic clusters), £ = coherence
length of nematic (smectic) order
fluctuations and x = 1(3/4

9 Discrete Jumps Molecule reorients by discrete Ty
Jjumps among equivalent sites; often
this reorientation is about single
internal axis

= mean time between jumps

A tensors depend on the polarity of the solvent [3,10]. Since the location of the probe in the liquid
crystal varies from phase to phase (as discussed later), we find that the isotropic values of g and
A can be different in different phases of the liquid crystal [3]. For these reasons, the magnetic
tensors measured at the rigid limit may not necessarily correspond to the correct values,

A convenient method that circumvents the need for cooling the liquid crystal to the rigid limit
involves the method of scaling the magnetic tensors [3,10]. This method is based on the noted
linear correlation that exists between the isotropic hyperfine splitting @, and the solvent polarity
as shown in figure 2 and discussed in detail elsewhere [3,10]. It makes use of the assumption that
the components of the 4 and g tensors scale in the same way as the isotropic a, and g shifts (i.e.,
g, -g, = Ag, where g_ is the free electron g factor), ie,,

r
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Figure 2. Varation of hyperfine splittings A4, and 4, for perdeuteriated tempone with E;, the molar
transition energy. (From [10]).

Allal =Ajlal, i=xyorz

and

g./Agr = g./Ag,.

In these equations, the superscript x denotes the liquid crystal whose magnetic tensors are not
known (but the isotropic values Ag_ and a ) are known), whereas the superscript 0 indicates the
same variables for the liquid crystal in which the parameters have been reliably measured. It is
found that the variation in g and 4 values for a given probe in different liquid crystal solvents is
small (10% at the very most), and therefore the linear scaling is reasonable. Indeed, the method
of scaling to obtain the magnetic tensors for analysis has been used quite routinely after having
been checked in several instances [3,11,13,14]. Table 2 shows the magnetic tensors for
perdeuteriated tempone-d,; in several liquid crystals.

Table 2. Magnetic parameters for spin probes in 60CB-80CB and 40.6. (From [3, 11
and 14]).

Probe Solvent g.- g, 2o A4.JG A4.JG AJG
PD-Tempone 60CB-80CB  2.0099 2.0062 2.00215 5.60 5.00 3365
MOTA 60CB-8OCB 20099 20064 20023 592 5.29 35.6
PD-Tempone 40.6 20099 20062 2.00215 557 498 3349
MOTA 40.6 2.0099 2.0064 2.0023 5.89 526 3541
P-probe 40.6 20094 20058 20026 732 7.82 3150




282

4.2, RELAXATION PARAMETERS: LINEWIDTHS AND LINE POSITIONS

The ESR spectra of perdeuteriated tempone-d,; in liquid crystals usually lie in the motional
narrowing region. The intrinsic linewidths are obtained by deconvoluting the observed lineshape,
which is treated as a superposition of 25 superhyperfine lines separated by a;, the deuterium
hyperfine coupling constant. A detailed description of this deconvolution procedure can be found
elsewhere (cf. figure 3 in [3]). The linewidth coefficients 4, B and C are obtained from cquation
(32). Note that while 4 is the intrinsic width of the central hyperfine line, B and C are (mean)
differences of intrinsic widths; therefore, if there are sources of inhomogenecous breadening other
than the superhyperfine contribution (i.e., magnetic field inhomogeneity), they usually affect the
A term more significantly than B or C (but see later). We also note that the error bars associated
with measurements of 4 tend also to be much larger than those for B and C. The variation of
these parameters with temperature is Arthenius-like away from phase transitions as they reflect
the rotational dynamics of the probe. However, near phase transitions their variation is anomalous,
and this is related to fluctuations in the order parameter of the liquid crystal. This matter is
discussed in depth in Chapter 14.

ACRONYM NAME STRUCTURE
m
P~ probs E,Qf:f.:iﬁ:tﬁ.'&’e'"ﬂi.,:,L{.:'f’:: C 4ty —0—E—conn—{ =0 ,i.ﬁ"""'
oxyl ; {perdauleraied pipaiidine ring) "
or | Adsa- e Za—oberans | oo
ssgomio | a—scatuconon smne—2226,6°~ | ¢y conn— o

C5L

3’ 3’ — dimethylounrolidgingt —N— oxy
2°,3— 5a— cholesions

W&k

4--ethyl amino—2,2,6,6 —telro—

o

EQTA

[}
CHaCHy —C—NH —C§+o

mathylptperidinyl —~|— oxy

Figure 3. Structures of spin probes used in our study. (From [11]).

In addition to measuring A4, B and C, the shifts in the positions of the three hyperfine lines, or
more particularly, the variations in the mean hyperfine splittings and g shifts with temperature are
recorded since they relate to the ordering of the probe (cf. equations (22) and (23)). We typically
note that ordering increases on lowering the temperature, especially at the N-I transition there is
a sudden increase in ordering from the isotropic value of zero, Upon lowering the temperature
within the N phase, the ordering increases and gradually levels off. It does not appear to show any
abrupt changes at second order S,-N transitions (i.e., for 4-n-butyloxybenzylidene-4-n-
hextylaniline (40.6) or 4-n-octyld'-cyanobiphenyl (8CB).

Examples of the variations of the linewidth coefficients and order parameters with temperature
are now discussed.

4.3, MOLECULAR MOTIONS IN LIQUID-CRYSTALLINE PHASES

Here we shall discuss the rotational dynamics of perdeuteriated tempone-d,,, whose structure is
shown in figure 3, in a variety of liquid crystal solvents including 40.6, 40.8, 8CB, Phase V and
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60CB-80CHB, in order to illustrate the range of information that can be obtained about the
dynamic molecular structure of mesophases from motional-narrowing relaxation studies. Figure
4 shows the structures and phase transition temperatures of the liquid crystals studied here.
Examples of the use of larger probes, which typically show slow-motional ESR spectra in liquid-
crystalline solvents, are reserved for Chapter 15.

ACRONYM NAME STRUCTURE
N=[p—buloxybenzylidene) — ,N ©r—Gshy3
40,6 p—n— hexyloniline C4H9-"D—@—C\H
a0 8 N~ (p=-butoxybenzylideng}— CaHa—0 C’N © CeMir
' p—n—octylanline 47o © M
BCB 4 — cyono = 4"— octylbiphenyl NEC——@—@— CgHyr
5CHe 4 —cyano— 4°—n—pentyl biphenyl N=C—D—{O— sty
Euteclic mixlure of : caﬂwc =N 50%
52 4—cyuno—4'— n— oclyl biphanyl CroMg; . . c=N 39%
4~ cyano—4 —n — dacyl biphenyl
CioH, 0—O—@)—csn 1%

4—cyaro—4 ' —n— decyl oxy biphenyl

T 0

C4Hg ¢—P!l=N-¢-06H; 25%)
c‘,n,#—Nm'!—#—OCH, (40%)
phose W autectic minlure of four compounds ?O
CoHy—$—N=N—9$—~0CHy (12%)
CoHg—~#—N=N—¢—0OCHy {22.6%)

TBBA terephalylidens —bis - 4—n~butytaniline CaHg—#—NmCH—$—CHeN—¢ —C Hg

Figure 4. Some liquid crystals used in our studies. (From [11]).

Figures 5a-Se show the temperature variation of 1, for perdeuteriated tempone-d,, in some
liquid crystals, while the results in table 3 summarises the activation energies and pre-exponential
factors associated with the rotational correlation times of perdeuteriated tempome-d,, in these
solvents. The results for each common phase for the liquid crystals will be discussed individually
in order to present a unified pictare of the dynamics within that phase. We shall then attempt to
provide a model for the change in probe dynamics as the phase of the liquid crystal is altered.
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Figure 5. 1, versus 1/T for perdeuteriated tempone in (3) 40.6; (b) 40.8; (c) 8CB; (d) Phase V; () 60CB-
80CB, with AE,, indicated in parentheses. (From [3]); (d) See [5]. The points given by open circles
represent the best fit obtainable for an axial potential allowing for anisotropic viscosity. The results for an
asymmetric potential with anisotropic rotation (a) and with anisotropic viscosity (00 are also shown; () See
[14].

4.3.1. Isotropic Phase. The linewidth results for perdeuteriated tempone-d,, in the isotropic phases
show that, since the rotational correlation times lie between 10 to 100 ps (see figure 5), we are in
the region w, t; = 1 where non-secular terms are not negligible. (Note that for conventional ESR
at 9GHz, @, = 17 ps). 1f non-secular terms are included in the calculation of 1., we find that 7,
determined from B does not equal 1, from C for isotropic rotation. Such behaviour has been
commonly observed [5,3] in the region where w; T3 ~ 1, and was fitted by modifying the spectral
density function for the non-secular terms. That is, the quantity /(1 + &’ 1) is changed to
t,/(1 + ew’1y) where ¢ is an adjustable parameter greater than unity. The rationale for
employing a non-Debye-like spectral density can be understood in terms of the fluctuating torques
model discussed in Chapter 4, section 4. The parameter e is believed to be indicative of deviations
from the assumption of simple brownian rotational diffusion due to relatively slowly fluctuating
torques that induce the reoriemtation, and it can be shown to be rclated to the lifetime of the
fluctuating torques experienced by the probe (cf. Chapter 4, section 4.1). The values of ¢ range
between 3 and 15 in different liquid crystals [5,3,14]; these values of e are comparable to those
found for the same spin probe in several isotropic solvents [15]. Another effect which can cause 1
to be unequal to 1; is anisotropic rotational diffusion (ie., Di * D). However, this alternative
explanation conflicts with the observations of Hwang et al. [15] that the motion of perdeuteriated
tempone-d,, is virtually isotropic in a variety of isotropic solvents (and which is also expected on
the basis of the geometry of the probe). Therefore, for example, we favor an e of 10 and isotropic
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Table 3. Activation energies and pre-exponential factors for
rotational relaxation of perdeuteriated tempone-d,; in some
liquid crystal (and related) solvents. From [3, 5 and 14]).

Phase Solvent In(A/s} E_/kJ mol™
1 40.6 -36.1 339
1 40.8 423 52.3
1 8CB 453 62.3
I Phase V -37.6 335
I 60CB-80CB 422 527
I n-Decane - 12-21
I di-n-butylphthalate - 35.8
N 40.6 -36.8 35.1
N 40.8 -44.5 15.1
N 8CB =293 17.2
N Phase V -389 40.2
N Phase IV =317 372
N BOCP -36.4 39.3
N MBBA -39.5 42.7
N 60CB-80CB -33.2 259
S, 40.6 -29.1 17.6
S, 40.8 -30.0 16.7
S. 8CB -36.7 35.6
8. §2 -40.0 51.9
Sa 60CB-80CB -36.9 36.0
N, 60CB-80CB -37.8 38.1
S 40.6 219 8.4
S, 40.8 -30.8 16.7

Data taken from [3] (40.6; 40.8 and 8CBY); [5] (Phase V,

Phase TV, bocp, MBBA); [12] (S2) and [14] (60CB/SOCB).
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motion for perdeuteriated tempone-d,, in 40.6 over N (= D)}/D}) = 4.3.

With the development of time domain ESR methods such as 2D.FT-ELDOR and inversion
recovery, we can expect to determine J{w,) directly. From the frequency dependence of
Jw,) we could estimate the magnitude of e without changing the temperature. In this way we
may achieve the condition wt, = 1 by simply changing the Larmor frequency, thus enabling a
distinction to be made between the two mechanisms described here.

4.3.2. Ordered Phases. Most of the liquid crystals studied using perdeuteriated tempone-d;; can
be generally classified into two groups: the nO.m compounds, which are Schiff bases as shown
in fipure 4, and the nCB (or nOCB) compounds which are 4-n-alkyl (or alkoxy) -4'-
cyanobiphenyls. Examples of the former are MBBA (10.4), 40.6 and 40.8 and some examples
of the latter include 8CB, the eutectic mixture S2 and the binary mixture 60CB-80CB. In terms
of structural resemblance, the eutectic mixture Phase V can be said to belong to the former
category.

Here we shall describe relaxation studies of perdeuteriated tempone-d,, in the nematic and
smectic phases of the liquid crystals shown in figure 4, However, rather than discuss each system
individually, we shall present a comparative study of nO.m compounds on the one hand versus
nCB (or nOCB) on the other. This is useful in that the former generally form monolayer smectic
A phases, while the latter exhibit S, phases of the bilayer type (8 Aﬁ).

Nematic Phase

The range over which the order parameter <Dy, > (= §) in these systems varies, is from 0,04
near the N-I transition (i.e., 40.6) to about 0.20 near the end of the N phase (sec figure 6).
<D + D%, >, which represents the extent of asymmetry in the ordering of the x’ versus y’
axis of the probe with respect to the director, varies between 0.01 and 0.05. These low values for
the two order parameters are not swprising, given that perdeuteriated tempone-d,; is a near
spheroidal probe and, therefore, does not have a preferential direction for alignment. The rotational
correlation times, which in the nematic phase vary over a considerable range, lie between 20ps
and 500ps (see figure 5); however, this wide range is due to the fact that these liquid crystals
exhibit nematic phases at different temperatures (i.e., T, is very different for these systems), At
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Figure 6. Temperature variation of order parameters <Dl > and <D} -t-Df2n > for perdeuteriated
tempone in (a) 40.6; (b) 40.8; (c) 8CB,; (d) Phase-V; and (¢) 60CB-80CB. The order parametets shown
in figure ab,c, are in error due to faulty measurements of g tensor shifis. The measured hyperfine splittings
vary continuously across the second order S,-N transition. (Sources: a)b),c) [3]; d) [5]. Here =TTy
Phase V {0}, Phase IV (a), MBBA (0); OHMBBA (v}, BOCP (v); BECP (). €) Sec [14]).

the high extreme, i.e., 1, = 500 ps observed in Phase V, the spectra appear to exhibit incipient slow
motion. In order to explore this interesting case further, we have recently performed a study of
this system at 250 GHz, where the g tensor anisotropy increases by a factor of 30. A comparison
of 9GHz and and 250 GHz spectra appears in figure 7. Such field dependent studies provide a
possibility of discerning various motional models (to be discussed later), which in general is
difficult to extract just from the fast motional spectra (also see Chapter 15). (Note that the 7
versus 1/T behaviour shown in table 3 for the different systems differs only slightly if we usc an
axially symmetric potential rather than the correct asymmetric potential. However, the different
potentials predict quite different results for the detailed dynamics of asymmetric viscosity about
the director. Also, if there is anisotropic rotation about a molecular principal axis, but the molecule
is aligned asymmetrically, the use of axial and asymmetric potentials will give quite different
results for the ratio of the correlation times, 1} and t;. Note that, 1, =y b1,

An interesting result of our temperature dependent studies in the nematic phase is that whereas
for the nO.m compounds the rotational activation energies (E,.) are noted to be rather similar in
the 1 and N phases, they are significantly reduced in the N phases (relative to the 1 phase) of the
cyanobiphenyl compounds. Furthermore, the values of £, in the nematic phases of nO.m
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Figure 7. Comparison of spectra from perdeuteriated tempone in Phase V at 9GHz (a) and 250 GHz (b).
[From D. Budil, B. Lynch, K. Earle and J. H. Freed, unpublished results.]

compounds (33-50kJmol") are similar to E,, measured for perdeutcriated tempone-d,, in
di-n-butylphthalate [10] (37.7kImol”, cf. table 3), which is an aromatic compound; while, E,, in
the nematic phases of the cyanobiphenyls (17-25 kJmol™) lie closer in magnitude te E,, for the
probe in alkanes [10] (12-21 kImol"). This observation very strongly suggests that for nO.m
compounds perdeuteriated tempone-d,, tends to pack with the aromatic cores, but for
cyanobiphenyls it resides preferentially among the hydrocarbon chains of the liquid crystal
molecules [3,14). (Further evidence in support of this hypothesis comes from the fact that the
isotropic hyperfine coupling constants in the nQO.m are more typical of polar solvents, while those
for the nCB are comparable to alkanes),

While the ESR spectra fall in the motionally narrowed region in most cases, those for Phase
IV and Phase V showed spectra at room temperature with rotational correlation times higher than
100 ps [5]. The results in these cases were first analysed in terms of brownian rotational diffusion
in the presence of an orienting potential. It was first assumed that, except for the orienting
potential, the description of the motion should be very similar to that for the isotropic liquid, since
the values of 7, do not change very markedly at the phase transition nor is the ordering very
substantial (cf. table 3). Thus we used an & = 4.6, which is typical of isotropic liquids. When the
best single parameter Maier-Saupe potential was used, it was impossible to fit the results, except
with a 1, # 5. However, with the two parameter potential, 1p and T are more nearly equal. The
final adjustment (to the results for T, < 10™ for 7 > 23°C) was made by fitting e assuming
isotropic rotation under the two term poiential. This vielded e =29 £ 24 (or= 22 £+ 14
neglecting one resuk). However, for T < 20°C (or 7, > 2 % 107°) the C/B matio increases
suggesting 7, < 7. Very similar behaviour was also observed in a pressure dependent study [16].
The increase in C/B with 1, is to some extent due to the increase in ordering as either the pressure
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is raised or the temperature is lowered. (For an isotropic liquid, C/B should remain constant).
However, there is a substantial increase in C/B with 1, not aftributable to the ordering. This may
be interpreted in terms of (i) anisotropic viscosity; (ii) anisotropic diffusion; (iii) modification of
the pseudo-secular spectral densities by analogy with the non-secular corrections (cf. table 1) by
introducing an e’. For example, it was found that e’ =~ 5 in the viscous isotropic solvent
glycerol. None of these explanations were found to be satisfactory. When the results arc analyscd
in terms of anisotropic viscosity, the value of N = B!/D; continues to increase with decreasing D,
(ie., D remains nearly constant while D dccreases consudcrably) When the results are analyscd
in temls of anisotropic diffusion, we find that N, = D)/D; must be increasing as D, decreases,
and this is turned on only for t = (6D;)" > 200 ps. Furthermore, when 7, = lns, 4’ is
prechcted to be negatlvc from such an analysis, which is physically unpossxble typically A4’
increases with increasing 1, in the range 1, 2 100 ps (cf [15]). The modification of the
pseudo-secular spectral dcnsity with L— ie g’ = 13-20 yields results for 1, equal to that
of the values of 1, = (6D )7 for the anisotropic viscosity model. However, a single, and constant,
parameter (&) adequately explains a range of results. Thus the analysis in terms of e’ is a useful
way of representing the data, but questions remain as to the validity of using such a large &’ [5],
and so the SRLS model is somewhat favoured.

In general, we note that in the motionally narrowed region, it is difficult to discem between
models of rotational dynamics such as (i) anisotropic brownian motion, (ii) anisotropic viscosity,
(iii) fluctuating torques, and (iv) SRLS, without additional considerations. However, in the cases
where slow motional spectra are observed, the use of non-Debye spectral densities (ie., &) 1s
found to improve significantly the simulations to the experimental spectra. This indicates that
brownian diffusion in the presence of an orienting potential provides an oversimplified description
of the dynamics, which in this case is better modeled in terms of fluctuating torques or SRLS (cf.
Chapter 4, section 4).

Smectic A Phase

The liquid crystals shown in figure 2 exhibit second order S,-N phase transitions, with the
exception of 82 which exhibits a weakly first order transition. Accordingly, the order parameter
S for perdenteriated tempone-d,, changes smoothly upon cooling from the N into the S, phase
[17,18,12,14]. A more detailed discussion of the ordering at the vicinity of the S,-N transition
appears in Chapter 13, sections 1 and 2.

From a spin relaxation viewpoint, there are two fundamental properties of smectic phases that
dlstmgmsh them from nematic phases.

(i) It is possible to lock the S, director in a chosen orientation relative to the static magnetic
ficld [3,19), thereby permitting angle dependent studies to be performed. Thus, more detailed
dynamic information can be obtained than by performing studies at a fixed orientation. (Note
however, that angle dependent electron spin relaxation studies have also been performed in a
nematic liquid crystal using electric fields to lock the director [11].)

(ii) The layered structural arrangement of the S, phase causes the rotational diffusion of a solute
(ie., the probe molecule) to be influenced by its translational behaviour. That is, as the molecule
translates in directions normal to the layers, it experiences changes in the orienting potential (cf.
Chapter 3, section 2.5 and Chapter 4) which thus causes its rotational motion to be modulated.
Therefore, a proper treatment of relaxation in smectic phases must include the finite effects of
roto-translational coupling [20,12].

As expected for a more viscous phase, the rotational corelation times for perdeuteriated
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tempone-d,, in the S, phase are somewhat higher than in the N phase for a given liquid crystal
{(see figures S5a-5e). They lic between 50 (50-60ps for 40.8) to 500ps (170-500 ps for 8CB).
However, the increases in 7, in the S, phase are accompanied by a decrease in E,, for the nO.m
compounds [3,14]. This observation supports the view that the perdeuteriated tempone-d,, is
expelled more into the hydrocarbon regions of the smectic layers due to the smectic packing {as
compared to the nematic phase, in which polar interactions of the nitroxide group with the central
portions of nO.m compounds are favoured). The case with cyanobiphenyls, where E,, in the §,
phase is higher than in N, can be interpreted on the basis of the hypothesis that in the nematic
phase, the perdeuteriated tempone-d,, is already expelled into the hydrocarbon regions due to
association of cyano groups but in the smectic phase, in which interdigitated bilayers form, the
aliphatic region is bounded by better defined layers of cyano groups to which the probes can make
more contact (see also re-entrant nematic phase, later).

The 1, results for 40.6, 40.8 and 8CB were explained most satisfactorily in terms of SRLS,
as the temperature in the S, phase decreases, the order parameter S, for the SRLS increases as
52 [3,21). In our past work [3] we had considered an isotropic SRLS model in the smectic phases
of these liquid crystals. We shall present our most recent work on smectics shortly, but before that
we digress to note some of the experimental difficulties we encountered in the study of smectics.

A comparison of orientation dependent spin-echo and estimates of CW homogeneous linewidths
(obtained by the deconvolution of deuteron superhyperfine structure) in the smectic phase of S2
reveals that the CW linewidths are consistently larger than the pulsed linewidths, implying an
additional source of inhomogeneous ling broadening, We have studied this effect as a function of
(a) sample geometry (such as plate versus capillary samples of varying size), and found that this
effect is a result of complex wall anchoring effects which tend to propagate over macroscopic
distances from the wall of the container, and (b) the magnetic field effect associated with the
anisotropic susceptibilty of liquid crystals, The latter tends to align the smectic layer normal
parallel to the external field, however this tendency is opposed by the smectic elastic coefficients
transmitting the effects of wall anchoring. Thus, an equilibrium distribution of the directors is
rather complex, and depends upon the boundary conditions and the factors discussed here,
Experimentally, the effect is assessed by measuring the asymmetry of the hyperfine lines. In our
experience, the plate geometry provides the best conditions for aligning ESR samples
homogeneously, but the degassing procedure to climinate oxygen broadening becomes more
tedious and perdeuteriated tempone-d,; tends to plate out on the walls [3,11]. To overcome this
difficulty we have tried to simulate orientation dependent spectra invoking a director distribution
that changes when the director orientation is changed with respect to the external applied magnetic
field, Even in the capillary samples the orientational distribution is strongly peaked about the mean
director, but the errors in the actual homogeneous linewidths could be as high as 20-30%. We
show in figure 8 a comparison of homogeneous linewidths as determined by CW and pulsed
techniques in the smectic phase of the S, liquid crystal This is for 0° rotation for which these
problems are actually minimised. Note that the most significant deviations occur for the M, = +1
hyperfine line, which is due to the fact that for this line AP/w where AP is the difference between
the resonant position at the 0° and 90° orientation of the director (with respect to B;) and w is the
average width, is the largest. This feature affects the calculation of B most significantly (cf.
equation (32)).

The T, obtained from the spin-echo methods are more reliable, because they can be obtained
without deconveluting the lineshapes and they are indepedent of inhomogeneous linewidths [22).
In addition, new time domain two dimensional Fourier transform techniques make it possible to
determine W, and W,. The combination of these techniques and orientation dependent studies
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enables us to determine individual spectral densities, J(0), J{w,) [12] which allows a more
careful analysis of spin relaxation data for perdeuteriated tempone-d,, in the smectic phase of S2.
The two salient features of the data are, the nearly orientation independence of B and € and the
strong oricntation dependence of W, as shown in figure 6. We first discuss the former and then
the latter in order to assess the ability of the motional models to explain our results,

(i) ¥, Nuclear Spin Relaxation: We found, in general J, < J, J, which rules out (1) the
ODF (orientational fluctuations of the director) model since ODF is expected to enhance J,; (see
Chapters 9 and 14 for a detailed discusssion of the ODF mechanism) (2) anisotropic brownian
motion predicts J;, > J, > J, and so this model also fails to predict the observed variation of W,
{or in fact its order of magnitude); (3) a combination of anisotropic viscosity and anisotropic
brownian motion was also unsuccessful.

A model wherein we take into account the roto-translational coupling, proposed by Moro and
Nordio based on a general rotational-translational Smoluchowski formalism discussed by Hwang
and Freed [23,5], is able to account for our results. In this model, the McMillan potential (cf,
Chapter 4, section 2.5) is used. Physically, it represents the fact that as the probe molecule diffuses
in the direction normal to the smectic layers it experiences a variable orienting potential that
depends on its location in the layer, its magnitude being largest at the cores and smallest in the
tails of the alkyl groups. In addition, the transfational diffusion rates must be sufficiently slow
compared to the 7, such that, on the ESR time scale the probe experiences fluctuations in the
orientational potential and not just a mean orientational potential. It is in this respect that the
model falls under the general class of SRLS models discussed in Chapter 4.

Table 4. Parameters obtained from orientation-dependent W, simulations with the Moro-
Nordio model of solute dynamics in smectics. (From [12])".

Cc A B C tfs DT/em’s™ S Syiax o Y

1545 -3.40 273 2205 1315 LM x10° 0453 0823 0042 0294
2025 320 -260 2.073 1434 141 x 10° 0434 0812 0048 0.2%
2615 -2.60 -255 1.820 1304 342x10° 0337 0785 0105 029
3095 227 240 1630 760 3.08x 10° 0294 0759 0119 0294

3786 -1L.70 257 1426 678 547 x10° 0185 0732 0184 0.294
4260 -1.52 -239 1299 592 >25x10° 0167 0704 0177 02%

* The coefficients 4, B and C are implicitly defined in Chapter 4, equation (31). Also
8 = <Py(cos f)>, o = <cos(2nz/d) Py(cos f)> and y = <cos(2rz/d) >.
® Obtained with a bilayer thickness d = 3.0 x 107cm.

Our results are summarised in table 4. The important parameters that are needed are the
potential terms (cf. equation (31) of Chapter 4) 4, B, C and translational (D7) and rotational
diffusion coefficients D,/Ds. This is a total of six parameters! Unfortunately, with only four
parameiers J,, J,, J,, 4 + B (the last parameter is the ordering potential at the cores which is
estimated from the CSL ordering, see Chapter 15), it is essential to make certain approximations.
We chose to fix y = <cos2mz/d>, which is reasomable for results collected for
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(1T - T, |> 3°C) from the smectic A-nematic transition. Also we let N=0.8. We find that T,
and DT are not uniquely determined at a given temperature, but they can be better determmed
by considering the entire temperature dependent data set. We note here that DT is not the
macroscopic translational diffusion coeffcient, but it represents a diffusion coefficient determined
on the short time scale (of the 2D-FT-ELDOR experiment = 300-800 ns) or equivalently the
microscopic diffusion coefficient, and it should be compared with the techniques that measure the
diffusion coefficients on a microscopic scale such as the Heisenberg spin exchange method.
Indeed, the recent measurements [44] of the macroscopic translational coefficient (DT) of
perdeuteriated tempone-d,, in 82 are about an order of magnitude slower than the other values
reported in table 5, while the diffusion coefficients of perdeuteriated tempone-d,,, determined from
the Heisenberg spin exchange technique in similar liquid crystals 60CB-80CB (cf. table 6) arc
comparable to the diffusion coefficients obtained from our analysis.

Table 5. Macroscopic translational diffusion constants measured by DID-ESR.
(From [43,44]).

Host Material Probe K D fem?s”
H,O TEMPONE* 295 1.7 x 10°
C,H,0H 2,5DTBSQ’ 295 2.7 x 10°
54" (iso) TEMPONE 323 25 x 10°
54 (nem) D, TEMPONE 300 9.0 x 107
54 (nem) D! TEMPONE 300 6.4 x 107
MBBA’ (nem) D; "N - PDT* 293 25x 107
MBBA (nem)D) “N - PDT 293 3.7 x 107
Phase V€ (nem) Dy TEMPONE 294 1.25 x 107
Phase V (nem) D; ORSL* 294 0.48 x 107
§2° (smectic) D) TEMPONE 204 0.95 x 107
52 (smectic) Dy TEMPONE 294 20 x 107
S2 (smectic) D! CsL’ 294 7.94 x 10°
$2 (smectic) Dy CSL 294 5.75 x 10*
4 4-n-pentylbenzylidene—4'-n-butylaniline * 2,2,6,6,tetramethylpiperidrine-l-oxyl
# 4-methoxybenzylidene-4'-n-butylaniline » 2,5-di-t-butyl-para-benzosemiquinone
¢ nematic mixture * perdeuteriated tempone-d,, (*N-labelled)
P smectic mixture < octylbenzoyl spin label

* 4 4-dimethylspiro oxazolidine-2,3"-5a
cholestane-3-oxy.
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Table 6. Microscopic translational diffusion rates as measured by HE for
perdeuteriated tempone-d,; in 40.6 and 60CB-80CB. (From [25])

Table 6a. Non-lincar least square analysis of fits to & = 4 exp(-AE,_ /RT)
+ Bexp(AE, /RT).

System Phase AIG M~ BIG M AE_ /kI mol™
I (19+0.1)x 10° (9.7 +0.6) x 10° 337+ 0.3
PDT/40.6 N (B3+05)x10° (35+03)x10° 155+03
S, (68 +12)x 10° (L6+03)x 10* 274 + 05
I (19+0.1)x 10° (L7+0.1)x 10> 185 +02

PDT/60CB-8OCB N, S, N, (95+3.0)x10° (1l4+04)x10% 160 +09

Table 6b. Dipolar Contributions and Diffusion Coefficients.

System Phase  7°C T,'HE)/T,"(dip) D, x 10°/cns7°

I 85 3.30 1.16

PDT/A40.6 N 70 314 1.14

S5 40 3.39 091

1 &5 488 1.87

N 60 710 1.45

PDT/60CB-80CB S, 40 342 1.01
N, 28 2.10 0.79

° Calculated from the HE contribution (4 exp(-E/RT)), and assuming & = 6.4 A for
perdeuteriated tempone-d,;.

(i) Orientation independence of B and C. One of the main outstanding problems in this study
is the virtual orientation independence of the B and C terms. All of the models we have attempted
to use lead to a significant orientation dependence. We have been unsuccessful in fitting
simultaneously orientation dependent W, and orientation independent B and ¢ data. One hint
comes from fact that the J(0) which affect B and C are significantly larger than the Jw ). This
suggests an additional relaxation mechanism that affects selectively J(0) or near zero frequency
spectral densities over the J(w ), or frequencies greater than 10° s, Since the McMillan form of
the potential favours probe expulsion in the alkyl chains, we may conjecture an isotropic SRLS
model where the alky] chain matrix surrounding the probe provides low frequency motional modes
that affect J(0) but not J(w) [12). Note that our results from table 6 imply that < D7 > is virtually
zero in the alkyl chains.

Reentrant Nematic Phase

With a view to discerning possible differences in the dynamic molecular structures between
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normal nematic (N) and reentrant nematic (N;) phases (i.e., when the nematic phase reenters upon
cooling from the smectic phase [24]), we have also studied a liquid crystal exhibiting a reentrant
nematic phase, 60CB-80CB. Qur studies with perdeuteriated tempone-d,; in 27wt.% 60CB in
80CB showed that (i) the ordering in the N, phase was higher than that in the N and S, phascs,
but with no abrupt changes in the ordering occuring as a function of temperature, and (i) while
the rotational correlation times in the N, phase are slightly higher than in the S, phase, the
activation energies are comparable in the two phases (and are higher than in the N phase).

Our results further show (see also our studies in 60CB-80CB with spin probes other than
perdeuteriated tempone-d,, in Chapter 15, section 3, and [14]) that as smectic layers begin to form,
the probe molecules are expelled from the aromatic core regions to the aliphatic chains. However,
the somewhat increased activation energy in the S, phase (36.0kImol") relative to the N phase
(25.9kImol") is behaviour similar to that observed for perdeuteriated tempone-d, in 8CB [3] (see
table 3 and figure 5¢). This suggests a little more access to the aromatic core region once ordered
smectic layers form {14]. As the temperature is lowered even further, the reentrant nematic phase
is formed with very little change in the rotational dynamics of perdeuteriated tempone-d,,. Given
that the activation energics in the S, and N phases are comparable, and that the ordering changes
continuously across the S,-N transition, the results imply that the structural changes which the
liquid crystal undergoes at the N, - S, transition are very subtle, with nothing dramatic occuring.
Furthermore, at least from a microscopic point of view, there are essentially no discernible
differences between the S,-N transition in normal compounds (i.e., 8CB) and those that exhibit
reentrant nematic behaviour. (Note that apart from 8CB and 60CB-80CB being structurally
similar types of molecules (they are both cyanobiphenyls), they both form bilayer S, phases.)

5. Translational Motion in Liquid Crystals

In the study of molecular dynamics in condensed media by ESR, there is need for a convenient
technique for measuring translational diffusion coefficients, Dy, for the spin probes. Experiments
designed to measure D; can be divided into two general categorics: microscopic and macroscopic.
A typical microscopic method used in ESR is the measurement of Heisenberg spin exchange (HE)
between colliding radical pairs. Line broadening due to such a method measures diffusion over
dimensions on the order of molecular lengths [6,25]. The analysis leading to the diffusion
coefficient depends upon the choice of the molecular model, a feature that is characteristic of
microscopic methods in general. On the other hand, macroscopic methods, such as NMR
ficld-gradient spin-echoes, involve diffusion over macroscopic distances. These experiments may
be interpreted in terms of the simple phenomenological description of diffusion to yield D; [33].
A combination of microscopic and macroscopic measurements can be employed to understand
better the details of molecular motions important for diffusion at all scales of distance.

In this section, we describe the two approaches that have becn used in our laboratory for
studying translational motion using nitroxides in some liquid crystals: HE, and dynamic imaging
of diffusion by ESR (DID-ESR).

5.1. MICROSCOPICS: HEISENBERG $PIN EXCHANGE
The phenomenon of Heisenberg spin exchange, in which two radicals collide, and which

effectively results in the electron spins S, and S, exchanging their nuclear environments, is a lime
dependent and diffusion controlled process resulting from the relative motion of radical pairs [27].
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During the (bimelecular) collision, the exchange interaction that occurs is described in terms of
the hamiltonian H :

H =188, (51

where J(7) is twice the (time-dependent) exchange integral. The time dependence of J is taken into
account implicitly through the dependence of J on r and Q, which specify the distance and
otientation of a given radical with respect to another.

A quantity of fundamental interest in HE studics is o, the spin exchange frequency; this is
directly proportional to the concentration of spins in the system. When the solutions are not too
concentrated (concentrations below 15mM in typical fluids), the slow exchange condition,
characterised by w,, < y,a, for nitroxide spin probes, obtains. Under these conditions, and
assuming a contact exchange model (i.e., that exchange occurs for every bimolecular collision
regardless of the relative orientation of the radicals), it has been shown that under strong exchange
conditions (see later) [28]:

0e =% =632 f,v.[8, -8 0] (52)

where 1, is the mean time between successive bimolecular collisions; §,, and 8,{0) are the first
derivative ESR intrinsic linewidths of the line of spectral index A in the presence and absence of
exchange, respectively. The subtraction effectively eliminates all contributions to spin relaxation
that are independent of concentration, leaving only intermolecular mechanisms. In equation (52),
M refers to a given hyperfine line in the spectrum (for ESR spectra from “N-nitroxides M = 1,0,-1
correspond to the low, central and high field lines, respectively), and f,, is a statistical factor
related to the degeneracy (and thus intensity) of the ESR transition(s) describing that line:

fu =NIN-2D), N-=%D, (53)

Here, N is the total number of spin cigenstates, and D,, denotes the degenetacy of the Mith
eigenstate where M refers to the nuclear spin quantum number identifying the eigenstate(s)
involved in the particular ESR transition. For nitroxide radicals (neglecting proton or deuterium
superhyperfine splitting), N=6 (f= 1, §= 1/2), and since the eigenstates are non-degenerate, D,
= 1; thus f,, = 3/2.

For brownian diffusion involving neutral radicals, 1, is related to the radical diffusion constant
D, by [28):

;' =4nd D_p, (34

where & is the encounter distance for two radicals undergoing exchange, 1, is the translational
diffusion coefficient for the self-diffusion of the radicals, and p is the number density of radicals
[28,33]; {p is related to the molar concentration C of the solution by p = 10° N,C). Equations
(52) and (54) show that, for strong exchange, dw, /dC, the slope of the variation of @, with
spin concentration is directly proportional to Dy, For translational diffusion in isotropic liquids,
the Stokes-Einstein relationship gives for self-diffusion

D, = kT/énrn, (55)

where # is the hydrodynamic radius of the diffusing molecule (in HE studies, the spin probe), and
n is the absolute viscosity. We shall assume that » = d/2. For diffusion in liquid crystals, it has
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been suggested that D, may be visualised as a mean of the diffusion constants D] and Dy (ie.,
D, = (D} +2D;)/3), and n may be replaced by an effective viscosity, defined as a mean of the
viscosities in directions parallel and perpendicular to the magnetic field [29]. It will also be noted
that for a Stokes-Einstein hydrodynamic model,

Dy = 2k,T/3ndn (56)

for the relative diffusion of the radicals.

Equation (52) corresponds to the strong exchange limit, i.e., the situation which obtains when
the radical pair is sufficiently long lived that the condition Ji1} » 1 is fulfilled; here 1, is the
mean lifetime of a radical pair and J, is the contact value of J(r). More generally, however, [30]:

O = T T/t +J5 1)) (57)

Here 1, is related to D, via equation (54), whereas 1, is refated to D; by:

(58)
T, =d¥6D,

for a contact exchange model [31], or

(59)
1(A) = d(1 +Ad)/2D, A2 d?

for a model that allows for the finite range of the exchange interaction, ie., [32]
Jr)y = Jyexp[-A(r-d)]

Thus A specifies the range of the exchange interaction, and d is the distance of closest approach
of the radicals. Equations (59) and (58) can be generalised to include the effect of interaction
potentials between radicals and of the liquid structure via a pair correlation function as discussed
later. From equations (54), (57), (58) and (59), we note that as the mechanism of spin exchange
changes from strong to weak, the power law dependence of wy; on Dy changes from 1 to -1,
Therefore, the quantity obtained by measuring the slope of the excess linewidth versus
concentration (at a given temperature) will be linearly proportional to Dy only in the limit of
strong exchange, a consideration that is useful in the context of our experiments with the more
anisotropic P-probe.

When the two interacting radicals display anisotropic features in their spin exchange, only those
collisions for which the colliding radicals are favourably oriented will lead to spin exchange. The
measured exchange rate could, therefore, appear smaller than that calculated on the basis of an
isotropic exchange model. In this case, the exchange interaction can be described in terms of an
orientation dependent exchange integral J(r, Q, Q,), where r is the inter-radical separation, and
Q, and Q, are Euler angles specifying the orientation of each of the two radicals in the laboratory
fixed frame [34]. When one of the radicals involved is spherically symmetric while the other is
axially symmetric about some molecular axis, then Zientara and Freed [34] showed that J = J(r,8),
and they suggested the form:

J(r,8) = [J, +{J,/12)(1 +cos 6)] exp[- A(r -d)} (60)
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with @ being the angle between the inter-radical axis and the symmetry axis of the non-spherical
radical. In the limit when the anisotropies are averaged out due to rapid rotation of the radicals
(sec later), this equation becomes:

K = [J, +{, /)| exp[- A(r - d)]. (61)

The result in equation (60) may be generalised to the case of two interacting non-spherical radicals
[34). In this case, we may write J = J(r,0",8',.¢, ~¢',), where &’ ,¢', denote the polar and
azimuthal angles that the p orbital centered on radical i (= 1 or 2) has in a cartesian coordinate
system where the inter-radical axis is the z axis. A generalisation of equation (60) to this case
might be:

Jro',0,¢' —9') =J cos & cos &, [cos €', cos @, +sin 6’ sin 8°, cos (§', —¢’2)} (62)

where J, denotes the magnitude of the exchange integral when the two p orbitals on the nitroxide
radicals overlap along the inter-radical axis, and is assumed to contain the r dependence (of the
same form as in cquation (60)). The polar coordinates of the inter-radical axis in the laboratory
frame are # and vy, whereas those for the symmetry axes of the ith radical arc §° and y..

fig (2,8
(8, .y
ERAL

{a)

83

(b

{e)

Figure 9. Relative orentations of two nitroxide radicals N, O, and N, O, in different canesian coordinate
systems as discussed in the text. The p orbitals lie along N,-P, and N,-P,. In each case, the z axis of the
coordinate system is indicated by an arrow, and the polar coordinates of the relevant vectors are shown in
that coordinate frame. (a) The intemuclear system; (b) the laboratory system; (c) the molecular systems.
{From [25]).
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The different coordinate systems discussed here are shown in figure 9. Thus, if 6, denotes the
polar angle that the symmetry axis of radical i makes with the internuclear axis, then

cos 8, = cos B} cos B +sin f sin Bcos(y; -7). (63)

The effect on the magnitude of J of rotation of the spin probes along their symmetry axes is
discussed in detail later. The important point in these cases is that the molecular orientations are
referred to the inter-radical axis.

When the rotational correlation time of the radical, t,, is shorter than 1, the anisotropies may
be averaged out during the exchange encounter [34]. Note that in a Stokes-Einstein model,

1, = KT*/6, (64)

with t* = nnd>/k,7, and where the factor x < 1 allows for rotational slip of the radicals. In this
notation, equations (58) and (59) (with equation (56)) become:

t(d) = (32)v(Ad)? (Ad + 1),
and

1 =114 = (32)1, /%

Thus, smaller values of k (i.e., < 1) would lead to the anisotropies of J in equations (60) and (62)
being averaged out.

In liquid-crystalline phases, the distribution function for the orientation of the ith type of
molecule, P(CY), is no longer uniform. In general, it is axially symmetric about the preferred
direction of alignment, ie., the director (for a uniaxial liquid crystal). For an axially symmetric
molecule, P(£)) = P(f}). However, even though P(f) may be non-uniform, it is quite possible
for P(f), the distribution function for the orientation of the inter-radical axis, to be uniform. (We
would expect this to be the case for nematic phases.) In that case, the average of cos @) over the
distribution, P(), is scen to be zero, showing that there is no preferential value of the 8 when
the radicals collide. However, it also follows from equation (63), that given some initial value of
B at the outset of a molecular collision, the non-uniform P(f}) will imply incomplete rotational
averaging of the cos 8. Thus, the effective J in a collision will become a function of B, and some
collisions will have the characteristics of strong exchange, whereas for others it would be weak
exchange, provided J is strongly anisotropic. In what follows we shall sketch the effect of ordering
on J. For the purpose of simplicity we shall consider only the case where spin labels are axially
symmetric and the otientational potential contains only the i,, term. Nevertheless, the final form
can easily be generalised to contain higher terms in the potential, as required, when we are dealing
with liquid-crystalline phases of lower symmetry.

5.1.1. Anisotropic effects in spin exchange. We start with the expression for J given by equation
(62). As shown in figure 9, for nitroxides the z axis lies along the inter-radical axis connecting
the nitrogen atoms N, and N, of the two nitroxide radicals N,-O, and N,-O,. For simplicity, each
N-O bond is assumed to lie along the symmetry axis of the molecule containing the bond. The
(6’ ,¢') are the polar coordinates of the p ombitals Ni-P, centered on N, {(Note that N-O, is
perpendicular to NP}

We now consider the effect upon J of (rapid) rotations about the axes N-O(6,4) ie., the
molecular symmetry axes. The effect of rotationa! transformations on J is simplified on expressing
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the latter in terms of spherical harmonics according to:

J = (4n/3)J (A/3 - B/5), (65)
where
4 = (45) 1,(6',¢') T, (0,¢") +(1f5r )Y, (8, ¢') + ¥, (8, 4')]+(1/dn)  (66)
and

B = YZ,I(B'] ¢'1) YZ,-I(B'2 '7‘("1) * YZ.-I(oll ¢') Y2,1(0‘2 ¢‘2)' (67)

(Note that equation (62) was chosen in part to allow this simple decomposition into spherical
harmonics}.

We shall now express J in a laboratory fixed frame, so that the anisotropy of .J can be expressed
in terms of variables that describe the ordering of the probe molecules. This transformation is
achieved in two steps: (i) a transformation from the internuclear frame (abbreviated as int), defined
such that its z axis lies along the internuclear axis N,-N, and its x axis lies in the plane containing
the N,-O, bond, to the laboratory frame (lab) defined such that its z axis lies parallel to the mean
director. The Euler angles for this transformation are (afy). (i) A transformation from the
laboratory frame to the molecular frame (mol), defined as having its z axis along the N-O, bond,
and its x axis along the p orbital N-P.. The appropriate Euler angles are (a,£’,y"). With these
definitions, we have [7):

Y:.e'. ) = Yo A8, "D:l‘ﬂl” it

=YY VRGP (@] B YD D @BY)

In these equations, (8”.¢") and (67 ¢7) arc the polar coordinates of the orbital N-P, in the
laboratory and molecular frames, respectively. Note that since in the latter frame, the x, axes are
chosen to lie along the NP, direction, it follows that (87 ¢7) = (r/2,0). Also, (8y) denote the
polar coordinates of the internuclear vector in the director (i.c., laboratory) frame, and (a] £°) are
the coordinates of the N-O, vector in the laboratory fixed frame.

The rotational dynamics of each molecule leads to a time dependence of the angles (a; 87 y°).
If we assume that the rotational motion is fast compared to the duration of the exchange
interaction (i.c., T, <« 7, then it is appropriate to average DZ._(a; f}v}) in equation (68) over
this rotational motion. For uniaxial liquid crystals, the well-known result of such averaging is (see
equation (12)):

<Dpen(a! Bi¥0)> = <Dlg(a £¥)>5,., (69)
For convenience, let us consider axially symmetric ordering of the nitroxide molecule, then:
<Do.a; B> = 58, (70)

0r

where § = <Dj > is the order parameter. This substitution leads to;
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You (1/2) SD gl BY) gy

-(52) Y, (BY),

where on the right hand side, the subscript (lab — int) is implicit. This equation when substituted
into equations (65) and (66, 67) leads to:

I
SICHp -

<J> = (4n/3) S (4’13 - B'/5), (72)
where
A’ = (1/4n) [SP{cos B)-1] (73)
and
B = -(15/16m) S* sin® B cos’ B. (74)

We shall now consider some limiting cases of equation (72) that are useful in understanding the
HE mechanism in liquid crystals:
(i) § = 0. This is the case of an isotropic liquid, and leads to

<J>,_, =(19)J. (75)
(i) § = 1. The molecules are perfectly ordered and in this case, we have:
<J>, = (1/4)J sin’ B. (76)

According to this equation (as well as equation (72)) the effective exchange interaction depends
upon the angle B, ic., there will be a range of <J> depending on the orientation of the
internuclear axis with respect to the nematic director for each collision. For example, equation (76)
shows that when the radicals diffuse towards each other along an axis which is perpendicular to
the mean director (i.e., f = 90°, see figure 9a), <J> is at its maximum value (1/4)J. However,
when the inter-radical axis lies along the nematic director (ic., f = 0° or 180° sec figure 9b),
<J> =0

Now for convenience, let us average over sin’ # in equation (76) to describe an average
collision. Thus, for example, in the nematic phasc, the inter-radical axis is randomly oriented with
respect to the director, so that

<sin' B> = [ df sin’ B/ dp sin B )

= (2/3).
In the S, phase, the molecules are arranged in layers with the principal diffusion expected to be

lateral diffusion in the smectic plane, so that the distribution function is peaked about g = 90°;
in this case,
<sin? B> = f; dp sin® B8 (B - (n/2))/f; df sin ps(p -(n/2)) 78)
=1
Therefore, when the liquid-crystalline system is cooled from the N to the S, phase, the average

exchange integral for a moderately ordered spin probe could increase somewhat [36].
More precisely, in a smectic phase we must consider the positional order. Thus, the inter-radical




304

scparation vector r, in particular its z component (parallel to the nematic director), may be
restricted by the non-uniform smectic distribution function P(z) for the location of the radical with
respect to the bilayer normal. The translational diffusion in this laboratory frame can become very
anisotropic [37} such that collisions for r |z are significantly more infrequent than collisions for
riz

5.1.2. Dipole-Dipole Interactions and Translational Diffusion. Besides HE, concentration
dependent line broadening can also result from dipole-dipole interactions between the electron
spins on neighbouring radicals. Therefore, a correct measurement of w,; is possible only when
the contribution to the linewidth due to dipolar interactions is known [27,28]. This effect can be
estimated using the point-dipole results for the dipolar coupling of spins as discussed clsewhere
[28]. The dipolar contributions to the linewidth are given by [28,38):

7,'(dip) = hiy*' S(S+1) [(5N +8D,}/24N]J™(0), (7%

where J©(0), the zero-frequency spectral density is given by [38,23]:

J®(0) = (48n/15) (4p/27dD.) (80)

for a simple diffusive model. The HE contribution to the linewidth, in the strong exchange limit,
is (see equation (52)):

T;'(HE) = (N -2D,)/N]4ndDp. 81)

The quantitics appearing in these equations have been defined previously (see equations (52) and
(54)). The wlative ratio of dipolar to exchange contributions to the spin relaxation can be
calculated from equations (79) and (81) as [28]:

T;'(dip)/T;(HE)} = K, /(dD,Y, (82)

where

K, = (21405} ¥* S(S +)[(5N +8D,) /(N -2D,)} (83)

Substitution into equations (82) and (83) leads to:
7;'(dip)/ T, (HE) = 03762 x 107 /(dD ). (84)

Owing to the greater viscosity of solutions at lower temperatures, the role of T, (dip) becomes
mor¢ important at lower temperatures. For non-spherical molecules, and for those spin-bearing
molecules where the spins are off-centre, there are orientational corrections to the dipolar
interactions which have been discussed elsewhere [39]. Furthermore, there are likely to be
important effects due to the interaction between radicals and the liquid crystal structure via the
pair correlation function (see later).

From equations (79) and (81), we note that the excess linewidth, which is determined by the
sum of HE and dipolar contributions, is given by the sum of two terms that depend directly and
inversely on the diffusion coefficient 7. Assuming the temperature dependence of D, to be
Arrhenius-like, the expected temperature dependence of the excess linewidth may be analysed in
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terms of the relation:

W=38 -80) =[dexp(-AE,/kT) +Bexp(AE, /kD]C, (85)

where W denotes the excess peak-to-peak derivative linewidth, and AE_ is the activation energy
for iranslational diffusion. 4 and B are two constants that are independent of concentration, and
for simplicity, are also taken to be independent of temperature; (however, more generally, they
may depend on temperature as discussed later). The concentration dependence is eliminated by
considering the derivative dW/dC, which has the dimensions of a rate constant &:

k= dwidC = Aexp(-AE_ /kT) +Bexp(AE_ /k.T). (86)
The ratio of the two terms on the right hand side of this cquation represents the relative

contributions of HE and dipolar interactions to the linewidth. Using equations (79) and {81), we
calculate, for nitroxide radicals,

A =331 x 10%dD) (&7
and

B = 1.24 x 107%/dD, (88)

In these expressions, D, is the pre-exponential factor in the Arrhenius expression for the diffusion
coefficient [D; = D, exp(-AE,, /k,T)].

5.1.3. Effect of Interaction Potentials and Pair Correlation Functions. Pedersen and Freed [32]
have provided a more general formulation for Heisenberg spin exchange than the carlier work of
Eastman et al. [28] on which the analysis described so far was based. The former supplants the
earlier theory by (i) allowing for the finite range of the exchange interaction in the expression for
1,, the lifetime of the exchanging radical pair; (i} taking account of the interaction potential
between radicals and of the liquid structure via the pair distribution function; and (iii) allowing
for the successive re-encounters of the same radical pair afier they have separated, (i.e., the cage
effect in liquids). Here we emphasise the effect of pair correlation functions in the analysis of
some data which could not be rationalised on the basis of the simple treatment [40].

The results of the Pedersen-Freed treatment may be summarised by writing the HE frequency
as;

0, = [NV -2D,) |(T,)(HE)
(89)
= 4n D_pg(J, d*ID, Ad) p(d,),

where the symbols have their usual meanings (cf. equation (81); g and p in equation (89) are

defined by:
J d?
4D

pd) = U, J[(1 + U, (91)

. o)

g, d*12D,Ad) = f* +(Ad)™ In -
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T, = (@2 /2D(Ad)}[1 +(Ad) | ()" exp[- Uld) /4,7 (92)
and f* is a partition function given by:
(M =d I " drr? oxp|-UN/KT] 93)

In these equations, A is related 1o the finite range of the encounter leading to spin exchange (see
equation (59), and U(r), the potential of mean force, is related to the pair correlation function g{#)
by:

Ing(r) = -UN/&T. (54

(Note also that J, in [32] is one half the J, used here.)

We shall now simplify equation (89) to obtain an approximate but useful form for 7';'(HE).
For typical values [nitroxides [33,41]] of J(10" -10" rads™), d(~ 7 A) and D, in liquid crystals
(10 =107 em® 57, the logarithmic term in equation (90), which approximates the correction to ;'
in equation (54) due to the finite range of Jr), may be neglected in comparison to f* Equation
(89) then simpiifies to:

[N/(N -2D,)] T, (HE) = 4ndD (10°N,) Cf U, 1} /[l +U, 1,}] (95)

which, in the limit of strong exchange becomes
[N/(N-2D,)| 1, (HE) = 4rndD (10°N,) Cf™. (96)
It has also been suggested [23] that the effect of pair correlation functions on the electron-spin

electron-spin dipolar interactions is to replace J(0) in the expression for 7, (dip) (see equation
(79)) by (f*)™ exp(- U(d)/k,T) J(0). With this substitution, equation (79) now becomes:

T;'(dip) = h*y, (S +D[(SN +8D,)/24N|(481/15) 97

x (4 x 107 N, C/27dD.) (f* exp(U(d) /K, T

Using equations (96) and (97), and the Stokes-Einstein expression for the diffusion coefficient,
it can be shown that:

k = (@widCy = (2/y3 A) d{T;'(HE) +T;'(dip)} /dC (98)
= 4" fXTn) +B* 1" exp (U)K, T (0/D),
where
A" = 4.85 x 10° (99)
and
B" = 848 x 10" (100)
Alternatively, we may substitute the Arrhenius expression for D into cquations (95) and (96) and
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(97) to obtain:

k = 2#/3y) d[T;'(HE) +T;'(dip) | dC (101
= A'frexp(-AE,_/kT) +B' [f exp {U(d)/chT}]'l exp(AE, /k,T),

where 4’ and B’ have the same values as 4 and B given by equations (89) and (90). In equations
(98) and (101), f* is temperature dependent (see eguation (93)).

Some examples of the application of HE in obtaining (microscopic) translational diffusion rates
are now shown. Figure 10 shows the variation of the excess linewidth W with temperature and
concentration for perdeuteriated tempone-d,, in 60CB-80CB. At a given temperature, & was
obtained by performing a linear regression analysis on the # versus C data. A plot of k versus
temperature, shown in figure 11 for perdeuteriated tempone-d,, in 60CB-80CB, was then fitted
to equation (88), and gives D, and AE_, directly. Diffusion constants thus obtained for some
systems are shown in table 6. [In cases where viscosity data arc available, the more general
expression (equation (98)) has proved useful.]

§ —— .

TG {a) : 150 mM

0.83

0.67

0.50

a7z

] .
0o 2337 8 M2 o a7 928 mo.zwncm.c

Figure 10, Perdeuteriated tempone in 60CB-80CB: Excess linewidth at different concentrations (as
indicated) and temperatures. (From {25]}.
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Figure 11. Perdeuteriated tempone in (a) 40.6 and (b) 60CB-80CB, showing the variation of k with
temperature. The lines through the data denote our fits using equation (88). (From [25]).

5.2. MACROSCOPICS: DYNAMIC IMAGING OF DIFFUSION

The measurement of diffusion coefficients by ESR imaging is an application that we refer to as
dynamic imaging [43]. It involves two stages. A sample is prepared with an inhomogeneous
distribution of spin probes along a given direction. The ESR imaging method is first utilised to
obtain the (onc dimensional) concentration profiles at several different times, The imaging method
is based on the use of a magnetic field gradient, such that at each spatial point there is a different
local resonant frequency. A typical ESR spectrum from imaging concentration profiles is shown
in figure 12 [42}; also shown are the concentration profiles in figure 13, With the passage of time,
this inhomogenous distribution will tend to a homogeneous distribution via translational diffusion.
The second stage is to fit the time dependent concentration profiles to the diffusion equation in
order to obtain the diffusion coefficient. We have shown [43] that the analysis is greatly improved
by studying the spatial Fourier transform of the concentration profiles.
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5.4 ~-TEMPONE
B, »77 G/cm

Figure 12. Concentration profiles for perdeuteriated tempone diffusing in the nematic phase of 5,4 at 300K,
deconvoluted using the Fourier transform technique discussed by Hornak et al. [42]. The three curves were
recorded at different relative times (a) 220ms, (b) 970ms and (c) 1.56s after the start of diffusion. The
broken lines are lincar least squares fits to the data, with D, equal to (a) 9.32x10%, (b) 0.142, and (©)

0.93 cm?’. (From [42]).

CLXIS{X) (arbitrary umitsi

Figure 13. Series of ESR spectra of tempone in the nematic phase of 5,4 from imaging concentration
profiles along the X axis of the cavity. The concentration profile is from tempone diffusion from a point
source al the left of the spectrum in a direction parallel to the axis of alignment. The spectra were collecied
at different relative times following the start of diffusion: (a) 0s, (b) 3.1x10%s, (¢) 2.1x10%s, and (d) 5.0

x10°s. (From [42]).




310

The one dimensional diffusion equation (cf. equation (8) in Chapter 4} in Fourier transform or
k space is given by
(102)
InC -inC, = -4n*D_k* Ay,
where Af =1 -1, is the time difference between two measurements, and D; is the lateral
diffusion coefficient. To obtain the concentration profile C(k,¢) at a given time in k space we
deconvolute the gradient-on spectrum with the gradient-off spectrum utilising the convolution
theorem in Fourier space:
(103)
Clk,t) = I(k, t}/1(R),

where [/ (k) is the Fourier transformed gradient-on spectrum and I(k) is a Fourier transformed
gradlent—off spectrum. The diffusion coefficient D is determined by the method described
elsewhere [43]. In summary, since the samples we have used are well approximated by a gaussian
initial spin probe distribution:

(104)

C(x) = (C,y2n 8) exp{-x*/2%)

the In of the concentration profile in & space may be written as
(105)

InC, = aft) &%
where
alt) = -2n* 8% -4n* D, 1.
Thus, by plotting C, with respect to &* we obtain the slope a(z). The a(z)'s are related to each
other by the diffusion equation (sec equation (102))
{106)
a -a = -4n’ Dt -1).

Thus a plot of a's with respect to £ yields D;. We could estimate the half width at half maximum,
I', of the gaussian concentration distribution from

r{) = A‘/-a In2 (107

at a given time f. The width of the gaussian profiles were about 0.5 mm at the beginning of the
measurement, An example of diffusion coefficients measured by this method is shown in figure
14 and table §; more examples are given in [43,44] and in Chapter 13.

Note added in proof. The dynamic imaging of diffusion ESR method has recently been generalised
to provide spatial resolution of the full ESR spectrum. This has enabled simultaneous measurement
of the microscopic D; by Heisenberg exchange and the macroscopic D; by DID-ESR on a
lyotropic liquid crystal [45). The macroscopic value was found to be somewhat larger.
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Figure 14. D versus time for tempone in 5.4. The phase and direction of diffusion are (a) ©, isotropic and
Z axis; (b) O, isotropic and X axis; (c) a, nematic and parallel, and (d) ¢, nematic and perpendicular. The
solid lines are fits to the data, with Dy equal to (2) 2.61 x10%; (b) 2.36x 10% (c) 8.97x 107, and (d) 6.83x
107 cm?s™, The calculated value of D)/D2 is 0.71. (From [42]).
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