CHAPTER 15

ESR AND SLOW MOTIONS IN LIQUID CRYSTALS

J. H. FREED, A. NAYEEM and S. B. RANANAVARE
Baker Laboratory of Chemistry

Cornell University

Ithaca

New York 14853

Us4

ABSTRACT. The theory of slow motional ESR is outlined, with applications to nitroxide spectra in liquid
crystals. The computer algorithms for implementing the theory based on the stochastic Liouville equation
are also discussed.

1. Introduction

In this Chapter, the theory of slow tumbling in ESR spectroscopy is outlined, with specific
application to the free radical spectra from nitroxides dissolved in liquid crystals. The slow
tumbling region is that for which the ESR spectra can no longer be described as a simple
superposition of three lorentzian lines, for which the motional narrowing theory developed in
Chapters 12 and 13 applies. It is taken to be the region for which the ESR spectra still show
motional effects, i.e., the rigid limit has not been reached. For nitroxides, this typically means that
the rotational correlation times being considered lie between nanoseconds and microseconds [1,2].
(New time domain ESR methods have extended this range to the millisecond regime (cf. section
7)). This time scale is typical of motions of spin probes in viscous media, or slowly diffusing
macromolecules in solution. Owing to the greater sensitivity of spectra to details of molecular
motion in the slow motional regime, the latter provides betier means for discriminating between
models than in the motional narrowing region.

From a theoretical viewpoint, the slow motional regime is that where the stochastic
perturbations to the spin hamiltonian (i.e., | H,(€) | in Chapter 12) are comparable to, or greater
than, the correlation time t,, ie., | H () |215 2 1. Therefore, apart from motion, an interesting
feature of the magnetic resonance experiment is that we can, in principle, tune in the slow
motional regime by properly adjusting the magnetic field. This feature allows us to vary the
relative magnitudes of some of the relevant terms in H,(€2) and thus to increase the sensitivity
of the experiment to particular time scales of molecular motion. This idea has recently been used
to extend the time scale of the slow motional ESR experiment to the range 10-100 ps, depending
on the nature of the spin probe, by working at high fields (90kG) and high frequencies (250 GHz)
{31

The theoretical formalism for the calculation of slow motional spectra is presented in section
1, where the basic ESR lineshape problem is described in terms of the stochastic Liouville
equation. In section 2 a survey of the methods of solving the stochastic Liouville equation based
on the Lanczos and conjugate gradients algorithms is presented. The close connection between
these methods and Mori's method used in statistical mechanics, is discussed in section 3. In
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sections 4 to 6, the applications of the slow motional formalism to experimental CW ESR results
in liquid crystals is illustrated, while in section 7 the more recent applications of two dimensional
techniques used for studies of slow motion are shown. Finally, section 8 discusses the treatment
of data for the analysis of lineshapes in two dimensional ESR spectroscopy.

2. ESR Lineshapes: The Stochastic Liouville Equation

The breakdown of the fast motional theories can be traced to their perturbative nature. In the slow
motional regime, the dynamics of the spins strongly couple to the orientational and/or positional
degrees of freedom of the molecule which render perturbative treatments invalid. To proceed we
must treat both the classical orientational and/or positional degrees of freedom and the quantum
mechanical spin degrees of freedom on a more equal footing. Since solving the exact equations
of motion for all the molecules in the sample is obviously an impossible task, some physically
reasonable assumptions must be introduced to make the problem tractable.

First, we assume that the equation of motion for the density matrix, p(f) has the same
hamiltonian  F(f) for all members of the ensemble and is given by the quantum mechanical
Liouville equation

dplot = - i[ﬁ(t), p], 0y

where H(2) is given in angular frequency units. Now, we assume that the time dependence of the
spln hamiltonian H(f) for a spin probe arises from interactions with its environment such that A()
is fully determined by a complete set of random variables, Q. [In practice, these may represent
the set of Euler angles needed to describe the instantaneous oricntation of a molecule fixed frame
(e.g., the diffusion frame) with respect to a laboratory fixed frame (the z axis of which is
traditionally chosen to lic along the static magnetic field or the mean director)]. We also assume
that this time dependence of Q is described by a stationary Markov process, so that the probability
of being in a state Q, at time 2, if in state Q, at time #, = £, - A, is independent of the value of
Q at any time earlier than ¢, and depends only on the time difference At and not on #. A
stationary Markov process can be described by a differential equation

aPQ,1)/dt = - T(Q) PQ,1), @

where P(€,1) is the probability of the spin probe being in a state Q at time .

Since the process is assumed stationary, I'(Q) is independent of time. The stochastic evolution
operator I'(2) operates only on the random variables Q and is independent of the spin degrees of
freedom. It may include such general Markov operators as the diffusion operators given by
Fokker-Planck equations and matrices of transition rates among discrete states. In most of our
examples, Q will represent Euler angles specifying orientation and I'(Q) will be a rotational
diffusion or Fokker-Planck operator. As noted in Chapter 4, section 1, for rotational diffusion in
liquid crystals, ' (= I'c) depends not only on the orientation of the diffusing molecule (spin
probe) relative to the mean director, but it also depends on the strength of the orienting potential
U(Q) (cf. equation (1) in Chapter 4). It is given by
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T =J-




367

where the quantities in this equation have been defined previously (see Chapter 4). It is also
assumed that the stochastic process has a unique equilibrium distribution P(C) characterised by

Q) PE) = 0. “
For liquid crystals, this equilibrium distribution is given by

PQ) = exp[- UQY/K,T]/ ldQ exp|- Uk, T] )

which is the same as equation (13) in Chapter 4. Note that while typically only the L = 2 terms
in the expansion for U(Q) are kept in the expansion in terms of spherical harmonics (see Chapter
4), higher order terms have also been included in certain cases (see section E). We can even allow
for dynamic cooperativity by letting U(Q) ~ U(2) such that the probe reorients in the instantaneous
potential field of the surroundings. This approach is used for SRLS and for coupling to
hydrodynamic and critical modes [4]. In smectic phases, the orientational potential felt by a
molecular probe should depend upon the probe location within the smectic layer in order to be
consistent with the observation of reduced ordering for some probes as they are expelled into alkyl
chain regions (see later). Thus, the probe will experience a coupled orientation-position potential
as it diffuses in the spatially non-uniform smectic ([5]) (see also Chapter 4).

It can be shown that equations (1), (2) and (4) lead to the stochastic Liouville equation of
motion [1,2],

ap(Q,1)/ot

- i[HQ), pQ1)] - T(Q) p(Q1)
- IL(Q) p(Q)) - T(Q) pQ),

where p(€,f) is now understood to be the quantum mechanical spin density matrix and also the
classical probability distribution function in molecular orientation, and L is the hamiltonian
superoperator, or the Liouville operator. Thus, instead of looking at the explicit time dependence
of the spin hamiltonian H(?) involving the interaction with its environment, the spin hamiltonian
is written in terms of random variables €, and its modulation (e.g., H(f) due to rotational motions)
is expressed by the stochastic time dependence of Q.

In summary, the fundamental problem in slow motional ESR spectroscopy is to compare
solutions of this stochastic Liouville operator equation with experimental spectra so as to extract
the correct stochastic operator I and obtain the magnitude of the relevant physical parameters. We
may refer to this as solving for the inverse stochastic Liouville transform (by analogy with the
inverse scattering transform in the quantum mechanical theory of scattering). In practice, this is
not possible, so we construct simple models for I, such as those discussed in Chapter 4, to
compare with experimental spectra.

The general linear response expression for the imaginary part of the magnetic susceptibility
x"(w) resulting from a very weak, linearly polarised microwave field of angular frequency
being applied to the system [6] is

(6)

x(®) = (m/ZNkBI)L“ dtexp(iwt) +exp(-iot) ] x{M(?) M} @)

which involves a trace over the macroscopic magnetisation operator M. Note that M, the
macroscopic value of the magnetisation is related to M, its associated quantum mechanical
operator by M(f) = tr{p(t) M}. The oscillating field is taken along j = x, y or z. For our system
of non-interacting (or weakly interacting) spin probes with a nearly isotropic g factor, we have
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MM} = Ny, u{S()S} = Ny, ufS, S (9}, ®

where N is the number of spins in the sample and vy, is the magnetogyric ratio of the electron. In
these equations, the trace is over orientational and spin degrees of freedom. The spin operator S(7)
in the Heisenberg representation obeys a stochastic Liouville equation equivalent to equation (6)
given by

as(Qn/at = IL(Q) S(Q,1) - T HQ) p(Q,0), ®

where the superscript dagger implies the hermitian adjoint operator. We now perform a classical
average over the orientational degrees of freedom, and then utilise the symmetrising transformation

(@) - P#Q) T(@ PHQ), (10)
where P**(Q) are regarded as operators. This leads to the symmetrised equation
i, S;5Fe,Q = (P*5, | [iwl - L) + I | PES), an

where the trace is over spin space only, and the bar indicates the classical average. Note that
§(*©,Q) in this equation is the Fourier-Laplace transform of S(Q,):

Sfto.Q) = [ drexp(rivn) S(QD. (12)
This transformation of equation (10) renders I" into a form which may be represented by a
symmetric matrix that is, in general, complex [1,2]. The symmetrised diffusion operator I'(€2) will

be used in the remainder of this section. The relationship between ESR spectra and the dynamics
of motion of a paramagnetic molecule can then be expressed in the form

[Aw) =" Re (v | [(Awl - 1) + '] | o) 13

where Aw is the sweep variable.

3. Methods of Solution: Lanczes and Conjugate Gradient Methods

Equation (13) can be rewritten as

KAw) =7 Re (v | u(Aw)), (149
where | u(Aw)) is the solution of the equation
A'(A0) | wAw)) = (Al + A) | w(Aw)) =] v). (15)

The operator or matrix A is defined as A = I" - iL. The spectrum given by equation (15) can be
calculated by either solving this equation for a range of values of Aw or alternatively by
diagonalising A only once. The matrix A is, in general, very large and sparse. Thus, conventional
methods for solving equation (15) by inversion or by diagonalising A prove to be too
cumbersome. We soon run out of memory even on mainframe computers, and the solution
requires prohibitive amounts of computer time. Accordingly, the algorithms commonly used for
the calculation of slow motional spectra from the stochastic Liouville equation fall into two main
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categories based on efficiency and ability to handle large sparse matrices. First are the traditional
algorithms for diagonalising matrices and solving sets of coupled linear equations. Secondly, there
are the various forms of the Lanczos algorithm for tridiagonalisation and the related conjugate
gradients algorithm for solving sets of linear equations.

The first class of traditional methods are characterised by a variety of strengths and difficulties.
These algorithms typically amount to computational overkill for the problem at hand. For instance,
the Rutishauser-QR diagonalisation [7] gives the full set of eigenvectors and eigenvalues though
only a small subset are important in the final spectrum. This large computational overhead and
the characteristic of destroying the sparsity structure of A combine to make these algorithms
unattractive for the present purposes. However, an important strength of this class of algorithms
is their well characterised stability and reliability.

In contrast, the Lanczos algorithm and the related conjugate gradients algorithm are much better
suited for the efficient calculation of slow motional magnetic resonance spectra. They are effective
in handling large sparse matrices, since they do not modify the original matrix. It is, therefore,
possible to take advantage of the very special sparse structure of the stochastic Liouville matrix.
In addition, all of the quantities calculated in the Lanczos algorithm are used either directly in the
calculation of the spectrum or are used in the next recursive step (see later). In this sense, the
Lanczos algorithm represents a good approximation to the minimal amount of computation
necessary to compute magnetic resonance spectra in the linear response regime.

In a more theoretical vein, it was possible to establish the close connection between the Lanczos
algorithm based upon a scheme of projection operators in Hilbert space, and the Mori projection
scheme in statistical mechanics (see later). Though the emphasis here will be on applications to
ESR spectroscopy, the Lanczos methods described here may be regarded as appropriate for a wide
range of applications in chemical physics.

3.1. THE LANCZOS ALGORITHM

The Lanczos algorithm has been developed for complex symmetric matrices, since A is typically
of this form or else it can be transformed to this form. It is an efficient method for tridiagonalising
A and is particularly well suited to the solution of sets of linear algebraic equations such as
equation (15) which are characterised by large sparse matrices. We find that it can lead to at least
an order of magnitude reduction in computation time, and it yields results to the solution of
equation (13) to a high degree of accuracy [8,9]. Here we discuss the basic Lanczos algorithm as
applied to hermitian and complex symmetric matrices. More sophisticated variations of the
Lanczos algorithm involving selective reorthogonalisation [10] and the identification of spurious
and duplicated eigenvalues [11] have been developed to circumvent known numerical instabilities.
However, the basic algorithms are sufficient for most magnetic resonance calculations.

The Lanczos algorithm proceeds by recursive projections or steps which produce successively
larger tridiagonal matrix approximations to the original matrix. These projections define the
socalled Lanczos vectors. If N is the dimension of the matrix, and », the number of recursive
steps needed to converge to an accurate spectrum, then in all cases studied to date n, < N. This
inequality becomes more dramatic the more complicated the problem. In this sense, the Lanczos
projections rapidly seek out, from an initial finite subspace of dimension N which is spanned by
the starting basis sct of orthonormal vectors: | f, ), j = 1,2,...,N, a smaller subspace spanned by
the Lanczos vectors (i.e., the basis vectors for the tridiagonalised form of A, or T,) written as
| @, ) k=12,..n When n = n,, these Lanczos vectors are a sufficient basis for accurately
representing the spectrum. In this sense the algorithm constructs subspaces that progressively
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approximate the optimal reduced space for the problem. These subspaces, spanned by the Lanczos
vectors are the Krylov subspaces [12] generated by span of the vectors A*! | v ) for
k = 1,2,..,n. Thus, the choice of | v } as the starting vector for the Lanczos algorithm biases the
projections in favour of this optimal reduced space. It is easy to show that this Krylov subspace
can only contain eigenvectors of A with a non-zero projection on | v } in exact arithmetic.
Now, consider the recursive steps of the Lanczos algorithm. First, identify the starting vector | v )

as the first Lanczos vector | @, ) in accordance with the previous discussion. A Gram-Schmidt
orthogonalisation on the Krylov sequence A*! | v ) for & = 1,2,...,n,, recursively generates the
set of orthornormal Lanczos vectors | @, ) defined as,

pk&l I (Dkﬂ > =(I _P')A I (Dk ), (16)
where B, is the normalising coefficient chosen such that
(@, 19,)=1 17

and P, is the projection operator on the Krylov subspace spanned by the previous Lanczos vectors

k
P,=Y | ®><0 | ksn (18)

j=

Equation (16) leads to a three term recursive relation for generating the | Q, ) [2]

B 10,)=A-oD) D )-5,10,) (19)
where
@ =(®, |A| D) (20)
and
B, =(D, 1A[|D,) @D

It may easily be shown that A has an # x n tridiagonal approximation, T, in the basis of Lanczos
vectors, ie.,

(O, 1A ®)=0 if k#jjt]1, (22)

while equations (20) and (21) give the non-zero matrix elements. That is, given the vectors | )
in terms of their components q; in the original basis set, | f; % J = 1,2,..,N,

|<1>k>=i(1,,|fj> 23)
g, =(f1®,) (24)

then the column vectors q, form the matrix Q, with orthonormal columns such that Q7 Q, =1
and

T,=Q, AQ, (25)

This is the conventional Lanczos algorithm for real symmetric matrices A. The substitution of
hermitian conjugation for transposition in these equations gives the analogous scheme for general
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hermitian matrices.

For applications such as the calculation of magnetic resonance spectra and spectral densities
associated with Fokker-Planck equations, the matrix A is either complex symmetric or can be
transformed to complex symmetric form [8,13]. Moro and Freed [8,13] have shown that it is
possible to simplify problems of this type by introducing a generalised norm and scalar product.
That is, first consider the general non-hermitian case. We can introduce a biorthonormal set of
functions | @, ) and | @ ) such that

(@ | ®)=3,, @6)
or, alternatively, letting x; and ¥ be their column vector representations,
@)tx =3, @n
However, for the case of non-defective complex symmetric matrices A, it is possible to let
x/ = x; (28)
such that equation (27) becomes
$x, -5, @)

The Lanczos recursion method remains applicable with this equation defining the generalised
scalar product. Note that the left hand vector is lacking the usual complex conjugation. This is
referred to as rectanormalisation [2].

In general, the time required for tridiagonalisation using the Lanczos algorithm goes
approximately as n,N(2n, + 21), where n; is the average number of non-zero matrix elements
in a row of A [8]. This is obviously superior to the traditional methods which require O(N°) time
since n,n, « N,

Finally, we note that the tridiagonal form of the complex symmetric matrix T, = QEAQ, allows
the application of very efficient diagonalisation methods [11]. The spectrum defined by equation
(13) can easily be computed using the eigenvalues of T, and the projections of the associated
eigenvectors on the starting vector. However, for computing CW spectra, a continued fraction
method [8] can be used directly on the elements of the matrix T,. That is, since | v ) is the first
Lanczos vector and the Lanczos vectors are orthogonal in the sense of equation (29), the spectrum
is given by,

KAw) = ([idol, « T,1),. (30)

By examining the structure of the (1,1) element of the inverse of successively larger principal
submatrices of [iAwl, + T,] it is easy to show that the I(Aw) can be written in the continued
fraction form [8],

Ao +a, -

KAw) == Re 1 3 . (3D

iAo + o0, - [

The application of the Lanczos algorithm to A generates the continued fraction representation of
the spectrum or spectral density. The same result, apart from the identification of T’ with the
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classical Liouville operator, has been derived by Mori in the context of the dynamics of systems
of interacting particles [14]. The connection between the Lanczos algorithm and Mori's method
is made clear in the next section.

The relation specified by the continued fraction in equation (31) is quite general. Analytical
calculation of the coefficients o, and B; from the explicit operator form of A is possible and has
been carried out in simple cases [15]. The axially symmetric g tensor problem is an example
where this type of calculation is practical. This approach quickly leads to extremely complicated
formulae which are difficult to handle for the general case. Therefore, numerical implementation
of the recursive relation equation (19) is essential in calculating enough coefficients of the
continued fraction for an accurate approximation of I{ Aw). In practice, the matrix representation
of A is generated in the | f, ) basis in which the resulting matrix is complex symmetric

A S 1AL (2)
From equation (19), the standard recursive relation of the Lanczos algorithm may be rewritten as
pkbl q&d = (A - akl)qn - p,. qk_p (33)

where the column vector q, consists of the components g, (cf. equation (24)). The standard
computer implementation of the complex symmetric Lanczos algorithm [8] can then be used to
calculate the coefficients o, and B, from which I(Aw) can be directly calculated using the
continued fraction representation given in equation (31).

3.2. THE CONJUGATE GRADIENTS ALGORITHM

The starting point of the conjugate gradients method is to consider the equation
lrY=1lv)-Alu) (34)

where | u, ) is the kth approximant to | u ), | r, } is the residual vector associated with | u, ),
and A is a real symmetric positive definite (RSPD) matrix. The residual vector | r, ) is seen to
be the vector which gives the negative gradient of the functional flw) =Cu, | Al u)
={u, | v ) provided A is RSPD [16], so that a minimisation of JNu,] is equivalent to solving
A | u) =| v ). Equation (34) is solved by successive iterations which do not minimise along
the sequence of vectors | 7, ), for k = 1,2,...,n, which would be the method of steepest descent,
but rather minimise the functional f[u,] along a set of conjugate directions | p, ) for
k =1.2,...,n. This procedure avoids the problem of further minimisation steps spoiling the
minimisation along the previous conjugate direction vectors. The conjugate direction vectors
| p, ) are defined by

[ 7, )=1r)-aA|p) (35)
and
| By ) =11,)+b 1 D) (36)
where the a, and b, are given by
a, =(r, 1 r.)/{(p, | A|Dp,) (37
b, =(rk+l | 7 )/(rk | 7, ) (38)

The residual vectors are easily shown to be mutually orthogonal but not normalised, while the set
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of conjugate direction vectors are A conjugate, i.c.,
(p, 1A lp)=0 if jk (39

The vector | p, ) is the closest vector to | 7, ) that is A conjugate to the previous conjugate
direction vectors. It is also true that ( plr)=0forj=12.k-1 Also, the (k+ I)th
approximant to the solution vector | u,, ) is obtained from | u, ) as

+

'uk¢l)=luk)+a‘;|pk)- (40)
These equations permit us to obtain recursively the higher order approximants. That is, let
l[rnY=1v)-A|u) 41
and
lp)=1r) 42)

where | #, ) is some initial guess for | ¥ ). Then, for k£ = 1,2,...,n - 1 we calculate, in order,
a, lu,) |r,)b and | p,, ) using equations (35)-(40). At each step the norm of the
residual vector | 7, ):

[ 112 =(r, 1) (43)

is a measure of the deviation of | u, ) from the true solution | u ). Thus the conjugate gradients
method permits us to calculate the ESR spectrum, equations (14) and (15), for each point in the
spectrum, i.e., for the different values of Aw.

At this stage the Lanczos algorithm and conjugate gradients appear to be very different
algorithms, the former tridiagonalises A while the latter generates a sequence of approximants to
the solution of equation (15). We consider their equivalence later. First we need to consider the
applicability of this conjugate gradients method to complex symmetric matrices. It is not hard to
show, that for non-defective (i.e., diagonalisable), and non-singular complex symmetric matrices,
this conjugative gradients method applics provided only that we use the generalised norm, ie.,
rectanormalisation (see equation (29)), just as was found for application of the Lanczos algorithm
to complex symmetric matrices. However, for the conjugate gradients method, there is the
additional requirement that A’(Aw) be non-singular. The complex symmetric matrix A will have
complex roots: the real parts give the linewidths and the imaginary parts the resonance
frequencies. Since all the relevant eigenvalues of A must, on physical grounds, have a non-zero
real part, then both A and A’ will be non-singular. Nevertheless, it is convenient to replace iAw
by iAw + 7;” where T, is equivalent to an additional linewidth contribution so that we avoid
spurious divisions by zero that can occur when (p, | A | p, ) = 0 in the calculation of a, (see
equation (37)). Zero divisors of this type can be identified as spurious through the construction
of the Lanczos tridiagonal matrix from the various quantities generated by the conjugate gradients
algorithm as shown in the following section.

3.3. THE EQUIVALENCE OF THE LANCZOS ALGORITHM AND CONJUGATE GRADIENTS METHODS

To make full use of the conjugate gradients algorithm, its equivalence to the Lanczos algorithm
must be recognised. First, note that the orthogonal set of vectors | r, ) and the conjugate set
| p, ) are contained in the same Krylov subspace generated by A and | v ) and the same is true
for the Lanczos vectors [12]. Following Golub and Van Loan [12], an explicit expression for the
construction of the Lanczos tridiagonal matrix T, by the conjugate gradients method for a RSPD
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matrix A which is valid at each stage of the iteration is,
T, = D; B, 4B, D}, (44

where A is the diagonal matrix with elements

A, =(p, A lp) i=12..k (45)
and D is also diagonal with elements
Dy, =llrll=p=Cyy, i=12.k (46)
J
while B, is an upper bidiagonal matrix with elements
B, =1, B, =-b, i=12..k 47

with b, given by equation (38). It turns out that the residual vectors are colinear with the Lanczos
vectors, more precisely,

| @) =2p | 1,), i=12..k C))

Since the direction of | r, ) and therefore the signs of its components are well-defined by
equation (34), the Lanczos vectors, which are normalised in an arbitrary fashion, bear the sign
ambiguity since their direction is not specified by the Lanczos algorithm. It follows from equations
(44) to (48) that the matrix elements of T, are

a,=(p, | Al p)pi+(p/pi){py | Al D) 49)

b, =-(p/Pi)p, | Alp, ) (50)

Thus, the clements «, and B, of the Lanczos tridiagonal matrix T, are readily obtained from
quantities that are calculated by the conjugate gradients algorithm for every step. This approach
may be used to generate a tridiagonal matrix approximation to A using the conjugate gradients
algorithm in the same spirit as the Lanczos algorithm.

In conclusion, the conjugate gradients method can be applied to complex symmetric matrices
A to give the Lanczos tridiagonal matrix from which spectra may be calculated by the continued
fraction technique. The benefit derived from the small amount of extra computational work
necessary for the conjugate gradients method as opposed to the Lanczos algorithm method is that
an objective criterion for the convergence, r* can be monitored at every step. A further benefit is
that the conjugate gradients method also allows us to choose selectively those vectors in the basis
set that contribute more significantly than others in the calculation of the spectrum [9,17].

4. Relation to Mori's Method in Statistical Mechanics
The application of the Lanczos and conjugate gradients algorithms to the abstract Hilbert space

on which the diffusion operator I' is defined, generates the continued fraction representation of
the spectral function. Here we illustrate the close connection of these methods to related methods
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involving the calculation of continued fractions from projection operators. A well-known example
of the latter is Mori's method [14] used in statistical mechanics for calculating the dynamics of
systems of interacting particles. Moro and Freed [13] first showed the formal equivalence between
the Mori method and the Lanczos algorithm, and Wassam [18] has described this matter in more
detail. It turns out, however, that an even closer correspondence can be achieved between the Mori
method and the conjugate gradient method as we now illustrate.

In the Mori method there is a starting vector in Hilbert space which represents the initial value
of a relevant dynamical variable. From our previous discussion (see equations (11) to (15)) we can
regard | v ) as the starting vector associated with the dynamical variable P* S, and | u(f) } is
associated with exp(-4f) P*S. = S, ie,

| u®) ) = exp(-AD) | PS,) = exp(-4D) | v ). (1)
Mori introduces a projection operator . which can be written in our notation as:
P=10)(0 | (52)

which by comparison with equation (18) shows that

k
P, =P ksn (3)

P

This equation relates the Mori projection operator to the Lanczos projection operator, P,. Mori
then separates | #(f) ) into projective and vertical components with respect to the direction | v ).
Further projections are continued in Hilbert space to generate a set of orthogonal functions, f,:

=1 u®)

(54)
F(O = exp(idp) idf,,, j21,
where
k
A4=(1-P)4 - (1 - Z‘_{a;),q (55)
and with complementary functions:
f = df(o/dt =il f, (56)

Mori's set of orthogonal functions f, are closely related to our orthonormal | @, ) < | r, ),
whereas the complementary functions f, are related to our A | ,) within simple (normalising)
constants. The successive projections (2 la Mori) are shown in our present notation in figure 1.

This demonstrates that the Mori projection scheme is formally analogous to the conjugate
gradients and Lanczos algorithm ones, and it can be applied to solve the Fokker-Planck equations
as well as ESR (and NMR, etc.) lineshape problems. However, a very important point to realise
is that whereas these methods are analytically equivalent to one another, these different
mathematical realisations give rise to numerical algorithms which differ significantly in their
numerical reliability and stability. Careful numerical analyses have demonstrated that the Lanczos
algorithm and the conjugate gradients method are the methods of choice in terms of the stability
and efficiency of the numerical algorithms required to implement them on a computer.
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Ira)

Alp1)
ir1)=[|v)=|p1)

Figure 1. Schematic relation between vectors: |r, >, A|p, >, {r,> A|p,>and |r,>. |r,>and |1, >
denote the vertical component of A | p,> and the orthogonal component of A | p, >, respectively.

5. Ordering and Thermodynamics: Behaviour of Large versus Small Probes

5.1. TEMPERATURE STUDIES

The extent of probe ordering in a liquid-crystalline environment depends on the size and
geometrical anisotropy of the probe, and the preferred location of the probe amongst the solvent
molecules. In general, we expect larger (and more axially symmetric) probes to be more ordered
than smaller (and more spherically symmetric) ones. Such behaviour is best illustrated with
reference to an example: the orientational ordering of the four probes perdeuteriated tempone-d,,
MOTA, P and CSL in the mesomorphic phases of 40.6, 40.8, Phase V, S2, and 60CB-80CB (the
sizes of the probes increase in the order shown). The temperature variation of the order parameters
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of these probes in these liquid crystal solvents is shown in table 6 in Chapter 12, and table 1
shows how different probes sample different regions in the smectic phases of liquid crystals [19].
In general, an increase in ordering with probe size is observed, with however, the exception of
MOTA in 60CB-80CB, which is actually less ordered than perdeuteriated tempone-d,; in spite
of being larger than the latter [21]. This was not observed to be the case in 40.6 (ie.,
perdeuteriated tempone-d,; is less ordered than MOTA in 40.6). The apparent discrepancy can be
reconciled on the basis of the hypothesis that while in 40.6 MOTA prefers to pack with the cores,
it prefers packing among the chains in 60CB-80CB, whereas in both solvents perdeuteriated
tempone-d,, packs with the cores in the nematic phase (however, with the likelihood that probe
expulsion to the chain regions occurs in 60CB-80CB as the S, phase is approached).

Table 1. Slow motional ESR spectra in smectic phases.
How different spin probes sample different regions in smectic phases.

5CB Phase V  Phase V

Liquid Crystal 40.8/40.6 S2 8CB Low High Low DPPCL,
Temp. Temp. Temp.
PD-Tempone I I I I Phase I
separation
CSL 1 I 1 1 1 LI
Doxyl Fatty acids (or I I I I I LI
doxyl-labeled lipids
POATP (propionyl I I I I {1 I
deriv. of Tempamine)
P 1 I I I 1 I Interlayer
Location
Stearamide I I II I I Interlayer
Location

Reproduced with permission from Meirovitch E. and Freed, J.H. (1984) J. phys. Chem., 88, 5003.
I = region I = uniaxial smectic A type alignment of local directors usually associated with the
rigid core region.

I = region II = distribution of local directors usually associated with the flexible alkyl chain
region.

It will also be noted that the ESR spectra of CSL in the S, phase of S2 is sensitive to higher
order spherical harmonics (L = 4) [19] in the expansion of the ordering potential (see Chapter 4)
than those typically used for the others (L = 2). Reasonable fits to the spectra, however, could be
obtained using L = 2 for CSL in the smectic phases of 40.6 and 40.8, [26] which are known to
form monolayer smectics (S2 forms a bilayered S, phase), but the L = 4 terms were not utilised
in those studies. We show later how the use of non-linear least squares fitting of the simulations
to experiment can provide an objective criterion for estimating which, and how many, expansion
parameters in the ordering potential can realistically be estimated from the experiments. In both
40.6 (and 40.8) and S2, the high ordering suggests that CSL reorients in an environment which
is mainly composed of the rigid core regions. It does not therefore experience any cooperative
effects of chain distortions which would lead to a distribution of local directors such as that
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believed to be experienced by the P probe in S2 (see later) [25].
5.2. PRESSURE-TEMPERATURE STUDIES

Hwang et al. [20] have shown that the ordering of the spin probe as a function of temperature and
pressure carries some relevance for theories of the nematic state. Their results on such
measurements show that the probe order parameter S® is a monitor of the thermodynamic
properties of the solvent. Assuming a Maier-Saupe potential, and letting w,”/k,T = a®/ VT and
u, Ik,T = a®/V"T, where u, is the coefficient of the potential of mean torque in the mean field
approximation and superscripts p and s stand for probe and solvent respectively. It can be shown
that [20]

(a lnS"’) . (AS*Ya*/V'T 57
almT /v +(AS‘)2a"/V"T' G7)
In this equation, (AS®)* is the mean square fluctuation in the order parameter given by
(asef = < (D) > - < D3> > 69
and vy is defined by:
YE-@InT/3 V) (59

with a similar equation for probe ordering [20]. McColl et al. [22] found vy, to be 4 for another
liquid crystal PAA, but our result y, =29 £ 0.1 in the perdeuteriated tempone-d,/Phase V
system [23] suggests that y, < y. A more general treatment of this problem is given by Cotter
[24]. In her simulations, the length-to-breadth ratio of a liquid crystal is the crucial parameter that
essentially determines the y. The actual value of vy, for Phase V is not known. The correlation of
the y, with y, would be important in the studies of solvent-solute interactions. Clearly, pressure
and temperature dependent ESR studies of liquid crystal like probes would be extremely valuable
in clarifying these matters further.

6. Dynamics in I, N, S, and N, phases

In this section, we shall consider ESR studies of rotational dynamics in liquid crystals performed
using spin probes that typically exhibit incipient slow motional (i.e., P-probe) or slow motional
spectra (e.g., CSL), as opposed to the studies described in Chapter 12 with perdeuteriated
tempone-d,, where most of the results could be treated in terms of motional narrowing theory. A
distinct advantage of studies in the slow motional regime is that it is often possible to distinguish
between different models of spin relaxation owing to the greater sensitivities of the relaxation
parameters to dynamics when the correlation frequencies 5 are of the order of the anisotropy in
the spin hamiltonian. Using the P-probe and CSL (see Chapter 12, figure 3) as spin probes, we
shall describe relaxation studies in the isotropic and ordered phases of some liquid crystals, and
compare them with similar studies using perdeuteriated tempone-d,, (cf. Chapter 12). In particular,
studies of P and CSL in 40.6, 60CB-80CB and S2 will be described; the first of these liquid
crystals forms a mono-layer S, phase, while the latter two form bilayered S, phases (with
60CB-80CB cxhibiting a re-entrant nematic phase (Np)).
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As noted in table 2, the mean rotational correlation time (defined as 1, = (1/6)D) D)™, where D!
and Dy denote the components of the rotational diffusion tensor) for P lie between 76-200 ps in
40.6, 110-1100 ps in S2, and 200-900 ps in 60CB-80CB. This trend is consistent with the results
for perdeuteriated tempone-d, in these liquid crystals (see Chapter 12), where the motional rates
in the cyanobiphenyls were also noted to be somewhat longer than in 40.6. However, we note that
1, for P probe is about an order of magnitude higher than for perdeuteriated tempone-d,, as can

be expected for a larger probe.

Table 2a. Order parameters and mean correlation times for P in 40.6.

TPC  Mesophase A, A,, <Dg> <Dy+Ds,> 1t /10Ms N E_/kJmol”
100.1  Isotropic 0.0 0.0 0.0 0.0 7.7 7.0 38.1
72.5 00 0.0 0.0 0.0 20.0

71.7 Nematic 117 0.0 0.26 0.0 17.4 14.0 29.2
50.5 200 00 04 0.0 340

495 Smectic A 215 0.0 0.47 0.0 37.0 10 (20.5)
495 250 -06 053 -0.14 40.0 20 (20.9)
433 220 0.0 0.48 0.0 43.0 10 (20.5)
433 290 -0.7 0.60 -0.16 46.0 20 (20.9)
425 SmecticB 3.10 0.0 0.62 0.0 120.0 3 39.7
425 48 -1.7 0.76 -0.37 125.0 3 414
23.3 38 0.0 0.70 0.0 225.0 3 39.7
233 50 -18 077 -0.38 231.0 3 414

Reproduced with permission from Meirovitch E. et al. (1982) J. chem. Phys., 77, 3915.

Table 2b. Order parameters and mean correlation times for P in S2.

T°PC Mesophase A,, A,, <Dyx> <Dy+D;,> 1t /10"s N E,_/kJmol”
100.1 Isotropic 0.0 00 0.0 0.0 110 6 50.2
47.0 00 00 00 0.0 111 6 50.2
460  Nematic .97 0.0 0.0 135 (6) -

021
445 Smectic A 10 -0.5 -0.12 170 4 62

022
9.0 60 -0.8 -0.18 320 4 62

0.82

Reproduced with permission from Meirovitch E. et al. (1982) J. chem. Phys., 77, 3915.
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Table 2¢. Order parameters and mean correlation times for P in 60CB-80CB.

TPC Mesophase A, A,, <Dg> <DyL+D),> t/10Ms N E,_/kJmol®
1042  Isotropic 00 00 0.0 0.0 13.0 4 54.0
99.8 00 00 00 0.0 16.0 4 54.0
90.8 00 00 00 0.0 25.0 4 54.0
84.8 00 0.0 0.0 0.0 33.0 4 54.0
80.9 Nematic 0.76 00 0.15 0.0 35.0 10 314
77.0 093 00 0.18 0.0 38.0 10 314
74.1 .10 00 022 0.0 41.0 10 314
71.2 L16 00 023 0.0 450 10 314
66.5 122 00 024 0.0 50.0 10 314
58.7 .36 00 027 0.0 66.0 10 314
54.3 146 00 029 0.0 80.0 10 314
511 1.56 0.0 031 0.0 90.0 10 314
473 1.62 00 032 0.0 98.0 10 314
40.5 Smectic A 151 0.0 030 0.0 190 15 10.5
38.6 146 00 029 0.0 295 15 10.5
36.2 146 00 029 0.0 200 15 10.5
303 Reentrant 122 0.0 024 0.0 350 1 28.0
277 122 00 024 0.0 377 11 28.0
23.0 136 00 027 0.0 460 11 28.0

Reproduced with permission from Nayeem A. and Freed J. H. (1989) J. phys. Chem., 93, 6539.

Fits to the spectra using P-probe typically required the use of an anisotropic diffusion model,
with a value of NIV = D)/D}) lying between 4 (60CB-80CB) and 7 (40.6). Using a prolate
ellipsoid model for P with the long axis dimension of 10A and the short axis dimension of
2.85A, an N of 4 is estimated [25]. The higher values of N that have been observed imply that
it is likely that along with the overall D} some internal motion of the piperidine ring is also
occurring. The detailed temperature dependence of 1,, shown in figures 3a-c, shows an activation
energy of 38.1kJmol” in 40.6, 50kJmol” in S2, and 54.0kIJmol” in 60CB-80CB. At this point,
it is interesting to compare the temperature dependences of t, [or 1z = 1/(6Dy)] for P in 40.6,
S2 and 60CB-80CB with perdeuteriated tempone-d,; in the same (or similar) solvents (see figures
5b, d and e in Chapter 12). Such comparisons show the activation energies for the two probes to
be quite similar: For perdeuteriated tempone-d,,, we have AE,, = 33.9kImol’ in 40.6, AE,, =
62.3kImol” in 8CB, and AE,, = 52.7kJmol" in 60CB-80CB. The interesting point here is that
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in spite of the motion of P being much slower than perdeuteriated tempone-d,, (consistent with
the larger size of the former), there is a close similarity of the AE,, within the isotropic phase.
In fact, we even note such similarities in the nematic phase.
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Figure 3. 1, versus 1/T for P in (a) 40.6; (b) S2 and (c) 60CB-80CB. (From [21] and [25]).
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6.2. NEMATIC PHASE

Whereas the width of the nematic phase in S2 (about 1.5°C) precludes a reliable analysis of
dynamics within this phase, detailed analyses of the relaxation rates of P in the nematic phases
of 40.6 and 60CB-80CB show that in both solvents N increases by a factor of two from its value
in the I phase (see table 2), while t; only increases by 10-20%. This indicates that D! increases
at a significantly faster rate than D;. Moreover, AE,, decreases in the N phase compared to the
I phase in both solvents (see table 2).

As compared with perdeuteriated tempone-d,; in the isotropic phases of 40.6 and 60CB-80CB,
we again note that the activation energies in the nematic phases of these solvents with the two
probes are rather similar, and in both cases (i.e., perdeuteriated tempone-d,; and P) they decrease
in the nematic phase compared to their values in the I phase. These general observations suggest
that in spite of their differences in size and geometry, perdeutériated tempone-d,; and P behave
rather similarly in their dynamic properties in the I and N phases. The decreased AE,, in the N
phase suggests that both probes seem to be experiencing greater dynamic interactions with the
chain regions,

Studies using the larger spin probe CSL have also been performed in 40.6 (and 40.8) [26] and
S2 [19]. In these cases, the results of the slow motional lineshape analysis, shown in table 3,
indicate N = 5 in 40.6 and 40.8 (¥ is estimated to be about 4.7 for CSL, see [27] where Rao et
al. used N = 4.7 to simulate successfully their spectra for CSL in the nematic phase of Phase V).
The rotational correlation times are higher (i.e., slower motion) than P; e.g., in 40.6 1, = 2-3.8ns
for CSL [26] compared with t, = 174-340 ps for P in 40.6 [25], while the activation energies are
comparable in the two cases (29-31kJmol”). In fact, it has also been noted that AE,, is
comparable for perdeuteriated tempone-d,, and CSL in Phase V, showing that, as with
perdeuteriated tempone-d,, and P, the dominant dynamic mode of reorientation of CSL in the
nematic phase of these solvents can be treated as a simple diffusive reorientation of a partially
ordered probe in a uniaxial medium.

Table 3a. Rotational diffusion coefficients and order parameters for CSL in 40.8.

T°C Mesophase A,, <D&> Dj/10°s™  D;/107s™ N E_,/kJ mol™
76.8 Nematic 2.7 0.40 2.08 3.6 5.8 =~ 25.1
73.0 4.1 0.57 1.85 33 5.6

67.7 6.2 0.73 1.67 29 5.8

624 6.5 0.74 1.39 2.5 5.6

59.5 Smectic A 65 0.74 14 £ 0.15 0.93 = 0.15 15

53.0 9.0 0.82 1.2 £0.20 0.20 £ 0.15 60

46.9 1.0 0.86 1.0 £ 0.30 0.04 = 0.03 250

455 SmecticB 115 087 =1.0%030 > 0.01 = 1000
30-15 >13 >089 =1.0x030 > 0.01 = 1000
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Table 3b. Rotational diffusion coefficients and order parameters for CSL in 40.6.
TPC Mesophase 1,, <Dg> Di/10°s®  D;/10s® N E,_/kimol”
71.0  Nematic 23 035 2.10 £ 0.15 42+05 5 =314

56.6 5.5 0.68 1.20 £ 0.15 2403 5
51.0 7.3 0.77 1.00 £ 0.2 2003 5
494  Smectic A 7.3 0.77 1.00 £ 0.2 0.56 £ 0.1 18
44.0 110 0.86 0.85 £ 0.30 0.02 £0.01 450
422 SmecticB 11.0 0.86 0.85 £ 0.30 0.02 £0.01 450
20.0 13.0 088 =0.85%030 > 0.01 850

Reproduced with permission from Meirovitch E. and Freed J. H. (1980) J. phys. Chem., 84, 2459.

Table 3c. Rotational diffusion coefficients and order parameters for CSL in the smectic A
phase of S2.

T°C Ay Ay Ay A, <Dy%><Di,+Dy> <Dy> <Dy +Do,> Dy/10°s™ Di/10°s™ N E,,/kfmol™
40.0 1.7 00 00 0.0 0.38 0.0 0.0 0.0 149.0 320 =5 502
250125023073 0.1 034 006 0.17 0.03 70.4 15.0

09.0 3.10 040 1.0 02 0.73 0.03 0.44 0.05 242 5.0

1.0 3.20 0.60 1.150.32 0.75 0.05 0.47 0.07 11.6 25

-80 3.0 1.0 1.000.55 0.69 0.1 0.40 0.14 48 1.0

Reproduced with permission from Meirovitch E. and Freed J. H. (1984) J. phys. Chem., 88, 4995.
Note that A,, = 34,,/2 in tables 3a and 3b.

6.3. SMECTIC A PHASE

It is in the S, phase that P and CSL show their differences in dynamic behaviour from
perdeuteriated tempone-d,,. While the activation energies for perdeuteriated tempone-d,,, P and
CSL were noted to be rather similar in the N phase (and in the I phase for the P-probe), a
significant decrease in AE,, is noted for P in 40.6, S2 and 60CB-80CB. (Note that with
perdeuteriated tempone-d,; (see figure 3, Chapter 12, AE,, decreased from 35.1 (N) to 17.6
(S ) kImol” in 40.6, but increased from 17.2 (N) to 35.6 (S,)kImol” in 8CB, and from 25.9 (N)
to 36.0 (S,)kJmol' in 60CB-80CB.) Furthermore, given the larger size of P compared to
perdeuteriated tempone-d,,, the activation energies in the bilayer S, phases (82 and 60CB-80CB)
were abnormally low (6.3kJmol” in S2 and 10.5kJmol” in 60CB-8OCB).

In analogy to perdeuteriated tempone-d,,, the interpretation of the relaxation results for P is as
follows. The significant decrease in AE,, for perdeuteriated tempone-d,, in the S, phase was
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interpreted in terms of this small probe being expelled in the lower temperature phase from the
rigid core region of the smectic layer (due to increased packing) towards the more fluid alkyl
chain region [28,21] (see also Chapter 12, section 4.3.2.). It was speculated that P may be
experiencing greater dynamic interactions with the alkyl chain regions of the liquid crystal in
passing from I-N-S,. This would be consistent with a gradual reduction in its activation energy.
However, the increasing order parameter with decreasing temperature suggests that unlike
perdeuteriated tempone-d,,, P may not be completely expelled from the rigid core regions, even
though interaction with the alkyl chains may be playing an increased role in its dynamics.

90°

——
106

Figure 4. Angular dependent spectra of P in the S, phase at 49.5°C of S2 with simulations (—) using
A =25, p=-06, Dy =10*°s"1, N=20 and T, =0.4 G. (From [25]).

As noted in Chapter 12, section 4.3.2., the director in the S, phase can be locked in, thereby
allowing us to perform angle dependent relaxation studies as described for perdeuteriated
tempone-d, in S2 [29]. In figure 4, we show angle dependent spectra for P in S2 as a function
of director orientation (relative to the field) together with the simulations. A distinct advantage of
such studies is that upon simulating the lineshapes as a function of the director orientation, we can
place more reliability on the dynamic parameters than those obtained from a single simulation at
one orientation. An interesting and unusual feature is observed in the spectra of P in S2 as the
temperature in the S, phase is lowered and the ordering increases. The ESR spectra become spread
over a wide magnetic field range, and additional peaks appear. These features are not observed
in the smectic S, and S; phases in the monolayer smectic forming 40.6, and may be an important
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difference between monolayer and bilayer S, phases from a molecular dynamic viewpoint. That
is, while in monolayer smectics, spectra are observed that are typical of nitroxide probes dissolved
in a well-aligned and uniaxial medium with a single well-defined director, the spectra (at lower
temperatures) in the S, phase of S2, a bilayer smectic, suggests some kind of distribution of
directors. Proceeding on the assumption that the dynamics of P is influenced mainly by the chain
motions, we have found that a model involving the cooperative distortion mode of the chains is
successful in explaining the unusual features. Figure S shows a comparison of the experimental
spectra of S2 in the S, phase with simulations based on this model. (Such features were not noted
for P in the S, phase of 60CB-80CB [21], possibly because the ordering was not high enough
for these effects to be observed. The N, phase appeared before the ordering was sufficiently high.)

45° Nea

N 90°
Dicagriory

—
106

Figure 5. (a) Experimental spectra of P in the S, phase of S2 showing the additional peaks at lower
temperatures; (b) Simulations using the cooperative distortion model. (From [25]).
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Studies performed using CSL, which exhibits significantly higher ordering (and slower motion)
than P, have shown that either (i) the values of N required to fit the spectra in the S, phases are
abnormally large (for example, for 40.6 N lies between 18450, and for 40.8, N = 15-250) [26],
or (ii) when N is kept constant at 4.7 (the value used for CSL in Phase V [27], many coefficients
in the ordering potential expansion (see section IB) are needed to simulate the results. Thus,
Meirovitch and Freed [19] have employed four terms in the ordering potential to fit oriented
spectra of CSL in S2, as we have already discussed. The apparent value of N in the former case
is clearly untenable with a brownian type of diffusive model, and is interpreted as indicative of
significant deviations from brownian behaviour. An approximate model involving fluctuating
torques was suggested in interpreting the anomaly. The observations were explained in terms of
the effect of the local solvent structure on the nature of the overall dynamic structure of the probe,
implying considerable local cooperativity in these smectic phases [26]. Case (i), while showing
that a brownian model is probably appropriate for describing the diffusion of CSL in S2,
demonstrates the considerable sensitivity of these spectra to the symmetry of the orienting
potential. However, in both cases, the likelihood of the involvement of a fluctuating torque
mechanism seems appropriate.

6.4. SMECTIC C PHASE

ESR studies of spin relaxation in the S, phase of HOAB using the CSL spin probe have also been
performed [26]. Because of the symmetry of the S, phase, unless special care is exercised in
sample alignment, macroscopically disordered samples can result from cooling the system into the
Sc phase. Monodomain S, samples were prepared by (i) sandwiching the HOAB between glass
plates to obtain sufficiently thin samples so that the S, director would not realign upon rotating
the ficld away from parallel alignment with the director, and (ii) cooling the mesogen from the
(higher) N phase in a strong magnetic field (ca. 21kG) oriented at about 45° relative to the normal
to the glass plates. When prepared in this way, the ESR spectra were essentially S,-like, but with
a director tilted (at 45°) with respect to the normal to the smectic layers [26]. In contrast to CSL
in other liquid crystal solvents we have studied (ie, 40.6, 40.8, Phase V), CSL exhibits fast
motion in HOAB [26]. Linewidth measurements (see Chapter 12) show D; to lie in the range
0.16 -0.35 x 10° s ', with N varying between 11 and 20, with high ordering (< P, > =0.83 -0.88).

6.5. REENTRANT NEMATIC PHASE

Our recent ESR studies on 60CB-80CB (cf. Chapter 12, section 4.3.2.) [21] were performed with
the motivation of discering possible differences between this reentrant mixture and liquid crystals
which, in spite of being structurally similar to 60CB-80CB and also exhibiting (like the latter)
bilayer S, phases, do not exhibit a reentrant nematic phases (cf. P in S2 versus P in
60CB-80CB). These studies have shown that:

(i) In both cases (reentrant and non-reentrant liquid crystals) the probes behave very similarly
in their dynamic properties; they are expelled towards the alkyl chains as smectic layers begin to
form. Perdeuteriated tempone-d,; and MOTA, though mainly in the chain regions, can however
partially experience the aromatic cores, while the P-probe is completely buried in the chains.

(i) The orientational ordering of the aromatic cores increases gradually through the N, S, and
N; phases in a fashion that is not sensitive to these phase transitions. This is monitored by the
CSL probe, which shows typically high ordering (< P,> ~ 0.7 - 0.8). Such results are basically
the same for reentrant and non-reentrant liquid crystals (see figure 6; cf. also [30]).
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Figure 6. The temperature variation of the order parameter for CSL in 60CB-80CB. (From [21D.

(i) Results on the ordering and dynamics of P-probe in the reentrant nematic liquid crystal
suggest that the chains are more disordered in the S, and N, phases compared to the Ny phase
of a normal smectic, whereas they experience enhanced resistance to rotational motion in the Ny
phase, probably due to enhanced packing in the chain region. This is suggestive of reduced short
range chain cooperativity in ordering and dynamics as increased packing of chains from adjacent
layers occurs concomittent with the loss of smectic order.

(iv) In general, the nematic and S, phases in systems exhibiting reentrance are rather similar
to those in structurally similar liquid crystals where reentrance is not observed. At the molecular
level, the S,-N and N,-S, transitions are similar, and the effects driving the transition are subtle.
Small changes in molecular properties can make a difference, i.c. the decrease in average chain
length by the addition of 60CB to 8OCB to produce a reentrant nematic. Previous X-ray [31] and
density [32] results also demonstrate the similarities of these phase transitions with nothing

dramatic occurring.

7. Rotational Dynamics in Lyotropics: Lipid Multilayers

We now discuss some applications of ESR to the study of selected problems in membrane
biophysics. The subtle dynamical aspects of membrane structure can play significant roles in
biological functions. For example, the cooperative motions in phospholipids can influence the
degree of permeability of cell membranes, and the ordering and dynamics at different points along
the lipid chains provide a quantitative measure of the chain flexibility. The extent to which such
flexibilities are affected by the presence of intrinsic membrane protein provides some information
on the nature of lipid-protein interactions.

. Interestingly, the L, phase of lipids is very similar to the smectic A phase found in thermotropic
liquid crystals. We have conducted systematic ESR studies of oriented bilayers as a function of
the concentration of the polypeptide gramicidin and of cholesterol. Our studies employ both the
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conventional CW ESR as well as newly developed time domain ESR techniques.
7.1. DYNAMIC MOLECULAR STRUCTURE AND PHASE TRANSITIONS IN LIPID MULTILAYERS

The use of defect-free oriented samples enabled us to observe clearly lipid phase transitions
through the appearance of composite spectra at the transition (two phase) region [33]. From ESR
observations on low water content DPPC and DMPC (cf. figure 7) three phase transitions were
found over a temperature range below 180°C: two were assigned to the main transition and to the
isotropic transition by reference to the transition temperatures in the literature. The remaining one,
at 100-110°C, was characterised as a new chain orientational transition.

4 1
Qo O-CHrCHg
o-P-0@ o-P-0©

I
(0]
I6PC CSL SPC

Figure 7. Schematic structures of CSL, S5PC and 16PC. (From [33]).

The ordering and the rotational diffusion tensor of the various spin labels could be determined
accurately as a function of temperature, % H,0, and phase (see table 4). CSL, SPC and 16PC (cf.
figure 7) exhibit in all phases decreasing order parameters S, according to CSL > SPC > 16PC and
increasing motional rate (measured by D; the mean rotational diffusion coefficient) again
according to CSL < 5PC < 16PC, while the anisotropy in rotational motion obeys CSL > SPC >
16PC, consistent with the well-known concept of the increased flexibility on moving down the
chain [34]. However, we have been able to quantify this flexibility gradient in terms of its reduced
ordering and its symmetry, as well as the increased motional rate [33].

Using these results we can characterise the main [or gel-to-L,] transition as primarily a chain
diffusional transition, while the new high temperature transition is characterised as a chain
orientational transition: the order parameter S experiences a more significant relative reduction at
the second transition compared to that at the main transition, whereas the diffusion coefficient Dy
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Table 4. Parameters for molecular ordering and anisotropic rotation of CSL in DPPC*,

T°C Phase® < D2 > <D +DZ > Diis™ D¥/s™ N E_AJmol? 176G
(A) Hydrated to 3wt %
40 I 0.90 -0.01 29x10° 44x10
50 0.90 -0.01 40x10° 6.0x10° 150 322 1.5
60 0.90 -0.01 62x10° 93x 10
70 0.90 -0.01 83x10° 12x10°
80 II 0.76 -0.03 68x10° 34x10°
85 - 0.73 -0.03 80x10° 40x10° 50 36.4 1.2
90 0.67 -0.03 9.6x 10° 4.8x 10°
110 III 0.28 0.08 L.1x10° L7x10
120 0.21 0.06 15x10° 24x10°
130 0.14 0.03 20x10° 32x10° 16 385 1.0
140 0.13 0.03 25x10° 40x10°
160 IV 0 0 58x 100 29x10°
170 0 0 67x10° 34x10°
180 0 0 75x 100 38x10° 5 209 1.0
(B) Hydrated to 7wt %
40 I 0.88 -0.005 3.0x 100 45x 10
50 0.88 -0.005 50x10°  75x100 150 36.4 1.5
60 0.88 -0.005 7.0 x 10° 105 x 10
70 Il 0.78 -0.007 90x10° 45x10°
80 0.74 -0.009 12x100 60x10° 50 29.3 1.2
90 0.65 -0.015 1.6x 10 80x 10°

« Estimated errors: 2% in < D2 >, £30% in < D, + D;, >, £10% in Dy, #20% in N, ¥20%
in E_, and 20.1G in T,". Note that D3 = NDj.

5 I: biaxial gel phase; II and III; liquid-crystalline phases; IV: isotropic phase.

* Correlation times: t, = (6D3)7, 1, = (6D, and 1, = (6D DH™.

4 The relationship between < D2, >, < Dj, + D;, > and A and p is given by the expression:
<DL > =1d' [de P ,¢')1/2)(3 cos* & - 1) sin & and <D, +Dg,> =/ d¢’ [ d& P(0'.¢)
(/g /2)sin*@ cos 2¢’ sin@, where @' denotes the angle between the principal z' axis of the
ordering tensor and the principal z" axis of the director frame. P(@,4') sin @ d@ d¢’ is the
distribution of Z' relative to z" given by P(€,4") = exp[(-1/2)(3 cos’@ - 1) +/6 p sin*@ cos2¢’].
* Reproduced with permission from Tanaka H. and Freed J. H. (1984) J. phys. Chem., 88, 6633.
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for the chain probes (i.e., SPC and 16PC) experiences a more significant relative increase at the
main transition. Thus, a relatively smaller reduction in molecular ordering more effectively
unfreezes the chain motions at the main transition compared to the second one. The relative
increase in Dy for CSL at the two transitions is, however, comparable suggesting that while local
chain motion increases more significantly at the main transition, the overall molecular motions
exhibit comparable relative changes at both transitions. Also, whereas Dy shows substantial
change at the phase transitions, D} = ND;, which measures the motion about the long chain axis,
is much less affected. This undoubtedly reflects the existence of significant motion of this type
in the gel phase, which may be due to its relatively unhindered nature. Finally, we find that at
both phase transitions there is a more significant relative reduction in ordering at the end of the
chain but a smaller increase in fluidity (as measured by D;). Thus, while there is a greater
melting of orientational order at the end of the chain, the end chain motions are not as
significantly tied to the ordering.

7.2. EFFECT OF CHOLESTEROL ON LIPID DYNAMICS

The effect of cholesterol on the diffusion of lipid molecules has attracted much attention because
it is directly related to understanding the dynamic properties of biological membranes. A
conspicuous feature of the phase diagram of cholesterol-lipid systems is that at concentrations of
cholesterol exceeding 20 to 30 mole per cent, a phase boundary is observed which has
characteristics similar to the main chain melting transition (7,); ie., a kind of gel to
liquid-crystalline phase boundary, implying that it is a considerably disordered fluid state above
20 (to 30) mole per cent of cholesterol. In addition to such phase behaviour, the dynamical
properties and ordering of the molecules in the bilayer have their own importance, and these have
been studied both by fluorescence techniques [35] (see also Chapter 22) as well as by magnetic
resonance methods [36] (see also Chapter 21).

Studies using fully hydrated bilayers have shown that (i) in the liquid-crystalline state, the major
effect of cholesterol is to reduce the angular range for rotational motion without decreasing the
mobility substantially [35], while (i) in the gel phase, cholesterol induces local disorder and
enhances the rotational motion. More specifically, the addition of cholesterol has the following
effects: (i) below T, the fluidity increases, i.e., the ordering decreases and the motional rates
increase; (i) above T, the fluidity decreases, i.c., ordering increases, while the motional rates
decrease. These observations are consistent with the detailed ESR observations of Shin and Freed
[36]. On the other hand, careful studies of CSL in low water content DPPC multilayers by ESR
showed effects of cholesterol on the rotational dynamics similar to that in the liquid-crystalline
phase even in the gel phase [37]. Both below and above 7, the fluidity was noted to decrease.
However, the fluidity was noted to increase at what appeared to be a third phase at higher
temperatures (above the L, phase).

7.3. LIPID-GRAMICIDIN INTERACTIONS

Given that the interpretation of ESR spectra from dispersions is somewhat ambiguous, we have
adapted our alignment methods of sample preparation to prepare very well-aligned uniform
samples containing the stable polypeptide gramicidin A. This polypeptide is frequently used to
mimic the effects of protein on phospholipid bilayers [38]. Its advantages are its known chemical
structure and its known helical conformations, its considerable stability, and its ready availability.
Chapman and co-workers [38] have found that the dimeric gramicidin A is incorporated into the
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lipid bilayer, and they regard it as a model for the interactions of the polypeptide segments of
transmembrane proteins within the hydrocarbon regions of the lipid bilayers.

The principal findings are as follows [39]. (i) In the gel phase we have observed distinct two
component spectra which could be assigned to highly oriented bulk lipids and to a disordered
component, and the latter was fit by a model of molecular disorder such that the ordering of these
molecules is greatly reduced, but their rotational-motional properties are not appreciably changed
(cf. figures 8a and 9a). The disordered region at the lowest concentration of gramicidin A is
estimated to consist of about 30-40 lipid pairs, or about five times the number required to coat
the gramicidin A dimer. This corresponds to a disordered region in the bilayer extending over
about three lipid molecules. This effect of disordering is significantly reduced by increasing the
weight per cent of water, but it appears to be independent of temperature. (i) In the liquid-
crystalline phase, heterogeneity is not distinguished from the ESR spectrum. Instead, the primary
effect of gramicidin A is to reduce significantly the observed ordering of all the lipids, with only
a very small decrease in motional rates [cf. figures. 8b and 9b]. However, in the high
temperature, weakly ordered phase, addition of gramicidin A actually leads to a significant
increase in ordering, This increase in ordering is also observed in high water content dispersions
in the immobilised species in any of the spectra obtained from well-aligned samples. However,
such features are present in dispersion samples of 4M% gramicidin A prepared from the same
materials as the well-aligned ones. If we associate these spectral features with trapped lipids due
to aggregation of gramicidin A, then it follows that macroscopically well-aligned samples do not
allow for such aggregation.

8:0"

Figure 8. ESR spectra from 16PC in DPPC hydrated to 7wt% for GA concentrations ranging from 0 to 4
mole per cent. Spectra are shown for 8=0° and 8=90°: (a) 50°C corresponds to the gel phase; (b) 80°
corresponds to the lamellar phase. Dashed spectra are simulations. In (a), the ordered and disordered
components are labelled A and B, respectively. (From [39]).

We conclude from these findings that the principal lipid-gramicidin A interaction is that of a
boundary effect such that the gramicidin A induces disorder in the low temperature and low water
content lipids, but it induces order for high temperature and high water content (i.c., less ordered)
lipids. It has only slight effects on lipid fluidity, in general reducing only slightly the rates of




Figure 9. ESR spectra from CSL in DPPC hydrated to 7wt% for GA concentrations ranging from 0 to 4
mole per cent. Spectra are shown for 6=0° and 6=90° (a) 50°C corresponds 1o the gel phase; (b) 80°
corresponds to the lamellar phase. Dashed spectra are simulations. In (a), the ordered and disordered
components are labelled A and B, respectively. (From [33]).

rotational reorientation.

We believe that these various effects can be explained as the consequence of two competing
features of the lipid-gramicidin A interaction: a disordering feature and a hardening feature. The
former induces a disordering of the lipids in their vicinity, while the latter makes them more
solid-like, as exemplified by the somewhat reduced fluidity and by increasing the order.
Furthermore, we require that disordering is dominant under conditions of low fluidity, while
hardening is dominant when there is high fluidity. The notion of two apparently opposite effects
of the macromolecules on the ordering of lipids has been incorporated into a simple model by
Jahnig [40]. He proposed that the ordering at the boundary of a protein should be lower than that
for the ordered phase but greater than that for the fluid phase. Our low water content results are
consistent with this model when we apply it to the phase transition between the L, to high
temperature liquid crystal phase.

The heterogeneity induced by gramicidin A at very low concentrations is a distinctly different
phenomenon from that usually assigned to immobilised or trapped lipids. The clear discrimination
of the heterogeneity in the bilayer induced by the gramicidin A, and the determination of the
molecular properties of this heterogeneity should be significant in understanding  the
polypeptide-lipid interaction.

8. Experimental Techniques: Lineshapes in One and Two Dimensions

Millhauser and Freed [41] have shown that in the slow motional regime, when the CW ESR
spectra become very inhomogencously broadened, significantly better resolution to motional
dynamics can be achieved by producing two dimensional electron spin echo spectra. We shall now
compare the two dimensional techniques with the one dimensional one, and illustrate the greater
sensitivity of the former in obtaining more detailed dynamic information through studies of the
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homogeneous linewidth, 7;. The two examples considered later are: (i) the effect of motional
anisotropy on the one dimensional versus two dimensional spectra, and (ii) the orientation
dependence of such spectra from multilayers of low water content DPPC doped with CSL spin
probe.

The electron spin echo experiment, which essentially measures the decay rate of a Hahn echo
as a function of the resonant field, involves sweeping through the static magnetic field B, very
slowly, but with a microwave field intensity B, small enough that only dynamic spin packets
associated with widths well within the inhomogeneous width A are effectively rotated by the
pulses (se¢ also Chapter 8 for the NMR analogue). Technical details of the experiment are
provided elsewhere [29].

The form of the two dimensional ESE spectrum is given by:

T,

S(w,0) « Y a — ¥ _ expl- (0 - w)/A

(0,0 ;”nmznﬁ p[- ( )}/ A% (60)
which is a sum of lorentzians along the « axis (the Fourier transform of 1) and the sum of
gaussians along the ' axis (the Fourier transform of #). By this means, the relaxation of each spin
packet (ie., 7,) is displayed. Furthermore, while the resonance position of the spin packet (i.c.,
) is given along the ' axis, the variation of T, across the spectrum is given along the o' axis.
In other words, we can thus achieve a resolution of the different dynamic behaviour of the various
spin packets.

Width/MHz
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Figure 10. Normalised contours and 0MHz slices from spectra of: (2) Tempone in 85% glycerol/water at
-75°C; (b) CSL in n-butylbenzene at -135°C. [From G. L. Millhauser, Ph.D. thesis, Cornell University
(1986)].

The data are most usefully displayed by normalised contours. These are produced by dividing
S(w,w') by the zero MHz slice (i.e., S(0,0") to normalise and then to display the constant contour
lines (and also the zero MHz slice). A set of horizontal lines imply that there is no T, variation
across the spectrum, whereas contour lines with curvature indicate the presence of at least some
variation. We find that these contours are very sensitive not only to the rate of reorientation but
also to the model of molecular reorientation, (i.e., whether it is by jumps, free diffusion, or
brownian motion) with different characteristic patterns for each. We show in figure 10 an
experimental demonstration of the sensitivity to motional anisotropy by comparing the results for
tempone, which tumbles nearly isotropically with that for CSL, whose motion is anisotropic.
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While the T}'s are comparable, the contour shapes are significantly different, emphasising the large
anisotropy for CSL. It should also be emphasised that figure 10 shows patterns that are consistent
with a brownian reorientation model. In the general theoretical analysis of this experiment,
Milthauser and Freed [41] show that brownian reorientation, which occurs by infinitesimal steps,
will lead to a 7, variation, because of the different sensitivity of different spectral regions to a
small change in molecular orientation (i.e., dS{w’)/d@ varies across the spectrum). On the other
hand,reorientation by substantial jumps would not show any 7, variation.

| -

Figure 11. Experimental 2D-ESE spectra from CSL in oriented multilayers of low water content DPPC:
(@) 6=0° T=-20°C; (b) 6=90°, T=-20°C, where 6 denotes the director orientation relative to the field.
The "width” axis provides the homogeneous lineshape, whereas the "Gauss” axis supplies the ESR
inhomogeneous lineshape. (From [42]).

The two dimensional ESE technique has also been applied to oriented phospholipid samples [42]
(cf. figure 11). In figure 12, we show a sequence of experimental contours and zero MHz slices
from oriented multilayers of low water content dipalmitoyl phosphatidyl choline (DPPC) doped
with cholestane spin label (CSL) for different temperatures and orientation 6, and in figure 13 we
show typical simulations which relate to these results (in particular, figure 12a) showing specific
sensitivities to the orienting potential as well as details of the dynamics. We wish to emphasise
the importance of this sensitivity. Our studies with CSL in oriented lipid samples have shown that
even in the slow motional region, where CW spectral simulations are only slightly sensitive to
motion, it is very difficult to obtain a unique set of parameters characterising the system [33,39].
In fact, temperature dependent inhomogeneous broadening may dominate the CW EPR lineshapes
in the very slow motional region. In the CW lineshape analysis, there is a danger of
misinterpreting this effect as due to motion. The two dimensional ESE results are much more
sensitive to these matters as illustrated in the simulations shown in figure 14. In figure 14a we
show a CW EPR simulation for high ordering (<P,> = 0.87) and very slow motion
D, = 10*s ™. We superimpose the results for isotropic (N = 1) and very anisotropic (N = 100)
motions to demonstrate that they are almost indistinguishable. However, in figures 14b and 14¢
we show the two dimensional ESE contours and 0MHz slices for the same parameters. They
clearly differ both in magnitude and shape and are very easily distinguishable.
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Figure 12. Normalised contours of spectra from CSL in low water content DPPC multilayers: (a) 8=0°,
T=0°C; (b) 6=0°, T=-20°C; (c) 8=90°, T=-20°C; (d) 68=45°, T=-20°C. (From [42]).
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Figure 13. Normalised contours and 0MHz slices of simulated DPPC/CSL oriented spectra (6=0° to
illustrate the sensmvny to motion and ordering. (2) D} =4 x 10*s %, N=5,5=0.85; D) =2x10's",
N=4, §=0.85; (c) DR =1x10*s ", N=1, §=0.70; (d) DR =1x10*s™, N=1, §=0.90. The effects of
an intrinsic (solid state) T, (0.7 us) and inhomogeneous broadening (0.32mT) have been included. (From

[42]).
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Figure 14. Comparison of the relative sensitivity of CW against 2D-ESE to motional anisotropy. (a) Two
superimposed simulations, where one spectrum has Dy =10~ s and N=1, and the other has the same Dy
but with N=100. The markers on the x axis are 9.77 G apart. The normalised contours are simulated from
the same parameters with (b) N=100, and (c) N=1. Here, §=0.87 and 8=0° (director orientation) was used.
(From [45]).

It is this sensitivity to dynamics and ordering that may be exploited in many biophysical
applications. For example, we have obtained well-aligned two dimensional ESE spectra for higher
water content samples (20 wt.%H,0) prepared by a combined evaporation and annealing method.
Several plate samples are stacked together to increase signal strength. Typical results are shown
in figure 15. These are interesting because they show significant variation of 7, across the
spectrum, more than previously obtained for lower water content (cf. figure 13), and this should
enhance the ability to distinguish structure and dynamics. [nb. New two dimensional ESR
techniques based upon Fourier transform methods have recently been developed [47,48] which
significantly enhance the sensitivity to motional dynamics in the slow motional regime.]
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Figure 15. 2D-ESE spectra of CSL in high water content (20 per cent by wt.) DPPC at -40°C. (2) and (b)
show the spectrum and associated contours for #=0°% (c) and (d) are for 8=90°.

9. On Fitting the Data
9.1. NON-LINEAR LEAST SQUARES

In the slow motional ESR regime, simulations of the experimental spectra often require the
simultaneous variation of several parameters (i.e., D), D;, coefficients in the ordering potential
and contributions due to inhomogeneous broadening T, Y in order to obtain reasonable fits to the
spectra. The number of such parameters can increase dramatically as more sophisticated dynamical
models are used. As the number of parameters to be varied increases, we are confronted with the
problem that several choices of parameters can lead to fits of similar quality, and then a more
quantitative criterion becomes necessary to discern the fits.

We have developed a non-linear least squares procedure based on the Levenberg-Marquardt
algorithm [43] that can vary the user specified parameters within selected ranges, and calculate
successive ESR spectra until the fits based on the choice of parameters converge within the radius
specified by the user. This procedure has the two-fold advantage that (i) it saves a considerable
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amount of user time in that the programme (rather than the user) varies the parameters in
accordance with well-established methods (i.e., steepest descent) to reach the best-fit, and (ii) it
provides a quantitative measure of goodness of fit, i.e., in terms of the sum of squared differences
between experimental and fitted spectra.
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Figure 16. Simulated spectra of CSL in the S, phase at -8°C using a non-linear least squares procedure. The
parameters used were: Dy =184 x10°s™, D) =19.17x 10°s", A, =221, 4, +X, ,=-047,
A, =110, A, +A,, =-0.57; while a molecular tilt (i.c., orientation of the diffusion frame relative to
the magnetic tensor frame) of (0°, 12°, 90°) was used (but kept fixed). Director orientation relative to the
field was (2) 0°, (b) 22.5% (c) 45°, (d) 67.5°, and (e) 90°. (From [44]).

An example of the application of our procedure to the simulation of the orientation dependent
spectra of CSL in the S, phase of S2 is shown in figure 16 [44], and in figure 17 we show the
originally fitted spectra for comparison [19]. The reasons for this particular choice (i.e., CSL in
the S, phase of S2) are that (i) it has often proved to be difficult to fit all orientation dependent
spectra using the same set of ordering and dynamic parameters, and (ii) the simulations here
require the use of four terms in the ordering potential, and N = 4.7 (see table 3). The use of our
non-linear least squares fitting procedure helps in deciding if the fits may have been better with
a high value of N and using one order parameter (i.e., as was noted for CSL in other liquid
crystals [27,26]). The best fits using this procedure are shown to be consistent with an increased
value of N (about 10), but they also require a four term ordering potential. The improved quality

N
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of our fits as compared to the previous simulations (with the possible exception of the 90°
spectrum) justify the use of non-linear least squares fitting for slow motional spectra. The
extension of this method to spectra from more complicated systems, such as CSL in DPPC [37]
is presently under way.

Figure 17. Same as in figure 16 but without using a non-linear least squares. The parameters were
Dy =20x10°s™, N=47, A, =30, A, +A, ,=-10, A, =110, A, +A,,=-055 whie a
molecular tilt (i.e., orientation of the diffusion frame relative to the magnetic tensor frame) of (0°, 15°, 90°)
was used (but kept fixed). Director orientation to the field: (a) 0°, (b) 22.5°, (c) 45°, (d) 67.5° and (¢) 90°.
(From [19]).

9.2. THE LPSVD METHOD

An important experimental artifact of the two dimensional ESE technique is the effect of a
non-zero dead time 1, after the second pulse, that partly arises due to cavity ringing. Consequently,
equation (60) includes a factor exp[-2t,/7,] for the finite deadtime, i.c., we are limited to times
7> 1, A technique of data analysis applied by Millhauser and Freed [45], viz. linear prediction
with singular value decomposition, enables us to back extrapolate the two dimensional ESE data
set to estimate the signal in the range 0 < t < 7, This method also leads both to significantly
improved resolution enhancement of the complex two dimensional lineshapes as well as to the
least-squares values characterising the exponential decays associated with the echoes [45].
Furthermore, it removes a difficulty with fast Fourier transform methods; that is, to avoid so-called
fast Fourier transform window effects, it is necessary to collect data over a considerable time
range before performing the transform. This means that a considerable amount of time is spent
collecting data when the signal-to-noise ratio is low, and, hence, the spectral resolution is low.
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Instead, with linear decomposition, we need only collect over those time ranges for which there
is a significant signal, thereby greatly increasing the efficiency of the data acquisition; these
features are illustrated in figure 18.

2 488
a b
2
g C Coop L
g
z
2408l altiessssmszacen Rt S -
S 3257 pe3393 3190 3237 3208
2.488
c
:
$0.000
®
z
-2.408__  Meeceneecnnce, o
3188 .3238 pr-3288

Figure 18. Normalised contours showing resolution enhancement obtained from the LPSVD treatment. (a)
Perdeuteriated tempone in 85% glycerol-water at -75°C treated by conventional FFT; (b) from the same data
set, but treated with LPSVD; (c) different data set collected from the same system in a manner that
maximises the efficiency of the LPSVD algorithm. (From [45]).

Thus, we have found that the use of linear decomposition in the data analysis leads to a much
more powerful and useful two dimensional ESE method. It means much better discrimination of
detail in the two dimensional contours which translates into a much better analysis of molecular
dynamic structure. Its ability to recover signal from noise means, that as long as we are able to
obtain echoes yielding an estimate to 7, by usual procedures, then useful two dimensional ESE
contours may be obtained with the use of linear prediction decomposition. This is an important
development for liquid crystal and model membrane studies. For low water content samples [37]
it was possible to obtain estimates of T, from ESE over most of the temperature range from
+140°C to -150°C for both CSL and the phospholipid spin label 16-PC. However, only a restricted

-
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range (cf. figure 6) could yield sufficient S/N by conventional fast Fourier transform methods to
recover meaningful two dimensional ESE contours from experiments of reasonable duration
(ca. Sh). With linear prediction decomposition and the improved data collection it permits, the
whole range is now available to two dimensional ESE.

It has also been possible to use these methods to facilitate accurate projection of two
dimensional absorption lineshapes and to suppress certain artifacts that appear in two dimensional
ELDOR spectra [46]. For this purpose we have developed a new linear predictive technique, based
on linear prediction decomposition [46-48], which models two dimensional time series obtained
in COSY type experiments entirely in the time domain, i.e., without Fourier transformation. This
new application of complex valued linear prediction facilitates the projection of two dimensional
absorption lineshapes as well as the rejection of residual axial peaks and much of the noise.

We wish to acknowledge financial support for this work by NSF Grant No. DMR 8901718 and
NIH Grant No. GM25862.
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