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ABSTRACT. Order parameter fluctuations at mesomorphic phase transitions modulate the molecular
dynamics of spin probes, thereby affecting spin relaxation. The anomalous relaxation rates at the phase
transitions (7*) often diverge as | 7 - T° |7, where y is a critical exponent, and has been noted to be
universal, For N-I transitions, y = -%, and for S,-N transitions, y = -%. Theoretical models arc discussed
that provide a unified framework for rationalising the experimental results.

1. Introduction

Owing to the wide variety of ordered phases seen in liquid crystals [1,2], they often exhibit several
kinds of phase transitions involving phases differing from each other in their degree of order and
symmetry [3]. Accordingly, several experimental methods, which include light scattering [4,5],
NMR [6,7,8], X-ray diffraction [9,10,11,12] and adiabatic calorimetry [3,13,10,14,15] (each of
which is sensitive to some characteristic property of the liquid crystal), have been used to study
mesomorphic transitions. Such transitions have typically been noted to be heralded by
characteristic pretransitional effects (i.e., divergences in heat capacitics, viscosities, e¢lastic
constants, correlation lengths) that can often provide insight leading to the nature of the transition.

The pretransitional effects, which are manifested as critical anomalies in magnetic resonance
relaxation measurements, are caused by fluctuations in the order parameter appropriate to the
particular transition {16,17,18]. Thus, for example, although the long range order vanishes abruptly
at the nematic-isotropic transition, there is evidence to indicate that a short range order analogous
to the nematic order persists in the isotropic phase just above the transition [4). Similarly, n liquid
crystals exhibiting an underlying smectic A phase, at temperatures just above T, there are small
domains of so-called cybotactic clusters, ie., regions with local smectic order [2,i9]. As the
transitions are approached from the higher temperature phase, the regions of local order (that
characterise the lower temperature phase) grow. Also, since the symmetry of the smectic phase
requires twist and bend deformations to become forbidden, the associated elastic constants must
diverge as the S, phase is approached from abave.

The fluctuations in the order parameter(s) that occur at the phase transitions result in a slowly
fluctuating orientational potential at the site of the probe molecule, thus modulating the rotational
reorientation of the probe. Such modulations have been shown to lead to anomalous effects in spin
relaxation, manifested as critical type divergences for the hyperfine lines [16,20]. Detailed studies
of electron spin relaxation and orientational ordering at liquid-crystalline phase transitions using
a variety of spin probes therefore provides important complementary information to that obtained
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using the more traditional techniques, shedding light on the subtle molecular features that usually
characterise these transitions, which are usually weakly first order to second order. The nature of
the linewidth divergences at thesc transitions can also be useful in addressing how the molecular
dynamics of the spin probes couples to the collective modes. The critical exponents describing the
divergence in the relaxation rates provide a useful indication of the nature of this coupling [17,21].

2. Models of Collective Dynamics: Director Fluctuations
21. HYDRODYNAMICS

In mesomorphic phases of liquid crystals, just below the transition temperature, each deformation
of the ordered structure is opposed by a restoring force. Such forces are described in terms of
elastic constants for curvature strain, and the minimum number of such constants are given by
symmetry considerations. For example, for a nematic liquid crystal (which has uniaxial symmetry),
there are three non-vanishing elastic constants corresponding to splay, twist and bend deformations
{22]. Such deformations (of the ordered structure) are typically induced by temperature
fluctuations that tend to randomise the ordering of the molecules, The collective motions due to
the order director fluctuations that tend to restore the symmetry of the phase to its equilibrium
value affect the spin relaxation rates of spin probes dissolved in the liquid crystal solvent, since
they modulate the local (i.e., instantaneous) orientation of the directors with respect to the
magnetic field [23,16]. Therefore, as discussed by Freed [17), a complete description of molecular
dynamics in liguid-crystalline phascs must include both the single particle variables as well as the
collective variables of the liquid crystal.

The instantancous director m(r,f) can be specified in terms of a mean director n,(r} and the
deviation from the mean n(r,), iec.,

n(r.) = nr) +dn(r), 1

where 3n(r,?) = n(r,) - n(r). The mean director defines the direction of preferred alignment
at r. In the limit of small director fluctuations, n(r,f) is orthogonal to n(r,#), and we have the
result

< nlry n(r), > =< 8, 8expl+ilg, - 9)] >, @

where n, = n,  in, and », and », are the x and y components of 3n(r); and (8,¢) denote the
polar coordinates of the unit vector along n(r). The time dependent disturbance in equation (1)
can be analysed in terms of the Fourier modes

Sn(qy) = ¥V [ av én(r,s) exp(-iq . r), 3

where V is the sample volume. Since these Fourier modes decay slowly, their time evolution can
be treated in the hydrodynamic limit. Such an analysis leads to a purely viscous type of relaxation
for the gth Fourier mode (which is also a normal mode), and is given by

%n,(q)/0t = -7 (q)" 8n,(q), 4

with & = 1 or 2 corresponding to distortions in the xy plane, but with n,(q) parallel to the
projection of q in the xy plane, and n,(q) normal to n,(q). If, for simplicity, we ignore the
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anisotropy in the restoring forces and viscosities, then the rate constant for the decay T, is given
by 'c;' = Kq*n, where K is the average elastic constant of the liquid crystal and n is an average
viscosity [22].

The fluctuations in the x and y components of n(q) each contribute a quadratic term for cach
normal mode to the free energy. The use of the equipartition theorem leads to the results [24]

<jin{q){*>=<|n(qf>=<| &g I’>=2kTIKg"V, )

which, when combined with equation (2), now becomes [25,26]

<n(ry): n(r),> = 2_::3 L"- ;I:’zi; exp(-f%z)ﬁtqz dg =At™ ;;p[(mc I)H], 6)

where o, = K q’/m is the cut-off frequency, which is introduced since the hydrodynamic theory
should break down for wavelengths A, = 2n/w, comparable to molecular dimensions. Also ®[x]
is the error function [27], and

A = ETn*28% K%, 0
The spectral density calculated using the correlation function in equation (6) exhibits a divergence
as @ - 0. This divergence can be removed by rccognising that the correct value of
1:;l = (Km)lg? + E;), where E;° = K/A xB> with , the correlation length due to the presence
of the magnetic field B, and Ay the anisotropic part of the diamagnetic susceptibility. Also, the
mean square values of equation (5) become 2k, 7/KV[g* + £5].

Equation (7) can be corrected for the effects of finite translational diffusion by replacing VX »
with 1/[K(X + nD.)"] as discussed by Pincus [23], and later demonstrated formally by Freed [17]
(sce later). Also, the use of a finite cut-off ¢, is somewhat arbitrary, and improvements on this
approximation have been discussed by Zientara and Freed [28].

2.2, SPECTRAL DENSITIES

As shown in Chapter 12, section 1, the orientation dependent part of the spin hamiltonian H(£2)
can be written as

H@Q =Y ¥ WFIOD, (4., (8)
# Lmk,

where Q specifies the orientation of the molecular axis system relative to the laboratory fixed
frame. The introduction of a director frame into the hamiltonian requires the use of two further
transformations with the following Euler angles [17]: (i) ¥, the orientation of the mean director
n,(r) with respect to the laboratory, (ii) E, the instantancous orientation of the director [m(r,?)]
relative to the mean director and it is, in general, a set of variables for the collective effects of all
the q modes. The typical perturbation terms in equation (8) require L =2. As a result, the
reorientational motion relative to the fluctuating director, H,(2) will be particlly averaged, and
its average value is given by

<HQ> =YY Y (-1f <Dl (@) >F 47, e)

where
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< DXQ) > = ] d= ] 4O P(Q,E) DA(Q)). (10)

In this equation P(,E) is the equilibrium probability distribution function in orientations € and
E. We shall invoke the assumption, based on the hypothesis that the collective motions associated
with director fluctuations and those associated with single particle reorientations have different
characteristic time scales (i.c., a molecule reorients many times during a normal mode period), the
P(Q,E) can be factored into the equilibrium distributions P,z(€2) and f(E), so that [17)

PQ.8) « P) /(). (n

This equation is analogous to the Born-Oppenheimer approximation in quantum mechanics so that
Pg(€2) is the equilibrium distribution in Q for arbitrary values of E. When substituted into
equation (10), this leads to

< DLQ) > = [ dE f(E) I dQ P(Q) DL(S). (12)

The spin relaxation in the motional narrowing regime is determined by the correlation function
for the hamiltonian in cquation (9). But fo the extent that the entire time dependence in
< H,(§) > is contained in < D,i 4£2) >, it is sufficient to study the correlation functions for the
latter, ie.,

C, ime ADESDL) DAQ) > -< DLQ) > < D2AQ) >, (13)

The calculation of these correlation functions is performed using equation (12), and leads to the
result that C__ ., (0 in equation (13) can be written as the sum of threc terms [17]:
() Coemr, A1), Which describes molecular reoricntation under the potential T(Q); (i) C2,4nr (0,
which is due to relaxation caused by fluctuations in E (ie., director fluctuations); and (iii)
C e, 4AD), which represents a (negative) cross term between these two processes, but which
bears a simple relation to (ii} [17].

The spectral density terms relevant to the present discussion arise from (ii) and (iii). If we
include director fluctuations to lowest order, it can be shown that only terms with & = &' = 0, and
m =m' = £1 will enter the expressions for C~, . .(f) and C2, ., (). With these substitutions,
we obtain with some simplifying approximations (e.g. considering fluctuations in E to lowest
order) {17]

C.(0 = Cllo + SR + Ca®,
= K(m,k) exp(—#/t,) +3,, 8, ,,(3/2) S2 At™* (19)
x 0[(0)‘][1 - exp(-t/'rk)].

It is important to recall that for this model the time scales obey the inequalities
T > @, 21T,

Thus it follows from equation (14) that initially C_,(0) = C5(0), but for ¢ > 1, the rotational

motion has relaxed and C_(9) = C2(0), and further relaxation is due to the director fluctuations.
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The spectral density is then obtained as
3
J®) =¥ Re [' dt CO) exp(~iol),

] @

= k(MR (1 + 0’ 1) + (325 48,5,, (15)

|n wolo) Y
LI et - Al 0P )] = @),
2 Vo | “)\/;

where
wolo) =1 =L 1a Ley20lo, +ofo | 1,0 ___VZ‘"’/"’up (16)
© o -ele, role,| T | PO
and

x(m ) = [ @ P@)(| DL, 12 -< D) >3, 8,.0)- (17)

Also p =0 if W/, <1 but p =1 if we, > 1. These expressions assume that the mean
director lies parallel to the magnetic field. When, however, the former is rotated by an angle ¥
relative to the magnetic field, the new spectral densities, which are now functions of ¥, are related
to the former spectral densities by the expressions given in Chapter 12,

The following poinis may be noted about the result in equation (15):
(i) For small (w/w), # » 1, while for large (w/w ), u = 0. Therefore, the cffect of (w/w) is
to suppress the high frequency spectral densities.
(ii) J,.{ @) shows an unphysical divergence as w approaches zero. This divergence implies a lack
of restoring potential as q - 0. However, when the free energy associated with alignment by the
magnetic field, Ax/B? is included in the denominator on the right hand side of equation (5), this
divergence is removed as discussed previously [17]. (Another way to prevent this divergence is
to introduce walls with strong anchoring to the director.)
(iii} The wavelength associated with a director distortion mode (q) cannot be made shorter than
the molecular dimensions. Therefore, either a high frequency cut-off ¢, should be used, or
molecular dimensions should be used explicitly as shown by Zientara and Freed [28].
(iv) In this model, the strong dependence of J, on ¥ implies that in smectic liquid crystals, the
observed ESR relaxation rates {i.e., linewidths) should be highly oricntation dependent. The extent
of such dependence is proportional to the square of the order parameter, so that more ordered
probes should exhibit a larger orientational dependence than weakly ordered probes (i.e., CSL as
opposed to perdeuteriated tempone-d,). Whereas in NMR the director fluctuations are an
important relaxation mechanism, in ESR they are found to be unimportant and possibly too slow
for spin relaxation,
(v) Note that the spectral density for order director fluctuations J,5(w) used in equation (15)
neglects corrections due to the magnetic coherence length and finite translational diffusion. When
these effects are included, the spectral density hecomes [17]
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s@)= () [Ss:]—@]% b

(18)

. Dt -(1/\/2')\Nx2 +(la’} +x]+(mE;/J2_)\Nx2 +(w/a'f -x

Wk, + D?

:4

with @ = K'/vE;, K' = K + vD,, and x = K/K'. Note that in [17] a typographical error was
made in equations (B4) and (4.14), which have been corrected here. The respective equations
appear here as equations (18) and (36). In the limit where a highly ordered molecule, such as a
labelled liquid crystal molecule, then expressions appropriate for the high order limit are readily
obtained from a simple modification of the model of Zientara and Freed [28]. In this case the
assumptions of a separation of time scales and lowest order in fluctuations are not invoked.

3. The Nematic-Isotropic Phase Transition
3.1. LANDAU-DE GENNES THEORY AND IRREVERSIBLE THERMODYNAMICS

The starting point of the Landau-de Gennes theory is an expansion of the free energy near the N-I
phase transition in terms of the nematic order parameter Q [22]. We first consider the isotropic
phase. Neglecting the tensorial features for simplicity, this may be written as

F=F, +(%)40* -(%B80* + (4)C0* +(%) [ d°r L(VQY, (19)

whete F, is the orientation independent part, 4 = a(T - T*) following Landau, while B, € and
L are only slowly varying with temperature, and L is a force constant for distortions. If it were
not for the term in Q° in equation (19), then there would be a second order phase transition at 7*.
Since 7 # 0, the transition will always be first order [1]. If F is minimised with respect to O (but
neglecting L), then we obtain the value of {2 in the nematic phase

0, = BrO1 +(1 - 44CBy) (20)
The first order phase transition occurs at Ty, such that
4 =aT, -1 =28"9C
and Q, = 2513C. Thus T,, > T*.
_ When the tensorial features are included, then to lowest order in Q (i.e., neglecting the terms
B and C), we have after Fourier transforming [29]:

BF =@vmY [ 1 0®@) I +(10%@) 1 +1 0% @) I”)
: @

+(19%(Q) I +1 Q%@ I*)](1 +&* ¢?),

L
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where AF = F - Fy, and

0™ = B2 g, @
Q% =10 -iQ,, 23

and
QD = (%)@, - 9, *20,). (24)

In equation (21), 0®(q) denotes the mth component of the tensor order parameter Q(q)
associated with the gth Fourier mode, and for simplicity we have utilised a single correlation
length for order fluctuations E. Also, E° is given by

& = LA = Lia(T - T%, 25)
where 7* is the N-I transition temperature when the transition is approached from the isotropic
phase. The equipartition thecorem leads to the result

<1Q%(q) I'>=(32) < 1 Q@) I'> =(3k,T/24N(1 + & ¢7)". (26)
At equilibrium, the value of ((q) is determined by the requirement that the free energy AF
be a minimum with respect to variations in ((q), i.e., XAF)/dQ(q) = 0. Owing to fluctuations in
((q), however, this condition is not satisfied, and therefore a relaxation process occurs in which
((q) varies with time and tends to {{q). In states not far from equilibrium, ie., when
HAF)/0Q(q) is small but not zero, the relaxation rate dQ(q)/dt is also small. In Landau theory
the relation between these two derivatives is assumed to be a simple proportionality [30] and leads
to dQ(q)/dt = -1:,;1 A F)| 8Q(q), where ' is a characteristic relaxation rate associated with the
relaxation of the gth normal mode (cf. section 1.1). Utilising equation (21) leads to

dQ(qydt = < Q(q), @7

where

T = LE? + gOv. (28)
In this equation, v is the associated viscosity. Furthermore, the use of equations (21) and (26)
shows that the fluctuations of different tensor components of ((q) are uncorrelated, ie.,

< (Q(zm‘)-(q))o(chm(q))t > =< 0%q) | >* exp( -t/rq) SM " 29

Below the N-I phase transition, ie., in the nematic phase, ( is replaced by Qy + AQ, (where
AQ = Q- Q)), and where 0, is the nematic value of Q given by equation (20). Then, to the same
level of accuracy as the simple appreach in the isotropic phase, we obtain [17]

@2/3)< | AQ®™(Q) 2> =< | AQ(Q) [*> =AWy TUL + E°47) (30)

and

T = L(ET g, G1)
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with & = L /4, where T* is the (hypothetical) N-I transition temperature when the latter is
approached from the nematic phase and

A=4 -280, +300; » 3a(Tt - D),

where the arrow shows the limit for small 4. In this Limit T* = T, + (4T, - T*). Note that
in general, L, * L, and v, * v at 7, the N-I transition temperature. The important point in
these cases is that from the N and [ sides of the N-I transition, we obtain the result that
¥ o« (Tt - D)™ and E? = (T - TH™ respectively, i.c., the correlation length diverges according
to a (!4) power law. Tt also follows from this result that the N-I transition temperature when
approached from the nematic phase appears to be slightly higher than that from the isotropic
phase. In a more «careful analysiss, Rao et al. showed that in the range
VAK (T -TY)< 07K, TY =T, + 0.6, - T*) [16].

3.2. MOLECULAR SPECTRAL DENSITIES

The analysis of the fluctuations in the order parameter that occur near the N-I phase transition
proceeds in an analogous manner to that for director fluctuations (cf. section 1.2). Freed [17] has
shown that the correlation functions describing such fluctuations (when they are small) near the
N-I transition are given by

C;{:),-!;u',-k'(t) = 2—15 <Xt=0) D:-:,o("a) i D:u,o( ?)>3 0k 80,& ' (2)
above the transition, and below the transition it is only necessary to replace (1/25) by
®(m,0) x(m',0). In this equation, A(¢) is the (time dependent) ordering potential, and ¥ denotes the
instantaneous orientation of the local director in a laboratory fixed frame (i.e., the mean director).
For a weakly ordered probe molecule with order parameter S® and ordering potential X, the
approximate substitution X®/S @ = 7S, which holds when X is small, leads to

€2l » S9S) < @30,Q), > 8,58, 33)

The ratio (Sy;/S,,) in this equation can be estimated from the measured order parameters for the
probe and the liquid crystal just below the N-I transition. The fluctuations in Q,(q) (the nematic
order tensor) appearing in equation (33), are described by Landau-de Gennes mean field theory
as we have discussed (cf. section 2.1, equation (29)). This leads to the result that the spectral
densities for the order parameter fluctuations are given by [17]

soY kT
I () ] i M J ! 8, 8,008 (34)

So) anfz NP0 (1afieoioy

with
w = LIvE). (35)

For small order fluctuations, §* is inversely proportional to (7 - T*) according to Landau-de
Gennes theory, & =L/a(T-T*). Equation (34), which applies above the N-I transition may be
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used below the transition by multiplying by [5k(0,m)]* and letting v - v, L = L, and £ » £,
The effects of finite translational diffusion can be incorporated into equation (34) by procedures
described in detail in Appendix B in [17]. We then have the result

s~ () (] 472
S.) L "
(36)
D1 -(l/ﬁ)J‘/x’ +(w/w" ) +x] +(«>E’/\/2_)J\}x2 +o/o')f -x

w? 54 +D-§

with @’ = L'/vE* L’ = L + vDand x = L/L’. Note that the secular spectral densitics arc given

1 kTF.

4

L-/x

D

T

T =

G0

=[L][S_’(‘?] RIEH_ L )
an ) S, LDT[ m

Equations (34) and (36) show that J*(w) is largest at zero frequency; therefore, the secular
spectral densities for order fluctuations are the dominant contributors to the anomalous part of spin
relaxation. The anomalous contributions to the linewidth parameters B and C (cf Chapter 12), i.e.,B,__
and C_ , are given by [26,17]:
B
B = —Ye ¢ ( A

anam 9 x

-24, (2g, - g, —2,)70 (38)

and

C., = %(A“ v A - 24 1 [81,(0) - ,y(w)] (39)

where the spectral densities in these equations are given by equation (34), and w, is the frequency
of nuclear spin flips. These substitutions lead to:

B, =k(T - T%™ (40)
and
Co = k(T - TH™, (41)

where k; and k_ arc given by (neglecting translational diffusion and the cross term Jop):
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f 2
v.B, ® kTv (42)
2-YTo 4 wa —24)020 -g -g)|2® ||| BV
5 9 . +4, N8, 2. g””)LSNI 8nL*2g*
and
y eV &rv @3)
ko= |dea_sa 24 p |02
) W S 87 a"

In equation (43), N, is a factor which takes values between 8 and 5;(2N, = 8 - 3/, (w ), (0)).
The former extreme corresponds to the case when J,(w ) < J,(0) (which is the case for slow
fluctuations and/or molecular diffusion), whereas the latter extreme corresponds toJ, (@) = J,(0)
(which occurs in the case of rapid fluctuations). The quantities appearing within the first set of
braces in these equations for &; and &, depend solely upon the properties of the spin probe, while
the second set contains parameters characteristic of the liquid crystal. Using the parameters for
MBBA, ie, L = 10?'N, a=6 x 10°JemK, v = 0.3P [29,16], we estimate the quantity
within the second set of braces to be about 1.05 x 107 at T,, = 78°C, which is the N-I
transition temperature for 40.6 or 6OCB-80CB at the composition studied. &; and k& can thus be
calculated from a knowledge of the probe ordering and magnetic tensors, Note however, that when
the more general expression ie., equation (37), is used, we find that the secular spectral densities
(including iranslational diffusion) are 2x/(1 + \/x_ ) times those calculated neglecting the effects
of D..

We note that C__/B__lies between (8/5}C/B,) and (Cy/B,) depending on the value of N.
Equations (38) and (39) also show that the temperature dependence of both B__ and C_ . can,
aliernatively, be described by

B C
wo _ Ywwm _per g “)
N_C, KT "

where
_ 1

‘fl +vDJ/L

k can be calculated from the order parameters S and S (i.e., for the probe and liguid crystal
solvent, respectively) at the N-I transition, the physical properties of the liquid crystal, and the
rotational correlation times of the spin probe near 7, The latter are obtained by linear
extrapolation of Int, versus I/T (i.e., Arrhenius-like behaviour for 1, as a function of temperature
is assumed) to the critical regions. The method of data treatment based on these equations is
described in section 7.

k= [ S ]2 kT

1
5 ) amL*a*D T @5)
T

3.3. EXPERIMENTAIL RESULTS

The variation of B and C with temperature is shown in figures 1 and 2 for perdeuteriated tempone-
d,; in 40.6 and 60CB-80CB. Here, we clearly note that as the phase transitions are approached,
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Figure 1. Temperature variation of B and C for perdeuteriated tempone in the I, N and 5, phases of 40.6.
(From [49]).

the relaxation parameters exhibit anomalous behaviour in that they appear to diverge as the
transitions are approached. A closer look at these effects is presented in figures 3 to 6, where we
show B and C for the transitions occurring in perdeuteriated tempone-d,; in 60CB-80CB as an
cxample, together with the error bars associated with the linewidth mecasurements. The curves
shown through the data points represent non-linear least squares fits using the relations

B _orC_ =k[T-T*| (46)

A

to vield values of k, T* and y after subtracting the background contributions to B, or C,. The
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physical justification for using the cxpression in this equation has been discussed; the results,
shown in tables 1 and 2 together with the standard deviations, are discussed here for the N-I
transition.
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Figure 2. Temperature variation of & and C for perdeuteriated tempone in I, N, 5, and N, phases of 60CB-
80CB. (From [49]).

The results of the analysis at the N-I transition (cf. table 1) indicate that (i) in all cases,
y = —%; (ii) at a given transition, the value of 7 is higher at the lower temperature phase than
that obtained from the analysis at the higher temperature phase; and (iii) for a given liquid crystal
solvent, the values of k, and their ratios obtained from the B and C analysis, depend on the spin
probe. The exponent of (-%) has been rationalised in terms of the fact that it is the secular spectral
densities which contribute most to relaxation, and for nematic order fluctuations, these diverge as
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£. The observed divergence in the linewidth parameters is explained by invoking the result that
for the coherence length of the order fluctuations, ¥* ~ )| ' — 7% |, The observation that 7*
appears to be higher for the analysis from the nematic than the isotropic side is consistent with
previous studies of critical effects at the N-I transition seen with perdeuteriated tempone-d,; in
MBBA (sce table 1 and [16]). In the limit when | 77 - T* | < | T, - T* |, Rao et al. [16] show
that if 7% and T* denote the transition temperatures when the analysis at the N-I transition is
performed from the N and I phases, respectively, then It = T, + (T, - T7%/2. Thus, when
(Tq = T% = 1°C, we expect (It - T,)) = 0.5°C, which is of the order of the observed
difference.

Table 1. Non-linear least squares analysis of fits to B, C, = KT - )" for perdcuteriated
tempone-d,, MOTA and P in 40.6, 60CB-80CB and perdeuteriated tempone-d,; in
MBBA at the N-I transition.

System Phase BoC &mG °C? ™rC ¥

PDT/60CB-80CB* 1 B/mG 14.2+1.9 79.43+0.09 -0.43+0.09
C/mG 46.412.2 79.2710.05 -0.40+0.03

N B/mG 1620003  79.93+0.02 -0.50+0.01
CmG 2990003  80.02+0.01 -0.56+0.01

PDT/MBBA® I B/mG 36.0£20.0 40.0£1.50 -0.60+0.20
C/mG 35.0+£5.00 40,9+0.30 -0.43+0.10

N B/mG 52.0£10.0 42.1£0.60 -0.50+0.10

CmG  76.0£20.0 41.8£0.50 -0.5040.16

PDT/40.6* I B/mG 7.6£1.7 76.7£0.2 -0.49+0.11
C/mG 174+2.1 77.040.2 -0.45£0.09

N B/mG 4.46+0.05 77.1740.02 -0.48+0.01
C/m(i 9.7+0.2 717.240.01 -0.54+0.02

MOTA/60CB-80CB” I B/mG 42,04+4.9 78.5£0.5 -0.48+0.08
CimG 39.0£15.7 78.311.0 -0.48+0.04

Nt - - -
MOTA/40.6 I BimG 58.4+5.4 77.240.1 -0.47£0.02
C/mG 68.3£5.7 71.240.1 -0.50+0.02
N B/mG 43.0+0.2 77.90£0.02 -0.48+0.01
C/mG 44.0+0.2 77.93+0.03 -0.50+0.01
P/40.6* I BmG  160.7£49.1 76.6x0.2 -0.49+0.12
C/mG 66.3x37.3 76.9+0.1 -0.500.15

N B/mG 209.8+1.0 77.71+0.01 -0.51+0.01
C/mG 125.4+1.5 77.77:0.03 -0.49+0.02

* No divergence in B or C observed
< @9 °[16]. °[20].
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The relative contributions of the critical effects to spin relaxation are, as noted in equations
{(44), measured by the parameters k; and k.. Using the magnetic tensors for the three spin probes

in table 1 and the parameters for MBBA in equations (44) and (45), and equating the resuits (for
the three spin probes) to the values of &; and &, at the N-I transition in 40.6 (cf. table 2), we find

that S{/S,, = 0.06, 0.09 and 0.30 for perdeuteriated tempone-d,, MOTA and P respectively.
These numbers are in fair agreement with what we expect for these three probes based on using

the order parameter for CSL in 40.6 near the N-I transition (about 0.4} as a model for the overall

liquid crystal ordering, On the other hand, the order parameter for MOTA in 60CB-80CB is
actually lower than that of perdeuteriated tempone-d,; (near T, S = 0.04 for MOTA and about

0.08 for perdeuteriated tempone-d,; [31]). Consistent with decreased ordering, we note a very
small critical divergence for MOTA in the isotropic phasc near the N-I transition.

Table 2. Non-linear least squares analysis of fits to B, C =k{(T -T%" for perdeuteriated
tempone-d,,, MOTA and P in 40.6 and 60CB-80CB at the S,-N transition",

System Phass BorC  &mG °C” T*C ¥
PDT/60CB-80CB* N BmG 16.8+2.7 43.93+0.03 -0.30+0.02
C/mG 12.5¢1.2 44.97+0.01 -0.36£0.03
St BmG 19.2+2.7 32.750.01 -0.330.02
C/'mG 32.4%3.0 32.74£0.01 -0.38+0,02
PDT/40.6* N BmG 4.11.7 55.21+0.03 -0.33x0.07
C/mG 6.0+0.8 55.15+0.04 -0.38+0.06
MOTA/60CB-80CB* N B/mG 74.618.5 45.420.5 -0.37+0.02
C/mG 76.846.3 44,7403 -0.35+0.02
N B/imG 207.319.6 30.45£0.01 -0.13£0.01
C/mG 262.3£327  30.490.01 -0.13£0.02
MOTA/40.61 N B/mG 8.00.2 55.89+0.01 -0.32+0.01
CimG 52404 55.97+0.02 -0.33£0.02
P/40).6% S, BlmG 713.3£2.9 56.8410.40 -0.21£0.03
C/mG 702.80.7 56.96+0.01 -0.23£0.02

* References as in table 1
* N,-8, transition

* No critical divergence at S, -+ N transition
* No critical divergence at N - S, transition

The values of k, and k. at the nematic side of 7,, arc obtained by replacing
E[£? = Lia(T - T%) by E[E2 = L/3a(T'* - T)] in equation (35). Since the spectral densities are
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proportional to E (cf. equation (34)) this substitution implics a reduction in the k values in the
nematic phase by a factor of \/?T [16]. The other factors that can cause changes in & during phase
transformation are 7, and D; (cf. equation (45)). However, the former do not change very much
upon passing from I to N [32], and for 107 < D/em? s < 10 and typical values of v(0.3 F)
and L(10" N), cquation (45) shows that k¥ = (S*/S)’ kT v/8xL¥ a* T, ie., k is independent
of D, to first order. This matter has been discussed in greater detail elsewhere [49]. Although we
note that for perdeuteriated tempone-d,, in 40.6 k in the nematic phase is lower than in the
isotropic phase, the values of k seem to be comparable in the two phases in the other systems, and
for P in 40.6 they are actually higher in the N phase. The apparent discrepancy may be due to
the fact that at the weakly first order N-I transition, the changes in L and v with temperature may
occur in a way as to offset the decrease in & by the factor of y3. The difference in the behaviour
of the P probe could be caused by the tendency of the latter to pack with the cores rather than the
chain regions in 40.6 [33], thus causing its relaxation to be modulated differently; (see [49] for
further discussion).

4. The Smectic A-Nematic Phase Transition

The basic mean field theories of the smectic A-nematic phase transition are due to McMillan [34]
and de Gennes (22]. Though these mean field models have been further refined by many authors
(35,36}, we shall mainly consider these theories partly because the renormalisation group methods
[37,38] as applied to this problem have met with only partial success; and to date, many problems
involving the critical behaviour of the S,-N transition remain unsolved.

4.1, MEAN FIELD THEORIES

We shall first describe the McMillan molecular field theory, which is an extension of the well-
known Maier-Saupe [39] theory for the nematic-isotropic transition. The theory gives more insight
into the molecular properties that govern the order of the S,-N transition. Some of the remarkable
successes of this theory are: (i) prediction of the S,-N-I phase diagram as a function of molecular
parameters; (i) identification and calculation of relevant order parameters (i.e., for the S,-N
transition); (iii) prediction of a tricritical point at the S,-N transition.

The form of the anisotropic interaction potential used by McMillan for the interaction between
two molecules in the smectic A phase is given by [34]

U (r,,cos 8,) = (e/Nr,m?)exp(- r,/r,)[P(cos 6,) +35] @7

where r,, is the distance between the centres of molecules 1 and 2; and r, is of the order of the
length of the rigid section of molecule. Then, Fouricr analysing this interaction, and using the fact
that there is periodicity in the z direction (i.e., the molecules are arranged in two dimensional
liquid-like plancs scparated by the distance d) we obtain the single particle molecular field
potential as

Uz, costh) = -e [S + Qo cos(2nzfd)]P1(cosﬂ) + y8 cos(Znz/d), (48}

where S and y are the orientational and positional order parameters and o is the order parameter
that describes the coupling between position and orientation. These order parameters are
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S = (P,(cos @) = {(3cos* @ ~ 1)12),
o = ([Pz(cos 6 cos(2nz/d)]>, (49)
Y = (cos2azi)),

where

a = 2exp{~(n7,/d)}.

The only molecular quantities that appear are o and e. The latter is determined by the N-I
transition temperature (ie., 7, = 0.2202¢, from the Maicr-Saupe theory), while the former is
determined by the dimensionless ratio r/d. When the self consistent equations for the order
parameters in equation (49) are solved, ignoring the 5 term in equation (48), we can calculate the
phase diagram as a function of a and the N-I transition temperature {equivalently e). Physically,
@ (0 < a <2) governs the order of the S,-N transition (second order for o < 0.8, first order for
0.88 <a < 1.1 with o = .88 being the tricritical point). It may be looked upon as a ratio of steric
interactions to anisotropic dispersion interactions. The larger values of a lead to a larger extent
of the 8, phase at the expense of the extent of the nematic phase. For the values of @ > 1.1 the
nematic phase disappears and the smectic phase transforms directly into the isotropic phase. The
theory predicts a change in the order of the §,-N transition in a homologous series, as the alkyl
chain length is increased. Near @ = 1.1, but for « > 0.88, M = T /T varies linearly with o. One
of the legacies of the McMillan theory is that all the liquid crystals that have been explored in the
study of the S,-N transition are characterised by the parameter M and we shall use the symbol a*
for @ where it conflicts with other notations.

The McMillan molecular field mode! suffers from the well-known drawback of the neglect of
fluctuations. We may incorporate the fluctuations in a mean field approach using Landau theory.
We shall come back to the McMillan theory in Chapter 13 where we describe some of the
equilibrium studies at the S,-N transition. In order to set the stage for our spin relaxation models
near the S,-N transition, we will review the Landau-de Gennes theory for the §,-N transition [22].

Liquid crystal molecules in the S, phase arc arranged in a one dimensional periodic structure,
For a monolayer smectic A phase, the molecular length gives the period of the one dimensional
mass density wave, which can be written as

p@) = pl + 27| ¥ | cosfg,[z - ur)]), (50)

where p, is the average density of the liguid crystal, g, = 2rn/d, and d is its periodicity; | F |
is the strength of the density modulation and is identified as the amplitude of the complex §,
order parameter

¥ = | ¥ | exp(ig) = | ¥ | explig, u(r)) (51)
In these equations, u(r) represents the displacement of the smectic layers along the z] n, axis. In

the Landau theory, we expand the free energy density as a power series in 'F about its value in
the nematic phase where | | = 0

Fo ~Fi=o| TP +B T +y|FI°+.. (52)
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with « usually written as a,(T,y - T) with g, positive, and the sign of 8, governs the order of the
transition, ie., if B, is negative (positive), a first (second) order transition results; for §, =0 a
tricritical phase transition is observed. The sixth order term is added to ensure stability of such
an expansion. In this model, a cross over from a second order phase transition (i.c., £, < 0) to the
tricritical point is accomplished by finding a mechanism that changes g, to its tricritical value of
zero, In general, such an effect can be achieved by coupling the order parameter to density
variables. In the case of the 8,-N transition, we introduce the coupling of the nematic order
parameter to the smectic A order parameter. Upon entering the S, phase, we generally observe
an enhancement in S, so we include a coupling term of the type -C | P |* 85 to the lowest order
in | ¥ |* and 3S; this term implies a reduction in the 8, free energy with positive change in 3S.
However, the enhancement of the nematic order in the smectic phase occurs at the expense of an
increase in the nematic free energy since 88 # ( is consistent with minimising just the nematic
free energy. Hence we add a positive term 85 %/2x,, to the free energy to account for this effect.
We also note that in Landau or mean field theory x, the nematic susceptibility, diverges near the
N-I transition with a power law

xn T !:] (53)
Ty -1
and T is the apparent second order tramsition temperature which is slightly higher
(0.6 - 1.0°C) than that actually observed for the first order transition at 7,,. (Note that 7't in
section 2 is now T,). Near T, thedS %y term permits larger deviations in § (from its
equilibrium value S,) than deeper into the nematic phase (T - T, » 1). Minimising the total free
energy with respect to 85, and collecting terms, we obtain

Ay =

Fy sF,+al¥|"+p1 T +y | F[+., (54)
where
B =8 -%Cly, (55)
and
38 =%, C| ¥ |- (56)

It is clear from the form of # in equation (55) that it can become negative, thereby leading to
a first order S,-N transition, when either ¥, is large or the coupling coefficient C is large. It may
be noted that up to this stage, the de Gennes theory essentially gives the picture of the S,-N
transition that is comparable to the McMillan model in that eM™™ = o is closely related to
Y% yC?. The theory outlined, is suited for spatially homogeneous systems. The spatial fluctuations
in the order parameter can be more easily incorporated in the Landau theory in the following way
[24]

Fe= = f{(VE@)T) = (VEHM (VE), 57)

where V is the gradient operator and M is the mass tensor. Note, the first order contribution
vanishes because the free energy cannot be a complex quantity. Furthermore, we are keeping only
the lowest order scalar term in the gradient expansion, which means that only long wavelength
(ie, 4 < g, = 2n/d) flucwations are considered. Recalling that, even in the simplest version of
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8,-N theory (i.e., McMillan model) there is a coupling between the nematic and the smectic A
order parameters, we must modify equation (57), by the long wavelength fluctuations in the
components of the tensorial nematic order parameter Qq(r) = §,(r) 3n(r).n{r) - 1)/2. However,
the general problem of incorporating fluctuations in Q induced by ¥ has not been solved (but see
[49] appendix D). The usual approach is to associate the small length scale fluctuations in Q with
8, and the large length scale fluctuations with n {40]. In equation (56) we have taken into account
the fluctuations in S, while the fluctuations in the director n(r) can be taken into account
following de Gennes [19].

In the 8, phase, away from the S,-N transition, we have to consider fluctuations in the phase
of the complex order parameter (cf. equation (51)), since in the smectic phase the amplitude | 'F |
is just a slowly varying function of temperature. Thus, from equation (57) gradient terms of ¥
such as d%/ds, where s = z,x,y must be considered. The first term corresponds to uniform ditation
of the layers, and associated with it is the smectic elastic constant B. The derivatives with respect
to x and y comrespond to the rotations of layers about the y and x axis, respectively. For example,
(1/g,) (@¥/&x) is the angle of rotation of the layers about the y axis, leading to a molecular
rotation by an angle -6n,. The net tilt angle is the difference of the two. From such considerations
we modify the gradient term in equation (57) as follows [19]

Fs':m = (V +igdn)F*M YV - igén)¥T. (58)

Thus the overall Landau free energy which is applicable above and below the S,-N transition is
written as

F-F =a|®+p| 7| +(V+igdn)T*M*(V-ign)¥ +F, (59)

where F, is the usual nematic director distortion (on a macroscopic scale ic., wavelengths > d)
free energy given by Frank [22]

F, = %[K(divny + Ko curn)® + K(n * curln)’} {60)

where the K{i = 1,2,3) are the elastic constants associated with the splay, twist and bend distortion
modes, respectively. The smectic phase does not easily accept bend and the twist deformations;
(we have represented this cffect by the renormalised elastic constants £,K,), and therefore the
associated elastic constants become large, and they show pretransitional anomalies given by [19]:

R, = K, + (nkT/6 Md)M Ja
R, = K, + (kTi6d%) [{M,q,

where M, and M, arc components of the mass tensor in the direction parallel and perpendicular
to n. The excess contribution to these elastic constants is seen to diverge as the S,-N transition
is approached from the nematic phase, since a - 0 (cf. equation (52)). Actually, this divergence
is associated with the divergence of the correlation length (£) of the smectic A order parameter.
The correlation length is defined by the positional correlation function of ¥ [41]

< PO ) > =< | TO) |* > r exp(-+/E). (62)
The Landau theory predicts a Y% power law divergence for the comrslation length (ie.,

(61)
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E=|T, - T|™). The frce energy associated with the fluctuations of ¥ at the §,-N transition
(cf. equation (57)) is similar to the normal to superfluid (NS) transition found in *He/*He mixtures;
that is, they have similar forms for the complex order parameter. In addition, in both the cases,
coupling to the auxiliary order parameters {i.e., nematic order paramecters for the 5,-N, and the
mole fraction of ‘He for the NS transition,) drives the S,-N and NS transitions first order [42].
Then, the more general theory of critical exponents (the renormalisation group), predicts a %
power law for the comelation length divergence [42]. Thus the problem of analysing the
fluctuations can be solved by the conventional methods.

4.2. THE BROCHARD-JAHNIG ANALYSIS: DYNAMIC SCALING

Following Brochard [43], we Fourier analyse the smectic free energy (cf. cquation (59)). Then,
applying the equipattition theorem, we obtain the amplitudes of the q dependent flictuations
associated with ¥ and the other auxiliary order parameters for 7' < T,
9: _ 4.
<|¥ 2>=k1"/(2{),+_..’_-+-._L)
| 2@ 1> = k, 7 (©)

T

2 2

£ w ql qz
<|nfq) I’> = k,,T/(Klqi +Kq; + 2—°-,—-—) (64)
qle +qz M’r
. . L
< | nfq) |2>=kBT/(qui+K3q: + oq ) (65)
MT
" ¥.4.4,
<)uq)*> =kBT/[qi(K,qi +R.q;) + °M ] (66)
v
where ¥, =-yJa/f is the equilibrium 8, order parameter. For T > T, we have

2 2
<|w(q)|2>=kr/(2a+_’f_+£) 67)

: MV MT
<In@ I’> = &7/ (K, q} + R ql) (68)

<In@ P> = &T/{& g2 + K, ql). (69
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The n,{q), and n,{q) are the director fluctuation components perpendicular to n, (such that ,(q)
is in the plane formed by n, and g, and n,(q) is perpendicular to this planc). It is clear from these
equations that the director fluctuations are suppressed near the S,-N transition due to the
divergences in KK, Inthe smectic phase, these elastic constants are large but not infinite, which
is due to the presence of edge dislocations [22). u(q) is the Fourier transform of u(r), and is
associated with the amplitude of vertical displacement modes of molecules in a smectic phase,

However, the general experimental as well as theoretical picture is far more complicated than
the Landan model outlined here. For example, the X-ray studies of the correlation lengths due to
the MIT group [45,46] have shown that not only are the correlation lengths in the directions
parallel and perpendicular to the director (i.e., §,£ ) different, but they diverge with different
power law critical exponents, This effect can be mcorporated into the Landau theory [44] by
modifying equation (60) to give

<I¥@ P> =x/(l +q:8 +alE) (70)

where we have now identified £} =1/(2aM,), £’ =1/(2aM,) and ¥ = k,7/2a. The latter may
be called a generalised smectic susceptibility. In the Landau description we have critical exponents
-%(E v) Y= v ) and ~-1{= y) for the two anisotropic correlation lengths and for the
suscepublhty, respectlvely From the superfluid analogy, we still expect isotropic correlation length
exponents, but with a higher numerical value ie., %. Experimentally, however, we find that these
exponents vary from -0.9 to -0.5, which is, as yet only partially explained by the renormalisation
group calculations which predict a cross over in critical exponents near the tricritical point [42].

Magnetic resonance may not appear to be well suited for measuring these critical exponents
accurately. At first glance, magnetic resonance spectral densities should not be sensitive to the S,
order parameter fluctuations, since the amplitudes of the director fluctuation modes are reduced
near the S,-N transition. Unlike the N-I transition, where there is a direct modulation of the
orienting potential due to critical effects, at the second order S,-N transition there is no direct way
to influence the spectral densities. However, we have found that as the smectic layers begin to
form, small probe molecules often tend to be expelled from the relatively higher density at the
core of liquid crystals to the alkyl chains, where the packing density is lower [32]. In other words,
these probe molecules are directly affected by the formation of the smectic mass density wave.
Furthermore, it is well-known from numerous magnetic resonance studies that the orientational
ordering decreases from core to the alkyl region [47). Thus, fluctuations in P, (cf. equations (60)
and (70)), modulate the probe expulsion effect, thereby affecting the probe dynamics. We shall
return to these considerations later, but now we consider the relaxation of the 8, order parameter
(i.e., the time correlation function of the order parameter) in the spirit of Landau-Khalatnikov
theory [30]

<) . F(g,0> = <| F(g) I*>exp(-t/z,), D
where ¥(q,f) is the Fourier transform of ¥(r.?), and t, is the ¢ dependent relaxation time of the
smectic order parameter given by

T, =1, /(1 +ql & +ql B (72)

1, IS a relaxation time that is independent of q and is expected to varyas | T - T, - | [43]). The
exponent x is determined from dynamic scaling arguments and the dynamic scaling argument, due
to Brochard goes as follows. The 1, is considered to be a homogeneous function of 7, and(q.%).



355

At T = Ty, 1, diverges, ie., the ¢= 0 mode becomes infinitely slow; this is the so-called critical
slowing down of the order parameter. For larger g, 1, does not diverge as T — 7, but it becomes
temperature independent as g —» o, ie.,

T, = fr,q.8) = 1, fl0,q8) = [T - T, )] f(0.,q5). (73)

Thus, in order to have a non-divergent <, for g§ — * near the S,-N transition, we cstimate x as
follows

Tg I Tm/(qﬁ)h ~ | T - TSAN |-1+7.wq—2x'

Hence, we must have 2xv = 1; if v = % (from the superfluid analogy) we have x =%; orif v =
% (Landau theory) then x = 1. Note also that 7, « 1/g* for g —+ * which is independent of
temperature. Having determined both the amplitude as well as the decay rates of ¥, we now
proceed to show how the probe expulsion couples the fluctuations in ¥ o the relevant molecular
spectral densities associated with H (E).

4.3. COUPLING OF MOLECULAR DYNAMICS AND HYDRODYNAMIC MODES

We have proposed the following model to explain our principal results at the S,-N transition
[20,21,48,49]. It has some similarities to the SRLS model described in Chapter 4, section 4. The
probe has a preference to be located in the lower density regions of the smectic layer, iec., the
alkyl chain region [32]. As the smectic phase is approached from above, and smectic layering
forms as a pretransitional phenomenon (i.e., smectic-like clusters), there is an expulsion of the
probe to the lower density regions of the transitory smectic layer. Molecular parameters which
affect spin relaxation (i.e., the nematic order parameter S, and/or 1,, the rotational correlation time)
are affected by this expulsion effect. The onset of smectic layers near the transition is described
by density fluctuations: p(r,f) which also affects the translational motion of the probe. Since the
critical fluctuations in p(r,f) occur on a much longer time scale than probe dynamics, there is a
time scale separation of the two types of motions, and this simplifies the analysis. Thus, as
smectic-like clusters form and break up in different regions, molecular dynamics and therefore the
spin relaxation of the probe is modulated.

In our formal approach [20,21] we first expand the relevant relaxation parameter ) (which is
equal for example to S, or 1,) as a Taylor's series in the deviation of the density from its mean
value p,, L.e., Ap(rt) = p(rt) - p,

< AQrp) AQ(rg,0) > « < Ap(ry) Ap(rg0) >, (74)

where (rg,?) refers to the position of the (probe) particle at time £ The translational diffusion of
the probe is taken to obey a Smoluchowski equation with a time dependent potential of mean
force (see Chapter 4) on the probe, which is a functional of the density fluctuations, (ie.,
Ur,5) = UL A p(r,/)]). Then Ap(r,1} is related to the complex smectic order parameter ¥(r,?) in the
usual manner [43] (also see equation (43)).

In the spirit of a Landau expansion, we have considered only the lowest order terms in Ap(r)
to represent the time dependent fluctuations in the spin relaxation parameters. The method of
approach for calculating the relevant correlation functions and spectral densities including the
critical hydrodynamics of the phase transition and the translationa! diffusion of the probe is given
in detail elsewhere [21]. We assume that £, =£ ; D) =D} and the dynamic critical exponent
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x = 1. Consider the case where g, — 0, (Note that this does not mean that the interlayer spacing
goes to zero, but it is the mathematical limit in which we can obtain a simple analytical form for
the spectral density. That it is physically relevant is discussed later.) we obtain for J(w):

K@) = (BT E6) {Dr[1 - 2P (1 + o " + ]
75
+ imEzz” (1 + @?) - o

U e

where z = (1 + D 1 /E?)" measures the relative importance of translational diffusion over the
correlation length § versus relaxation of the order parameter in providing averaging of the
fluctuations in (. Next we consider the spectral density at zero frequency since it makes a
dominant contribution to the ESR linewidth

4J(0) = Mk, Tidm)z 1 JE(1 +z%)
=MET< Br§ « §* « (T - TS‘N)"" for z= 1 (76)

=MkTEM4n D, = E o« (T - Ts‘N)'“ for z« 1.

The case z = | corresponds to relaxation dominated by the order parameter fluctuations while the
other case z « 1 corresponds to relaxation dominated by translational diffusion.

On the other hand if we let ¢, = 2n/d and let Dq 1 /£, Dy 1 /£ approach zero, we obtain for
the zero frequency spectral density [20,21]

Joyr = Ml fTve -1 (77
16 E c

Here, ¢ measures the relative importance of averaging out the effects of density fluctuations A p(r)
in a single smectic-like layer through diffusion of the probe in the direction normal to the layer
versus the relaxation of the smectic layers. (In the formal theory, ¢ = ¢’ D) 1) As ¢ =0,
corresponding to probe diffusion being unimportant, we have J(0) =1_/E = §* o | T-T) ™
This is equivalent to the result of equation (76) in the limit z — 1. For ¢ » 1, J(0) = /E = E™, and
it does not diverge, but rather goes to zero. Based upon measurements of €, [4546] and D;
[55 56] in somewhat related materials, we estimate §,=10%cm for |T 7,]1=0.1K and

=107cm?*s ", Also we cstlmate 1,~10%s at T-T, 0 1°C [20], so D)1 /E’ 107 t0107
(for T-T,%0.1°C), while D}<_g’= 10° to 10° [49]. Thus, while it may be reasonable to ignore
the averaging effects of translational diffusion over the distances of £, it is questionable for
diffusional averaging over a single smectic layer thickness d,

However, if U is a very sensitive functional of Ap(r), then as Ap(r) diverges as the critical
pomt is reached, we may expect v1rlually no diffusion parallel to the normal to the smectic phases
in the smectic-like clusters, (ie., D! would be significantly reduced). Instead, the probe would
reside entirely in the alkyl chain regions in such clusters, iec., the expulsion effect referred to
previously. Thus, the modulation of the spin relaxation would be primarily determined by the
formation and break-up of the smectic-like clusters, with the probe rapidly adjusting its location
within the layers accordingly. This effect would be measured by the correlation function
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< P(r,f) ¥(r,0) > for which equations (75) and (76) are the appropriate solutions, and give the
correct critical exponent for z — 1. A more complete discussion of these matters including a
detailed comparison with experiment may be found in [21] and [49].

It is interesting to point out that the predicted value of the critical exponent is a very sensitive
function of the details of the model. Thus, for example, it follows from equation (77), that as
¢ — oo, there is no divergence. Similarly, our considerations of higher order correlation functions
[ic., the quadratic < | T(r,0) |2 | P(r,0) |>>] show that they yield contributions to J(0) which
go to zero approximately as E* rather than diverge. Thus, we believe that the expetiinental
observation of the critical exponent provides a very sensitive test of the nature of the dynamics
at the phase transition.
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Figure 3. Temperature dependence of the spectral density J(w) at frequencies corresponding to: (i) secular
(@=0); (i) pseudosecular (w~13x10*s™); and (iii) non-secular (w~5.8x10"s"); (From [49]).

Another example of how delicate and sensitive is the critical exponent from spin relaxation
studies comes from an examination of J(w) for @ = 0. We show in figure 3, Kw) for three values
of @ corresponding to secular, pseudo-secular and non-secular spectral densities, calculated using
the more general form for J(w) than equation (75) which considers the temperature dependence
of the (unequal) correlation lengths & and €, (ie., §, = EN(T - TH/TY™, where i = | or 1}, gnd
allows for anisotropic diffusion D)% D} [49]. The calculations, which use experimental data from
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temperature studies of £, and £, in 60CB-8OCB [11] demonstrate clearly that only the secular
spectral density [i.e., J(0)] shows the critical divergence. Near the phase transition, the pscudo-
secular J(w,) and the non-secular J(w,) show little or no tendency to diverge and they are much
weaker in magnitude.

5. The Dynamic Cluster Modei

Our past ESR analyses in terms of local cooperativity were based upon the slowly relaxing local
structure (SRLS) model, described in Chapter 4, section 4. However, in the highly ordered phases
typical of liquid crystals, the cooperativity in reorientation may be too great to be modelled in
terms of such a simple model. With the recent theoretical and computational advances, it could
be feasible to analyse more realistic models of cooperative dynamics for the longer time scales
(Le, > 1ps) that are important for our magnetic resonance studies [50]. In this sense, such
methods could be a useful alternative to full molecular dynamics calculations [51,52].

The particular model we have studied is a dynamic cluster model [48,50], which is based on
a form of Bethe's cluster method. In this treatment, a central molecule is surrounded by y nearest
neighbours, which form the outer shell. The central molecule interacts with this cluster through
pairwise potentials U(Q,.Q), i =1, 2, .... y, with (), being the Euler angles for the ith molecule.
While the y molecules do not interact with each other, they all feel an orienting potential T(Q)
representing the mean potential of the fluid. Then a self-consistency relation is introduced so that
the central molecule orders exactly in the same way as do the other shell molecules. This leads
to non-trivial integral equations for solving for U{Q). Ypma and Vertogen [53] obtained the best
resuits for this model when ¥ = 3 or 4,

The dynamic cluster model we have studied is just the dynamical version of this. We model
the (y+1) particle system by the appropriate set of coupled Smoluchowski equations for the joint
probability distribution P(€....Q,,f). These coupled Smoluchowski equations are then solved for
correlation functions such as

< 1, [ Q0] 1, [2)] > - < 1 [0, 0)]

by means of the Lanczos algorithm (cf. Chapter 15). If we regard the central molecule as a probe,
then in a sense, it is not necessary to achieve self-consistency. However, the matter of self-
consistency is conveniently dealt with by solving numerically the Ypma-Vertogen integro-
differential equations. These equations then give us the self-consistent values of U(S2) for a given
value of U(£2,£2). In our solution of the several body diffusion equation 8P/d¢ = I'P, {actually
we use the symmetrised form), we use the anzlogy to the problem of the quantum mechanics of
a many electron atom. Let us call the operator I for the dynamic cluster problem I' _, while
the standard problem of the operator I'y;, (and is typically given in the form of equation (1) in
Chapter 4. We first solve the conventional mean field problem for P'(Q,,9) in the usual manner
(i.e., equation (1) in Chapter 4) to yield the single particle mean field eigenvalues and cigenvectors
appropriate for a given mean ficld potential. We then select the mean field solution corresponding
to order parameter § =< Y, > which is (nearly) equal to that for the cluster problem to be solved.
That is, we regard these I, as the differential analog of Hartree SCF theory, iec., as an
approximation to the best single particle solution. Then, we solve for T .. by methods analogous
to configuration interaction starting with thesc single particle solutions of I',.. That is, the basis
states are products of the single particle states from I, and we can diagonalise T in this basis.
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The problem with this method, as in any configuration interaction, is whether we have chosen
enough excited configurations for the calculation to converge. Utilising approximate basis sets,
initial results have been obtained for the correlation function for Y, (Q), and we have compared
them to the mean field results, as shown in figure 4, Interestingly enough, it is noted that for the
nematic phase, the results for the full dynamic cluster mode lie rather close in shape to those of
the simple mean field approach. However, this is not so for the isotropic phase, especially for the
phase transition region for y = 3 or 4.
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Figure 4. Dimensionless spectral densities J{w)J(0) versus dimensionless frequency w/R plotied
logarithmically for the dynamic cluster model; (2) T/7,=1.1, i, in the isotropic phase just above the liquid
crystal phase; (b} 7/T,=1.0, in the isotropic phase at the phase transition; () TT,= 1.0, in the liquid crystal
phase at the phase transition; (d} 7/7,=0.9, deep in the liquid crystal phase. Dashed line is the mean result
and solid lines are for y=3,4 and 5 cluster particles. (From [48]).

6. Fast versus Slow Collective Motions

A general question which exists with regard to a spin relaxation theory involving director
fluctuations pertains to the validity of the motional narrowing approach. This concern becomes
especially relevant when in the critical region, and a slowing down of the ¢ modes occurs. That
is, if each ¢ mode contributes to spin relaxation independently, and if H, | is the component of H,
which is modulated by the gth mode of director fluctuations, then the condition | H,, |2 1:: <1
(which is a requirement for motional narrowing theory to apply) may no longer hold, In this case,
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we may write

| H, '~ fo,q,, (78)
where f measures the extent of coupling of the probe to the critical modes, «, is the magnitude
of the typical terms in the spin hamiltonian, and o' is the mean square fluctuation of the gth
mode of the smectic order parameter near the S,-N transition (cf, section 3). A similar result can
also be written for the nematic order fluctuations near the N-I transition [17]. From equation (78),
it follows that the cross over from fast to slow motion should occur at

2 2
Lo H pde Bl ©sfn (79)
Lg ¢ 24V (1 + qz EZ)HZx

Here, x is a dynamic scaling parameter which we shall assume to bo unity. Although we initially
interpreted ¥ as the sample volume [17), it is more appropriate that ¥ ~ £°, where £ denotes the
length over which correlations in order persist [24,21]. Thus, ¥ may be regarded as the natural
volume within which to expand the fluctuations.

A more rigorous analysis of this matter can be performed in terms of a more complete slow
motional theory [17,21], but does not appear warranted here. Suffice it to say that a preliminary
treatment (utilising the partial time ordered cumulant method) gives the result that the cross over
from fast to slow motion should occur when (letting x = 1)

E £ m: T.zn =1 (80)
4 GmE

and, by comparison with equation (79) (with ¥ replaced by E*), the important ¢ modes for
motional narrowing are those for which g2 < 2. Since, as we discussed in section 3,8% ~
(T - T)™, we have the result that as 7 - T, the slow motional condition would be achieved.
Note that in this discussion the effect of finite diffusion has been neglected. The results from the
treatment in scction 3 suggest that this may be included by replacing w_ by 1, = z1_ (where z
is defined in equation (73)).

7. Treatment of Data

The parameters A, B and C are directly related to the tumbling motion of the spin probe. Cur
results for B and C with temperature for perdeuteriated tempone-d,, in 60CB-80CB are shown
in figures 5-8. It is clear from these figures that the values of B and C at the phase transitions are
anomalous in the sense that they appear to diverge as T™*, the phase transition temperature, is
approached from cither one or both sides of the transition. The anomalous contributions to B and
C (B, and C_ ) are obtained by subtracting out the main contributions to B and C(B, and C)),
ie., those that arise due to rotational motions away from T*, in the following way. In regions
away from critical effects, the linewidth parameters B and C were compared to values of B and
C that were calculated using a range of values of 1,, N (if Dy and D! are the perpendicular and

parallel components of the rotational diffusion tensor, t;’ =61/D;D]{ and N = DYD}), and the
probe order parameter S. The magnelic parameters for the different systems studied here are shown
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in table 2 in Chapter 12. From such comparisons, the set of simulation parameters that best
represent the experimental data was selected. In order to obtain T in the critical regions, a linear
extrapolation of Int, versus 1/ was performed. From a knowledge of the order paramcters near
T* measured using the hyperfine splittings [32,31], N, and the values of 1, thus obtained, B (=58,)
and C (=C,) were calculated using a brownian diffusion model Finally B and C__ were
obtained by subtracting B, and C, from the experimental values of 5 and C. The anomalous
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Figure 5. Temperature variation of Band C for perdeuteriated tempone in 60CB-80CB at the N-I transition.
The curve through the data points represents the best five-parameter fit (sce text). (From [491).
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Figure 6. Temperature variation of B and C for perdeuteriated tempone in 60CB-30CB at the N-I transition.
(From [49]).
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Figure 7. Temperature varfation of B and C for perdeuteriated tempone in 60CB-80CB at the S,N
transition, (From [49]).
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Figure 8. Temperature variation of B and C for perdeuteriated tempone in 60CB-8OCB at the N, S,
transition. (From [49]).

contributions to B and C thus obtained were then fitted to an expression of the form B__ or
Coem =k | T=T% |7 (cf. equations (35) and (36)), using a non-linear least squares routine based
on the Marquardt algorithm [54], to yicld values of &, T*, and v. In certain cases, however, where
the order parameter did not change much with temperature (i.e., near the S,-N transition) a five
parameter fit was performed. This used an expression of the form B, C = kT - T*)" + 4 exp(-B/T),
where the second term on the right hand side models the temperature varation of the secular
spectral densities arising from simple rotational diffusion. The program also provided uncertainties



363

in the values of the parameters associated with the fits to the data, as shown in tables 1 and 2.
We wish to acknowledge (inancial support for this work by NSF Grant No. DMR 8901718.
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