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ABSTRACT. Molecular theories, derived from ESR studies of molecular dynamics, that provide a basis for
understanding the stability of phases of thermotropic and lyotropic liquid crystals, are discussed.

1. Introduction

The statistical thermodynamics of liquid crystals is more complex than that for ordinary liquids,
due to our incomplete understanding of the anisotropic interactions that stabilise these phases. In
view of these difficulties, traditionally approximate methods are employed; these include molecular
field theory away from the transition and/or Landau theory, near the phase transition. Molecular
or microscopic theories such as Maier-Saupe [1] (for the N-I transition) and McMillan [2.3] (for
the 8,-N transition), wherein the effect of fluctuations are neglected and the mean or average free
energy of a single molecule is determined by spatial/orientational averaging of the intermolecular
interactions, have proved to be very successful in illustrating molecular characteristics necessary
for the existence of a given phase. On the other hand, the Landau theory of phase transitions
provides a convenient formalism near the phase transition in which the symmetry and coupling
of the various order parameters is incorporated in a straightforward manner [4,5). The coupling
of the various order parameters is the key feature of the liquid crystal phase transitions because
of the relatively limited extent of the phase stability. The molecular field and the Landau theories
are known to fail near second order transitions, since they do not take into account fluctuations
correctly {6]. However, results of renormalisation group calculations indicate that near the
tricritical point the Landau theory should be valid [7]. In section 2 we shall illustrate the interplay
of these order parameter couplings and the principle of universality using ESR studies of the
smectic A-nematic phase {ransition, Universality relations for nematic ordering in a homologous
thermotropic series is considered in section 3. Similar matters are then addressed in section 4 for
lyotropics consisting of lipid-cholesterol mixtures. Relevant issues of molecular dynamics then
appear in section 5 for the thermotropics and section 6 for the lyotropics.

2, Smectic A-Nematic Tricritical Point and Crossover Behaviour

We have studied in detail the tricritical point corresponding to the crossover between first and
second order behaviour in the nO.m homologous series for 4<n<8 and 1<m<8 [8,9]. We have
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demonstrated the dominant role played by the alkyloxy chain length in governing the order of the
§,-N transition: for n>5 (<5) the transition is first (second) order and for n = 5, m>8 (<8 except
for 50.6) leads to a first (sccond) order transition [10). Thus, for example 40.6 (with T, - Tow =
23°C) has a second order transition, while 60.4, which has the same length and the same T}, =
77.6°C, exhibits a weak first order transition (with 7}, - 7, = 8°C). Though surprising, we find
this to be a quite general phenomenon for #0.m and mO.n mixtures subject to the above
restrictions, We consider 40.6 and 60.4 mixtures (and some other members of the nO.m
homologous series). The mixtures of these compounds may be regarded as a minimum
perturbation series, since (m+m) is constant and the difference (#-m) = 2 is 2 minimum consistent
with a crossover.

The order of the S,-N transition may be determined by a recent DSC method developed by
Navard et al. [11,12]. These authors show that the ratio (N) of the DSC peak heights H,/H, for
a given transition, performed with two different heating rates (r,.7,) is a function of the ratio r./r,
(= R) and the magnitude of N provides a simple way to discern the order of the phase transition.
From a simple theory of DSC peak shapes for a first order transition it can be shown that in the
limit of small heating rates, N varies as the square root of R, but for a second order transition N
should be directly proportional to R. In our studies we typically used R = 2. An N value of 1.41
for 60.4 was taken as an indicator of a (weakly) first order S,-N phase transition. We present in
fipure 1 a plot of N versus composition of 40.6 in mixtures of 40.6/60.4. The most dramatic
changes in N occur just where the crossover between the first and second order §,-N transition
takes place, and it is limited to a rather narrow composition range (75-8i% of 40.6). The
tricritical point in 40.6/60.4 mixtures is found by this technique to be at mole fraction of 40.6:
x = 0.805 %0.01 for which the McMillan parameter M(= T,/T\) = 0.955.
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Figure 1. The Cox-Navard parameter N versus the percentage of 40.6 in 40.6/60.4 mixtures. The tricritical
composition is 81 per cent of 40.6 as marked. (From [9]).

We have systematically studied the nematic order parameter, S, of the large and rigid spin probe
CSL (5a-cholestane) by ESR for an extensive range of 40.6/60.4 mixtures. It is well-known from
many previous studies that CSL accurately reporis on the overall or backbone molecular ordering
within liquid-crystalline phases [13,14], and its low concentration (10*M) hardly perturbs the
phase behaviour. We show in figure 2, the phase diagram for the 40.6/60.4 mixtures based upon
the combined DSC and ESR studies. Both methods could be conveniently employed to determine
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the phase transitions as a function of 7 and x, and to within the accuracy of the present
measurements (£0.1°C in T and £1% in x) they are in good agreement. Indeed the tricritical point
could be accurately determined from the ESR measurements (cf. figure 3a). We find the ESR
method to be the more sensitive and no less convenient. This phasc diagram (figure 2) looks
remarkably similar to that obtained by McMillan [2] from his simple theoretical model [if % 60.4
is replaced by the parameter

oM =2exp (rr,/d),
where d is the interlayer spacing and r, is the length of the rigid core of the liquid crystal
molecule (cf. Chapter 14)], ie., a greater fraction of 60.4 would, by increasing the d/r ratio,
enhance the orientationak-ranslational coupling term. The main disagreement with the McMillan
model is the significantly larger value of M(= T,/T,;) we obtain for the tricritical point. Similar
trends and phase diagrams were also obtained for mixtures of 40.7/70.4 and of 40.8/80.4 [15]
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Figure 2. The phase diagram of 40.6/60.4 mixtures. (From {8]).

We show in figure 3a the orientational order parameters measured at the S,-N phase transition
for a range of x plotted as a function of Tyy(x), (with Ty versus x given in figure 2). The plot
in figure 3a to the right of the tricritical point [ie., x < 0.80] shows the values of S, and S;, in
coexistence at T u(x) corresponding to a first order transition, whereas the single line {within
experimental uncertainty) to the left of the tricritical point is the lambda line associated with the
second order transition. Figure 3c is the corresponding figure for the members in the nO.m serics
[9] (but see later). These results may be compared with the equivalent results for *He - ‘He
mixtures [7]. In particular, in the latter case the mole fraction (m.f) of *He is plotted versus
T{m.f), the transition temperature. As Brisbin et al. have pointed out [16] S, - S, = AS is the
non-ordering density for the S,-N transition analogous to the mole fraction difference in the He -
*He case. In the latter case, it is known that "the two branches of the phase separation curve are
linear near the [tricritical point] meeting there at a finite angle, and that the Jambda line emerges
precisely from this peak." [7]. This is exactly the character of the phase diagram in figure 3a for
the S,-N phase transition. It is, to our knowledge, the first such demonstration for a liquid-
crystalline tricritical point. Note that in the present case the lambda line is horizontal (and is
discussed later).
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Figure 3. 5;, and S, are the extrapolated values of the nematic order parameter from the smectic and the
nematic phase, respectively at the S,-N phase transition (figures a,c). M is the McMillan parameter. Lines
drawn in figures b and d correspond to the best fit value of B, the critical exponent for 40.6/60.4 and nO.m
compounds respectively, (From [8,9]).

To continue with the analogy between the *He - ‘He superfluid transition and the S,-N
transition we note that for the former, A the chemical potential difference between *He and ‘He
is the conjugate field g to the mole fraction, whereas for the latter we may take as the conjugate
field g to AS one that couples to the orientational order of the molecular long axis. Brisbin et al.
[16] and others have done this by varying the alkyloxy chain length in a different homologous
series; we have kept the molecular length d constant but have continuously (but gently) varied the
dir(x) ratio in the 40.6/60.4 mixtures. Thus x, regarded as a monotonic function of Hx) (or
d/r(x)), can play the role of the conjugate ficld; however see later for more general considerations
of the conjugate field. Thus figure 2 is in the 7-g plane allowing us to study critical-to-tricritical
crossover of unrenormalised exponents. [In general, we need to correct observed critical exponents
by the Fisher renormalisation procedure i.e., scale them by 1 - & where a is the critical exponent
associated with the specific heat singularity. This correction becomes especially significant when
there is an appreciable curvature in the 7-g space phase diagtam. The nearly linear dependence
of Ty, versus x in figure 2 indicates a rather mild variation in the conjugate field. Thus, to a good
approximation we may treat T, (x) as a simple measure of x, the conjugate field]. The recent
studies of specific heat and smectic coherence length have shown the crossover of the respective
exponents a, v, and v, from the superfluid (n = 2, d = 3) value to the mean ficld tricritical
value. In fact, the anisctropic scaling relationship
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a+2v +v =2

explained by Lubensky [17), and Nelson and Toner [20,21] was found for all of the systems
investigated [18,19].

By means of ESR, we may readily study the tricritical cxponent f, associated with the
non-prdering density, defined by:

AS | Tp, - T, () 1" (1)
plotted in figure 3b. The very good linear fit, yielding §, = 1.00 * 0.05, which is the well-known
mean ficld prediction expected for the tricritical point, is obtained as shown. (f, is the critical
exponent associated with the non-order parameter AS. Note, that it is possible to obtain g, the
critical exponent associated with the smectic order parameter W from the temperature variation of
AS= (S, - Ses)( o | y |? of. Chapter 14). However, a more direct method is preferable such
as X-ray scattering). This result is thus farther confirmation of the existence of a S,-N tricritical
point and hence of the second order character of the 8,-N transition for Ty <Trce-

Table. S,-N transition in the #0.m series: the McMillan ratio M (= 7,,,/T;) and
the order of transition,
4 5 6 7 8
404 40.5 40.6 40.7 40.8
4 M=0.916 M=0.898 M=0.936 M=0.925 M=0.956
2nd order 2nd order 2nd order 2nd order 2nd order
504 50.5 50.6 50.7 50.8
5 M=0.951 M-0.930 M=0.966 M=0.956 M=0.979
2nd order 2nd order 1st order 2nd order 1st order
60.4 60.5 60.6 60.7 60.8
6 M=0.976 M=0,972 M=0.990 M=0.990 M=0.997
1st order Ist order 1st order 1st order ist order
70.4 70.5 70.6 70.7 70.8
7 M=0.994 M=(.990 M=1.00 M=0.997 M=1.000
1st order 1st order No Nematic 1st order No Nematic
80.4 80.5 80.6 80.7 80.8
8 No Nematic No Nematic No Nematic No Nematic | No Nematic

The more general case [9), wherein several members of the #O.m homologous series that
exhibit a weak first order or else a second order S,-N transition, was studied. The object here was
to examine how, by the variation of # and m, we may pass through the tricritical point for the
S,-N transition. Unlike the mixtures of 40.6 and 60.4, where the N-1 transition temperature is
independent of the composition, the N-1 and S,-N temperatures vary quite dramatically as a
function of n and m [22] for the members of the #0.m homologous series. Thus, the choice of the
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conjugate field for the non-ordering density is non-trivial. We reconsidered the use of T, as the
conjugate field variable to AS. From the McMillan theory it is well-known that the order of the
S,-N transition is governed by the ratio M, In the table a partial list of the members of the #O.m
series along with M and the order of the S,-N transition is shown. Qur analysis [9] of the
Landau-de Gennes theory led us to suggest M as the conjugate ficld variable for AS [i.e., M(m,n)
= Tonlxmn)/ Ty (mn); thus M = M(x,m,n)). Hence, we plot in figure 3c and 3d S,, §;, and AS as
a function of M yielding;

AS « | M, - M| @

The striking similarity of figures 3a and 3b as well as figures 3c and 3d provides a direct
confirmation of the choice of M as a conjugate variable. Furthermore, the critical exponent g, is
0.94 £ 0.12 and M, = 0.959 + 0.005. These values are comparable to the values of 8, (= 1.00
£0.05) and M, = 0.953 + 0.003 for the mixtures of 40.6/60.4. Of course the M, is dependent
upon the interaction parameters that are characteristic of the molecular nature of a particular
homologous series, but the critical exponent g, should indeed be universal for the complex two
component order parameter (# =2 and D = 3) (similar to the tricritical point in ‘He/He mixtures).
Thus, the main conclusion from these order parameter studies is that near a first order or a
tricritical 8,-N transition, molecular field theory should be valid.

3. Universality in Nematic Ordering

In this section we present some of our cfforts to interrelate various physical properties of liquid
crystals. We have attempted to characterise the phase transitions in the spirit of the principle of
corresponding states. That is, we have tried to define the reduced variables which eliminate the
dependence upon physical quantities that merely serve to locate the phases in temperature,
composition space.

We examine in figure 4a the respective behaviour of S, versus T for 14 different 40.6/60.4
mixtures corresponding to x ranging from 0 to 1. An analogous plot for the members of the 20.m
compounds as indicated in the caption appears in figure 4c. We use the reduced temperature 2,
= 1-T/T,, as in the dimensionless abscissa in these figures. In figures 4a and 4c there is a large
spread of such curves attributable to the large range of AT, (x) = (T, - Ty,\(x)) versus x and the
nm (i.¢., alkyl or alkyloxy chain length) respectively. However, when S, is plotted in figures 4b
and 4d versus 15:

ty = (T, - T/AT, = t,/(1 - M) (3

a single universal curve is obtained. We have observed this identical bebaviour for 16 other cases
of pure compounds and mixtures from the #O.m homologous series as shown in figure 4d. Note
that this universal curve is obtained not only for those mixtures exhibiting a second order
transition, but it also applies to the cases of first order transitions after replacing Ty, the observed
phase transition temperature by 7%, (< 7,). Recall (cf. Chapter 14) that this is the temperature
at which the second order transition would have occurred if a first order transition had not. We
obtained T, empirically as the single adjustable parameter (for each x) to have S, versus #; fall
on the universal curve in figures 4b or 4d. These results for (T, - I%,) are consistent (within
experimental uncertainties) with the simple Landau theory we now summarise.
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Figure 4. Figures a and ¢ show 2 plot of S versus the conventional reduced temperature as labelled on the
x axis, for 40.6/60.4 and various #O.m compounds (40.6, 40.7, 40.3, 504, 50.7, 704, 70.5, 604,
50.10, 60.3, 60.5, 50.6) respectively. Figures b and d show the same data on the new reduced scale '™
as defined in the text. (From [8]).

In order to interpret the success of this scaled 13 we first note the following: (1) Sgy, the order
parameter in the nematic phase at the second order 7y, (or apparent T%, for first order cascs) is
equal to 0.760 x 0.005 for all members of the homologous series; in fact, the constancy of S;.(x)
with x appeared in figure 3a as a horizontal lambda line; (2) S, the value of Sy at the N-I
transition, is nearly the same for all members of the homologous series. We now incorporate these
observations into the simple Landau theory for the S,-N transition. We first write the free energy
in terms of nematic and smectic order parameters in the usual manner as [4] (see also the
equivalent equations (47)-(51), Chapter 14):

F=oT,x) ¥ + B(Tx) ¥, + v# +85*/2x(L.0)] - CT.x) 85w, )

where 85 is the change in S induced by the coupling to $7, and where we have explicitly denoted
the expansion parameters in terms of their functional dependence on T and x for the 40.6/60.4
mixtures; (for other members of the #O.m series we shall regard x in a more general sense
reflecting the variation of # and m). In equation (1), &= 0y[T - T%,(x)], (and is not to be confused
with McMillan's oM parameter). We optimise F with respect to 8S leading to 35 = C iy (cf.
Chapter 14), which can be substituted back into equation (1). It then follows that a tricnitical point
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is predicted for x(T,\(x)) = 28/C°. For x(T,(x)) < 28,/C there is a second order transition at
;&N = Ty whereas for (T (x)) > 28/C there is a first order transition at T, =Tt +
)/ 160,Y.

Our observation that S, = 0.76 at T%,, in all cases suggests that we may rewrite o7, x) = u(5)
= 0[S - Sg] in equation (1), with a, a constant, ie., the S,-N transition is driven by the nematic
order parameter in the sense that a precise value, S, must be achieved for the second order
transition to the smectic phase to occur. Given that the N-I transition occurs at nearly the same
Ty for all 40.6/60.4 mixtures (cf. figure 2) with approximately the same value of S, the use of
1y could just be a convenient scaling between the end-points of the nematic phase consistent with
these other facts. In particular, if S, versus T were linear, ie.,

Sy =8, + bx) (T - D),
then these facts mean that

Hx) = (Ss‘N - Sm) / [Tm = TS‘N‘(I)]
with a universal curve
SN = SNI * (SS‘N - SNi)t;TJ‘

Actually, except near T, the curves in figures 4a and 4b are linear, but this deviation from
linearity near 7,; could just induce the small scatter obtained near T, The fact that other
homologucs of different chain length (yielding different values of T,,) also obey the same
universal curve suggests that 7, is an adjustable reference temperature for which a common value
of 8, is obtained. Thus, to treat the general case we should replace T and x by ¢ = T/T,, and M.
Note, also that the (85/97), is not a constant quantity, see figures 4a and 4b. But, in the scaled
form i.e., dS/dt,, is independent of M, hence, it is independent of x, m, and #, but nevertheless it
does depend on £ (see figures 4b and 4d).

We shall let o = a(M)(1 - £,,(M)), so that along the lambda line of second order transitions
t=1,,(M) as observed. We must also have § = S(1,M) such that g,, = B(M,,,5) = 0 to be
consistent with the experimental results in figures 3a and 3c.

Motivated by this ncw type of temperature scaling, we have attempted a simiar approach in
the smectic A phase as shown in figures Sa and 5b. Clearly, there is very little difference between
the results using the conventional form of the reduced temperature f = (T, - 7)/T,, and our
proposed scaling form ¢ = (T, - DTy, - Ty p) L€, scaling by the phase extent. However it may
be noted that the extent of the smectic phase in 40.6/60.4 mixtures varies between 8-12°C. In the
next section we consider this scaling form in systems based on phospholipids where the extent of
the smectic A (= L, phase) is quite extensive (> 60°C).

4. Lipid-Cholesterol Mixtures

Somewhat similar features were also found in the lyotropic liquid-crystalline phase (L,) formed
by phospholipids with water [23]. These systems were studied both as a function of temperature
and the mole fraction of an additional component, cholesterol, in pseudo-binary (ie., ignoring the
water) mixtures of POPC/cholesterol [24], DMPC/cholesterol and pseudo-ternary mixtures of
DMPC/POPC/cholesterol [25]. The orientational order parameter for cholestane (and also 16PC,
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Figure 5. §in the S, phase of 40.6/60.4 mixtures: (a) x=(Tg,n-TH s () x=(Tg,p= TW(Ts,5 - Tas). (From

(8D).




322

()

Sese(x,T)

D3C 040 050 060 670 0.80 0.90

) 8

0.80

0.60

Sy

0.40

0.20

000 020 040 060 080  1.00
‘U
Figure 6. {a) Sy versus temperature for CSL in POPC/cholesterol mixtures; (b) Seg versus & for CSL in
POPC. ([From 23]).

not shown) varies linearly with temperature, an example of which is shown in figure 6a for
POPC/cholesterol. The various curves correspond to different concentrations of cholesterol. The
remarkable feature of these is the virtual independence of the slope (85/37), with respect to the
composition of cholesterol for all x less than 0.3. From such a simple behaviour it was possible
to show that the disorder parameter: t - S(#) is just the scaled #:

_ [T-Tw)
1) - Tiw)]

this is illustrated in figure 6b. Here, the reference temperatures 7,(x) and T are the extrapolated
temperatures corresponding to S=0 and S=1 respectively at a given x. Since, the slope is
independent of x, the difference [7,(x) - 7,(x}] must be constant for all x. This implies that the
ordering effect of cholesterol can be thought of simply as equivalent to a shift of the temperature
scale.

In the DMPC/cholesterol mixtures and the DMPC/POPC/cholesterol mixtures, S also varies

1 -S8¢% =¢ (5)
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linearly, with the temperature 7, but the slope is no longer independent of the composition x. Thus
while we can still scale the temperature to fit the data to equation (4), the scaling constant
[T(x) - T{(x)]" is no longer independent of x. There are important differences in this case as
compared to thermotropic liquid crystals: (i) the observed phase extent is relatively large; the data
cover a 65°C temperature range, and do not even approach the low or high temperature phase
boundaries and so the values of S at the phase boundaries has not yet been studied; ii) in
phospolipids the nematic phase does not exist, hence it might be considered as a case where the
McMillan parameter o > .85, thus the lower ordering of CSL in the lipids as compared to the
smectic A phase of n0.m compounds is not too surprising.
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Figure 7. Scg versus the mole fraction of CSL in POPC. (From [23]).

Figure 7 is a plot of S for CSL versus the cholesterol mole fraction x. Here we see a strong
non-lincar dependence of S on x (for constant 7). The order parameter S increases sharply up to
10 mole %, but it is not very sensitive to further addition of cholesterol. This is gencrally found
in the lipid-cholesterol solutions, It is taken as evidence that they are non-ideal solutions, whereas
in the thermotropic mixtures of 40,6 and 60.4, S varies linearly with x. We now consider a
potentially very important application of S in such mixtures to understand their thermodynamics.
Since the oricntational order parameter S({x},7) is an intensive thermodynamic property of the
ith component of the solution, the variation of S({x},7) as a function of x; should be related to
its activity in solution. [Here {x} refers to the collective mole fractions of the various
components]. We expect S({x},7) will be linear with x, if the solution is ideal; otherwise it would
deviate from linear behaviour (analogous to the partial pressure in an ordinary isotropic non-idcal
solution). We have pointed out that the orientational order parameter could offer a way to measure
the activity cocfficient in anisotropic solutions [23]. That is, when S{({x},7) varics non-linearly
with x, the replacement of x, by the activity of the ith component should relinearisc the functional
dependence, just as it does other intensive properties of the components of a solution (ie., the
partial pressure). Thus, we shall write;

8,(x,T) - S,(0,T) = ba({x},T) = bx,y{{x}.T), (6)




324

where g, is the activity of the /th component and vy, is its associated activity coefficient. That is,
in equation (6) we are neglecting any, presumably small, higher order terms in g,

Thermodynamics provides the following stability conditions for binary liquid mixtures, As long
as the binary mixture is in stable equilibrium, the first derivative of the chemical potential of a
component with respect to its mole fraction will be positive:

(B, /ax),, > 0, M
Whereas the mixture will be unstable (phase separation) if

(u, /ax), , < 0. ®)
Thus, at the phase boundary the detivative vanishes:

(0, /ax), , = 0. ®

Since the chemical potential of the ith component is

i, =4(T) +RTIn a, (10)

we readily find from equations (6) and (8) that
dln | AS,(x,T) |/ax, > 0, (n

where AS{(x,,T) = S{x,,T} - S(0,7), if the binary mixture is stable, Whereas from equation (%)
phase separation is predicted when

3ln | AS,(x,T) | /&x, = 0. (12)
It is obvious from equation (12} that the orientational order parameter will reach an extremum at
the phase boundary.
It was found useful to fit the experimental resulis with the functional form
S 0T) = 8(0.1) = bxexp[d(T) (1 - xP[/[1 + (D) x7], (13)

where x denotes the mole fraction of cholesterol in the mixtures. Although this equation is utilised
in an empirical sense to interpolate between data points, it is rationalised later. Because the CSL
spin probe is known to report on cholesterol dug to its structural similarity, we may consider Syq
and S,,; comparable [21,29]. Consequently, from equations (6) and (13) we obtain the activity of
cholesterol as a function of x at constant temperature

0%, T) = $Yu(8T) = xep[AT) (1 - ] xpldD|[1 + cDx].  (14)

This is similar to the behaviour of the activity of a component in a regular solution [30] except
for the modification 1/(1 + ¢x?). This modification was chosen to express the tendency toward
saturation observed for the order parameter of the CSL spin probe at high cholesterol
concentration. The coefficient exp{d) in the denominator is added to follow the Henry's law
convention for the solute (y,, - 1 as x - (). Once we have empirically obtained a good
functional form of AS,(x,7) or a.,(x,7) as in equation (13) or (14), it is easy to locate the
concentration of cholesterol x, at which the limit of stability of the mixture is reached, and the
phase separation starts to occur (cf. equation (12)). For DMPC/cholesterol mixtures, they are
compared with reported results from wvatious other experiments. The prediction of the phase
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ell with the results of Shimshick and McConnell [5] obtained

boundary turns out to agree very wi
ixtures are related to each

by tempol-partitioning. Because the activities of the components inm
other by the Gibbs-Duhem equation

xdlny,, =1 -xdiny,. (15

We can calculate the activity of the second component, once we know the activity of one
component as a function of the composition in a binary mixture. By integrating the Gibbs-Duhem
equation with equation (14) for a,,, in the DMPC/cholesterol mixture we find

e ®omroT) = Yomre x1)(1 - x),

(16)
ZCK
= (1 - x)(l-c).'(hc)(} + cxz)-lf(l«)exp[dxl - tan" (c"x) R

1+c¢

where x again denotes x,,, By analogy to the partial pressure (ic., p, - r=ap -p=
(a, - 1)p’), we would expect that the order parameter of DMPC will depend on x according to
T = Sppc(OT) =8 [1 =8y pc @] = b7 {1 = Y5 &I -0l an

SDMP

We show in figure 8 the variation of the order parameter of the DMPC molecule as a function of
cholesterol mole fraction x as predicted by equations (16) and (17). It shows the maximum at x,
which has been guaranteed by the Gibbs-Duhem equation. It is also compared with the outer
maximum spliiting of the ESR spectra of the 5-stearic acid spin probe in dispersion samples of
DMPC/cholesterol (that is expected to report on the ordering of DMPC), which was found to
reach its extremum at the phase boundary in the DMPC/cholesterol mixture [7]. Out prediction
agrees rather well with the maximum splitting data. The discrepancy at low x could result from
the fact that the maximum splitting is not in itself an accurate measure of the true thermodynamic

order parameter.

i L : i i
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Figure 8. Spype versus the mole fraction of CSL. The three lines correspong to three different temperatres
35°C (0), 45°C (a), 55°C (+). (From [24]).

The calculation of @y is an example of the use of the Gibbs-Duhem equation in a two
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component system. It should be noted that the Gibbs-Duhem equation is applicable to any
multicomponent system. In fact, for a multicomponent solution, knowledge of the activity of one
component at all compositions {x} allows us to obtain the activities of all the components [36].

Let us now consider the possibility of a critical point. At the critical point not only is equation
(9) fulfilled, but also the conditions

2 _ 3 18
(amz/axz)m 0, [(o°n/ox ), >0 (18)
would have to be satisfied simultaneously [37]. For a DMPC/cholesterol mixture it is found that
there is no x, in 0 < x < 1, such that equations (9) and (18) are simultancously satisfied.
Consequently, we may conclude that a critical point does not exist in DMPC/cholesterol binary
model membranes (at atmospheric pressure).

5. Dynamics: Thermotropics

Motivated by these results of studies on the nO.m homologous series, we undertook a series of
ESR linewidth studies in compounds exhibiting a weakly first order S,-N transition. The interest
was to see if a critical divergence in ESR linewidths would be observed near a weakly first order
S4-N transition, and, if so, whether it was similar to what is observed [32,33] at a second order
5,-N transition; i.c., what was the effect of the crossover on the critical divergence? Careful
quantitative studies of such phenomena are very time consuming, since they involve millikelvin
temperature stability and control. Instead in this study, we explored several liquid crystals and spin
probes to observe gencral trends. Thus, it was sufficient to have just +0,1K temperature control,
which is much more convenient to obtain [8].

At the 5,-N transition in 70.5 a rather strong divergence in B and C for both MOTA and
P-probe was observed. The extent of the divergence is quite dramatic compared to the previous
results near the second order S,-N transition in 40.6, Equally significant is that this is the first
case for P-Probe (which is not expelled), showing a divergence on the nematic side of the S,-N
transition. However, m 60.4 the B and C values associated with MOTA show a weaker critical
divergence at the S,-N transition than in 70.5 and the exact situation for the P-probe B and C
parameters is not clear because of lack of data very close to the iransition. The general trends are
quite similar to what is observed in the 40.6 solvent [32] with its second order S,-N transition,
In this respect, it is useful to recall that the McMillan parameter M = 0.936 for 40.6, 0.976 for
60.4, and 0.990 for 70.5. Thus, smectic driven fluctuations of the orientational order (i.c., the
C3Sy, term in equation (4)) are much more likely in 70.5 than cither 40.6 or 60.4. In the
model proposed for the critical divergences in B and C (cf. Chapter 14) [33], we relied on the
expulsion effect of the smaller spin probes to obtain a modulation of spin relaxation by the
smectic-like fluctuations of the solvent near the S,-N transition (cf. Chapter 14). The observation
of significant divergences for the spin probe, but only in 70.5 with its very short (3.7°C) nematic
range, suggests that the direct coupling between orientational and positional order parameters can
play a significant role when the former is not saturated. This matter is clearly worthy of further
study utilising other homologues of the nO.m series.

Let us recall the possible effect of the crossover from second to first order behaviour on the
relevant equation for the spectral density. We use it in the simpler form (for ¢ = 0)

JO) = M kT /32nE = 1_/E; (19)
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the divergence in J(0) is determined by 1./&. According to dynamic scaling theory described in
Chapter 14 for the second order transition, 1, = (7 - Ty)" and § « (T - Ty ™ yielding a -%
power law result for J(0). For the first order transition mean field theory yields £ o (T - Tg)™,
so the J(0) would diverge as (T - To,)™ The theory leading to this equation is based on the
expulsion effect as noted previously. It was assumed that this effect would modulate the values
of S and/or of t,, the rotational correlation time felt by the spin probe. It did not take into account
the jump in S at the first order S,-N transition, because it dealt with the second order 5,-N
transition. The finitc AS can either add to or replace the expulsion effect in modulating the
electron spin relaxation of the probe. This seems a likely explanation for (i) the observed increase
in the critical type divergence, and (ii} the critical type behaviour for P-Probe (which is not
expelled by the transition) for a first order S,-N transition.

6. Dynamies: Lyotropics
6.1. CORRELATION OF D; WITH §

We now consider whether the lateral diffusion coefficient D, of CSL (measured by dynamic
imaging of diffusion - ESR, cf. Chapter 12) may be related to the ordering S, which we have
shown provides a direct measure of solution non-ideality. We show in figure 9a that at each value
of temperature, In D; varies lincarly with S%(x,T) for POPC/cholesterol mixed solvents. More
precisely, we find empirically that [23,25]

D(ST) = DY exp{ ~[a(T) S*(x,T) + B)/RT), (20)

with D = 9.18 x 10*cm’s’, g = 1303RK, and

afT) =a" + /T
with @ = -3364R K and & = 1.303 x 10°R K* for this system. The validity of equaticn (20} is
iflustrated in figure 9b. The values of a(T) shown in figure 9c, were obtained from the variation
of In D, with § for each T, as was the value of DYT) = Dhexp(- B/RT). Figure 9b shows the
universal linear curve obtained when In[Dy(x,TYDYD))] is plotted versus a(7) $%(x,7)/RT for each
value of x (ie., constant x behaviour).

It has also been possible to fit our results on Dy for 16-PC to an equation of the form of
equation (20) as illustrated in figure 9¢. There is somewhat more {random) scatter due in part to
the somewhat greater error in the measurements of D™ versus DF*. Neverthelcss, we find that
these results are also well-fit by equation (20) with D% = 1.06 x 10*em’s”, g = 2317RK with
& = 260 x 10'RK and & = 8.56 x 10°RK’. Note that for both probes o(T) decreases
monotonically with temperature over the range studied. This smaller value of a(7) at the higher
temperatures implies a weaker dependence for Df™ and D™ on S at the higher temperaturcs.

We have also noted that equation (20) also applies to DF™ in POPC/DMPC/cholesterol mixtures
with @ = -4363R, &' = 1.55 x 10°RK?, § =0, D} = 1.16 x 107 cm’s". Note, that all these
cases, the only dependence of D; on x is through its dependence on S(x,7), and we can regard
o 1)S%(x,7) + B as the temperature and composition dependent activation energy for translational
diffusion (D%). Thus the activation energy for translational diffusion is enhanced as the membrane
ordering is increased by the addition of cholesterol, or by lowering the temperature.
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Figurc 9. (a} In(D) versus S? for CSL in POPC/cholesterol mixtures; () In (D, TVD(D) versus o(NS%
(c) Temperature dependence of o; (d) same as b but for 16 PC. (From [23]).

6.2. CORRELATION OF I, WITH §

We have found an empirical relation for CSL which is appropriate for all the PC/cholesterol
mixtures studied (i.e., POPC, DMPC, and DMPC/POPC with cholesterol). It is

Dy = D exp(-AS*/RT), (21

where 4 is a constant for a given type of mixture. This equation implies that the activation energy
of the rotational motion also depends on S° as is the case for translational motion. An interesting
feature of equation (21) is that the constant 4 is independent of temperature, whereas in equation
(20) o shows a considerable temperature dependence. D is also temperature independent. The
fits according to equation (21) are shown in figures 10a - 10¢ for the three mixtures. The best
fitting A and Dy are respectively: 16.5kJmol* and 1.78 x 10°s" for DMPC/cholesterol mixtures,
12.0kImol” and 7.26 x 10’s" for the POPC/cholesterol mixtures, and 13.7kJmol” and 9.79 x
107s” for the ternary mixtures. This, of course, suggests that the activation energy barrier for the
rolational motion of a CSL molecule in the DMPC/cholesterol mixtures is slightly higher than in
the POPC/cholesterol mixtures. ‘

It is tempting to describe this correlation of D} and DX with $? in terms of a free volume
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Figure 10, Plots of rotationai diffusion coefficient Dy for CSL in (a) PMPC; (b) POPC; (c) DMPC/POPC
mixtures. (From [25]}

model [35] proposed by Diogo and Martins for nematic viscosities [36]. In their theoretical
analysis an S dependence of the activation energy was predicted. First, we briefly review the frec
volume diffusion model of Cohen and Turnbull [35]. Next, we consider how to incorporate the
effects of ordering in a manner applicable either to translational diffusion or to rotational diffusion
[25]. We obtain the results of Diogo and Martins slightly generalised and in a more compact
fashion. The basic assumption of the free volume model is that each molecule of a system is
confined to a cage by its immediate neighbours. The molecule is randomly rattling inside its cage
until fluctuations in the density open up a hole within the cage large enough to permit a
substantial displacement of the molecule. Thus, diffusion on a large scale occurs not as a result
of an activation in the ordinary sense but rather as a tesult of a redistribution of the free volume
within the liquid. Cohen and Tumbull assumed that the large scale diffusion coefficient can be
written as

D= ]" dv D) p(v), (22)

where D(v) (the small scale diffusion coefficient) is an apparent contribution to the overall
diffusion arising from the diffusion in a cage with a free volume v, and p(v) is the probability of
occurrence of this free volume. [Note at this point that J(v) is not a diffusion coefficient in the
absence of the cage; that is [ Since the space available for diffusion is limited, the
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autocorrelation function of momentum (translational diffusion) or of angular momentum (rotational
diffusion) decays much faster; thus J(v} is larger than D°, D(v) = g(w)D°, g(v) > 1 being a
geometric factor). Introducing two characteristic free volumes, a critical free volume v*, large
enough to permit a substantial displacement, and V', the average free volume per molecule, they
expressed the diffusion coefficient by

D = D(v*)exp(-av v D), (23}
where A is a numerical constant. The average free volume is assumed to arise from the thermal
expansion at constant pressure, which can be written approximately as

vi=wv (T -T), (24)

where o and ¥ are mean values of the thermal expansion coefficient and the molecular volume,
respectively; and 7, is the temperature at which the volume per molecule is reduced to the
close-packing limit. Let 5v denote the difference between v* and ', Substituting equation (24)
into equation (23) we obtain the result of Cohen and Turnbull [35]

D = g(vBYT) exp(-;w /[av (T - 1))

= g(v ) D*(T) exp(-B/(T - T),

25

where D(7) = D¥(T)exp™ and 8 = ASv/av. This equation was developed for a simple liquid of
hard spheres and has been successfully applied to explain the fluidity of a large number of
glass-forming substances.

Diogo and Martins [36] have applied a similar approach to explain the temperature dependence
of the viscosities of thermotropic nematics. Since the nematic viscosities can be associated with
both the translational and rotational diffusivities of the nematogenic molecules, {37], Diogo and
Martins had to consider both types of molecular mobility. We now use the result of Cohen and
Turnbull and estimate the critical free volume v*, and the small scale diffusion D'(T), in a manner
somewhat related to that of Diogo and Martins, to calculate diffusion coefficients for rotationat
and translational motions of molecules in liquid-crystalline phases. Let us use diffusion in the
isotropic phase of the liquid-crystalline material as the reference. We define the critical free
volume for the isotropic phase, v* = V[ + 8v, where ¥,is an average free volume per molecule, dv
is an increase in the free volume sufficient for the displacement, and I(7) is the small scale
diffusion coefficient in the isotropic phase. [Here, D denotes either D or Dg.] If we assume that
the critical free volume for rotation and translation is essentially the same, then both rotational
and translational diffusion coefficients are given by equation (25) with v* = v* and D*(T) = D{T)

D(T) = g D{(T) exp{-B,/(T - Ty}, (26)

where B, = L5v/(o, 7).

We now consider the effects of the orientational order in the liquid-crystalline phase. This
oricntational order, due to the potential of mean torque experienced by each molecule, is usually
taken to be that caloulated by Maier and Saupe or Marcelja in the molecular field approximation
[38]):

WO = -p(p,T) eSP,(cos 6), @7
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where @ is the angle between the long axis of the molecule and the director, S is the (nematic)
order parameter, p(p,7) is the number density, and e is the interaction constant. The ordering of
the Jong molecular axis produces a decrease in the average free volume at the disposal of a
molecule. Therefore, if the molecule is to gain the critical free volume v.f, the cage has to expand
considerably, first by an amount it was teduced by the nematic order Avg, and, additionally, by
an amount v, sufficient to reach the size of v}, which is needed for the displacement. This can
be written as v* = v = Wi+ 8y = (vL+ Av¥) + v, with v]and ¥, being average free volumes per
molecule in the ordered and isotropic phases, respectively. In order to estimate Av} we proceed
as follows. Let k be the isothermal compressibility of the ordered phase and ¥, be the volume
per particle in the ordered phase. Then, by definition

= -V} (3V/ap),. (28)

If Ap, denotes the associated fluctuation in the pressure leading to the increase in the size of the
cage by Av}, then assuming that the temperature remains constant we can write

k= -VAv./Ap). (29}

This should produce a change in the free encrgy per molecule: AG = ¥, Ap,, provided the
ordered phase is otherwise at equilibrium. On the one hand this change can be written in terms

of equation (29}
AG =V_Ap_ = -k~ Av,. (30)
On the other hand, since the temperature is constant, the change in the free energy can be

associated with the change of the average energy of intermolecular anisotropic interactions, which
in terms of the Maier-Saupe molecular field approximation can be written as

AG = %p(p,T)e S @D
Thus, by comparing equations (30) and (31) we obtain
Av) = [kp(p,T)s/Z]S’. (32)
The critical free volume v}, is then
ve = [kp(p,T)e/2]S* + Vi o+ dv. (33)

We note at this point that Diogo and Martins neglected vi+ 8, ie., they assumed v} ~ A
Small scale translational or rotational diffusion can be considered to be an activation process:
DYT) ~ exp(-E/RT), where D = D, or Dy. Since the ordering potential essentially influences only
the rotational dynamics of the long molecular axis, cases of translational diffusion and of
rotational diffusion about the long axis (characterised by DY) are insensitive to the presence of
the potential. Therefore, both diffusion processes can be written as Arrhenius-like activation
processes with activation energies close to that for the isotropic phase; D, (T) = D(T) =
D, exp(-E/RT). However, for rotational diffusion of the long axis (characterised by Dp), a
molecule has to pass over an additional barrier resulting from the ordering potential. In the
Maicr-Saupe molecular field approximation the height (the strength) of the nematic potential is
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E = p(p,N)e8 (cf. equation (27)), so the net barrier should be

E, =E, + p(pT)es, (34
and the dependence of Di(7) upon temperature should be

DYT) = D! exp{—[E + p('p,T)es]/RT}.

Substituting these quantities D’(T) and v¥ into equation (25), we obtain for translational diffusion
and for rotational diffusion about the long axis

B, + 05’

s =gn°""('§)“"(‘ﬁ

=7 ) D =D_or Dy, (35)

and for rotational diffusion about the short axis

ED,‘ + bS) ( ﬁnr + 082)
€ - »

DyTS) = g™ cm(~T ——— (36)
']

where b = p(p.TNe, B, = Adv/(a¥,) and & = Akp{p,D)e/(20.7,). These equations display the
§° dependence that we have observed experimentally as expressed in equations (20) and (21)
respectively, where § is given by S.q. Further details, including the applicability of these results
to mixtures, are given in [25]. A detailed study in a smectic A liquid crystal extends the theory
to D) and D} and considers smail and large diffusing molecules [39].
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