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ABSTRACT. A general overview of molecular dynamics in liquid crystals is presented, which will serve
as the basis for our discussion of ESR experiments.

1. Intreduction

In the last two decades, there have been numerous investigations of molecular structure and
dynamics of liquid crystals using magnetic resonance techniques [1]. In analysing the magnetic
resonance data we are primarily concerned with microscopic details such as rotational/translational
diffusion coefficients and the local ordering of the liquid crystals. ESR spin probes have been
utilised in extensive studies of thermotropic, lyotropic [1,2] and polymeric liquid crystals.
Powerful numerical and analytical methods have been developed to interpret the molecular
dynamics in liquid-crystalline phases from the ESR experiments [2-7]. More recently, new time
domain techniques have been developed which show the promise of resolving subtle but important
aspects of the motional models that are needed to describe the various liquid-crystalline phases
[8]. Unlike ordinary liquids, the dynamics in liquid crystals involves cooperative motions
extending over macroscopic distances [9,10]. Important manifestations of such motions appear near
phase transitions, where near singularitics in spin relaxation rates characterised by critical
exponents are observed [7,11,12,13]. Thus, the statistical mechanics of liquid-crystailine phase
transitions can also be explored through careful magnetic resonance studies [7,13].

We shall summarise the work that has been accomplished with emphasis on the results from
our laboratory. We will cover the experimental as well as the theoretical aspects. However, we
refer the reader to the original papers for further details.

2. Rotational and Translational Motion in Ordered Fluids

Our starting point for describing the diffusion of a probe molecule under the influcnce of an
ordering potential, such as that due to a liquid-crystalline environment, is the Smoluchowski
equation for the motion of a single molecule which undergoes rotational diffusion [5,14,15,16]:
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P (Q1)/at = [J{.DR(Q,t).J [ UR(Q)]/kBT}JPR(Q,t). (1)

In this equation P(Q,?) is the time dependent probability distribution for the orientation of a
molecule relative to a laboratory fixed coordinate frame; Q(Zafy) is the set of Euler angles
specifying the orientation. Dy(,?) is the rotational diffusion tensor, and it is usually defined in
a molecule fixed frame. The operator J is the vector operator that generates an infinitesimal
rotation of the molecule. In the simple case when Dy(Q) is time independent in its molecular
symmetry frame and is taken to be axially symmetric, this operator leads to:

J.D(@).J = -[D;J? + (D} - D) J,), @

where D and D! are the components of D(Q) perpendicular and parallel to the principal axis
of the molecule. The explicit forms of J* and J; in terms of Euler angles are given by
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The more general form for fully asymmetric diffusion tensors D, is given elsewhere [17]. In
equation (1), the orienting potential U(€,f) is the potential of mean torque given by

T(Q) = iJ U (Q); @

this is the actual torque exerted on the molecule with orientation Q in the equilibrium fluid. More
precisely, J is defined by

JPOLQ) = LIL + 1) DL(Q),
J, 0@ =[L = HU £k + D] D), 5)
Jp @ (Q) = kL (Q),

where the eigenfunctions @} (Q) and the operators J, are given by:
@, (@) =[QL + 1)/8r* )" D (), (6)

JEJ. £l M

In equation (6) D:(Q) are the Wigner rotation matrices also called the generalised spherical
harmonics [18], and J_,, J,. and J, are the x’, y”and z’ components of J in the principal axis
frame of the molecule.

In a fluid environment, the molecule is also engaged in translational diffusion which may be
influenced by its precise location in the oriented liquid crystal. The appropriate Smoluchowski
equation for this motion is [14]
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0P, (r,))/3t = V,.D().[V, + V, U (r)/k,T], P, (r,0) ®)

where V, is the gradient operator given by

v = ii +j i +Kk _8_
ox ay oz
In equation (8), Py(r,?) is the time dependent probability distribution in the position of the
molecule and D.(r) is the translational diffusion tensor. In a macroscopically aligned uniaxial
liquid crystal we may write [19]
2
V.D.(r).V =DV} « (D! -D3) 59_2, ©
Z
where D) and D} are the macroscopically measured components of the translational diffusion
tensor. By analogy to equation (4) we may define a potential of mean force.

F(r) = -V U(r). (10)

On a more microscopic level, we may anticipate the D) and D; might still exhibit a spatial
dependence (c.g. a dependence upon z in a smectic phase reflecting the location of the molecule
in the smectic layer). This would be traceable to the dependence of the microscopic viscosities on
the exact position of the molecule in the liquid crystal. In a similar sense, we may expect that
D,(Q) will also depend, in general, on the precise location of the molecule in the liquid crystal,
whercas D(r) could well depend upon the molecular orientation €, e.g. a long rod-like molecule
will diffuse more rapidly in a direction parallel to its long axis. Similar comments clearly apply
to the potentials U,(€) and Uy(r), so that more generally we may wish to consider a single U(r )
reflecting the combined orientational and positional potential experienced by the probe molecule.
The possibility of combined orientational and positional coupling of the diffusion of a molecule
does follow from general statistical mechanical considerations [14]. In fact, we should allow not
only for D,(r,Q) and D,(€,r) but a more general diffusion tensor:

D= [D'rr DTR ] (11)
DRT DRR

In this equation we have let D(r, Q) =Dy, Dy(r,Q)—Dyg, and Dyy = Dy, is a cross diffusion
coefficient. Such a cross-coupling can arise for example by propeller-like motion of an
appropriately shaped molecule. This equation leads to a combined Smoluchowski equation for both
rotational and translational diffusion [14,19]. We shall, for simplicity, ignore the cross-diffusion
term, Dy, so that the Smoluchowski equation for the combined motion becomes:

aP(r,Q,1)/ 3T = ([J D,.Q). (3 +[J Ur.®)]/k,T)|
+ [vr D,(6,9).(V, +V,[Ur, )] /kBT)] )P(r,Q,t), (12

where P(r,Q,¢) is the combined probability distribution in orientation and position of the molecule,
and it is not, in general, simply separable into the two equations (1) and (8).
The equilibrium solution to equation (12) is given by:
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P(rQ) = exp(-U(r,Q)/k,T)/[ dQ dr exp(-U(r,Q)/k,T). (13)

The ordering potential U(r,Q) and its associated torque (and force) are allowed to be slowly
varying in time. The form of the Smoluchowski equation (12) requires two additional assumptions
[14]. First that the potential is not very large, so that angular and linear momentum relaxation can
occur very rapidly compared to rotational or translational motion of the molecule. Secondly that
rapidly fluctuating components of the torques or forces, which induce rotational reorientation or
translational motion of the molecule, average to zero in times short compared to the molecular
correlation rates due to rotation and translation. This assumption does not allow for localised
coupled modes of reorientation of molecules such as a simultancous flip of two neighbouring
molecules. The latter effect can be introduced into the Smoluchowski equation (equation (1)) by
introducing an R with a memory as described later in section 4.

In isotropic systems, U(r,Q2) = 0, and the solutions of the diffusion equations (1) and (8) are
well-known. Here D! = D} = Dy, and the conditional probabilities are given by

P(r,r,) = (4n D )™ exp(- | r -1, |2/4D, ), (14)
and
PQ,Q0 =Y [(2L + 1)/87%|D,(Q) D.JQ,) exp(-1/1,), (15)

where D,(Q), the Wigner functions, are the eigenfunctions for the rotational diffusion operator
(with U= 0) and (z%,)" are the associated eigenvalues which are given by

(L)' =DiLAL + 1) + (D) - DYk (16)

In utilising these expressions we are also assuming D, (r£2) — D(r). In a liquid crystal
Ur,QQ) # 0, and the dependence of D; on position and D, on molecular orientation may be
significant. Let us, however, assume initially, for simplicity that equations (1) and (8) apply, and
that the probability distribution function P(r,Q,t) is such that it can be factored into spatial and
orientational dependent parts.

3. Symmetries of the Liquid-Crystalline Potential
3.1 ORIENTATIONAL POTENTIAL

In liquid crystals for which U(r,Q) # 0, a probe molecule will experience cooperative torques (cf.
equation (4)) which attempt to orient the probe along a preferred direction in space. This axis is
usually referred to as the director and the liquid crystal medium is said to have uniaxial cylindrical
symmetry. This director is represented by a unit vector n such that n = - n; thus the equilibrium
propetties of the molecule must be described in terms of an orientation dependent potential (or
potential of mean torque) which satisfies cylindrical symmetry about the director as well as
inversion symmetry [9). First we distinguish between the laboratory frame (I) in which the z axis
is taken parallel to B,, the magnetic field, and the director frame (d) in which the z" axis is
parallel to n. We shall let ¥ be the angle between n and B, [20]. When dealing with
macroscopically aligned samples, it is usually possible to select this rotation angle in an
experiment. (On the other hand, if the sample is microscopically ordered but macroscopically
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disordered, then it is possible to perform a sequence of calculations at different director
orientations ¥, and model the composite spectrum as the appropriately weighted integral of the
spectra calculated as a function of the director orientation [21].) The equilibrium orienting
potential for the molecule may be expanded in a complete orthonormal set of functions <I>';,,,(QD )
(cf. equation (6)) [or alternatively, the orthogonal set D,fk(QD ) 1 where (Qy,) represents the
rotation of the molecular (diffusion) frame into the director frame. This set of functions may be
restricted by the following phase symmetries [5]. (1) The potential is cylindrically symmetric
about n, i.e., letting Q,,, = (aBy), then the potential must be independent of the angle a (rotation
about m). This can only be so if m = 0. (2) Inversion symmetry of the potential means that
DD';(QD 5 = Y} (Q, ), the spherical harmonic of rank L and order k has L restricted to even
values. Thus we can write:

(¥ ot
( D)d) =" Z, Ay Dol;(QDd)’ an
kT Lieven) '

where the coefficients A, are dimensionless. Since U(Q,,) is real there is an additional
requirement that A;, = (-1) A,_,, and this is indicated by the prime on the summation in this
equation. The equilibrium properties of the molecule experiencing the potential of equation (17)
are usually described in terms of the ordering tensor defined by ‘

<DL> = ldQP(Q)D,f,,(Q), (18)

with L = 2 and m = 0 and P(Q) given by equation (13). It has the properties of a second rank
irreducible tensor. (Note P(Q) is obtained by first averaging over r.)

Given that we may impose certain symmetry requirements upon the potential U({2) we may
expect that P(Q) given by equation (13) will have the same symmetry properties. In fact, we note
that equation (13) may be written as P(Q) = P[U(Q)], i.e., P(Q) is a functional of U(Q) such that
whatever symmetry operation leaves U(Q) invariant will also leave P{U(Q)] invariant, That is, P
must contain the same symmetries as U(Q). We now observe that equation (1) may be rewritten
as:

AP (Q)/dt = -T PQ,T), (19
where the rotational diffusion operator T is just
r, = [J.{DR(Q,t).J U] /kBT}]. 20)

Unfortunately T is a non-symmetric operator when U(Q) # 0, but can be symmetrised by the
following similarity transformation (which is not unitary). Let
Q1) = P2 PQ,) @n
and
f*“ = p12 l"n Pllz, (22)
where P'? is the square root of the function given by equation (13), but it is treated as an

operator in equations (21) and (22). Then it is easy to show that [, becomes the symmetric
operator {4,5,22]:
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where the torque T exerted on the molecule is given by equation (4). For axially symmetric
rotational diffusion we may rewrite this equation as:
I,=r, +T, @4

with T, given by equation (2), and I'; is

Iy = @ET)* [DRUU) + (Ds - DU V)]
(25)
~(2k,1)* [D(, V) (J.U) + Dy(J, UY].

To proceed further, we simplify the form for U(Q2). First of all, if U(L2) is to have a relatively
simple dependence upon €, then we should consider retaining only the lowest even L values,
(since spherical harmonics of increasing L will have an increasing number of nodes). Typically,
we let L = 2 ( and sometimes 4 as well). Then the A, in equation (17) are the five components
of a second rank irreducible tensor, while the A, are the nine components of a fourth rank
irreducible tensor. [These are due to the requirement that U(Q,,) in equation (16) transforms as
a scalar function, so that the right hand side of this equation is to be regarded as a sum of scalar
products of irreducible tensors]. There is always a principal axis of molecular orientation for the
cartesian components of A, (i.c., the ).fj) such that they are diagonalised, and this means that only
the irreducible tensor components A,, and (A, + A,,) are non-zero in this molecular axis system.
This principal axis system for orientation need not, in general, coincide with that of the rotational
diffusion tensor. We shall, for simplicity assume that there is sufficient molecular symmetry that
the two axis systems do coincide. For simplicity, we also assume that the i, may also be
described by this principal axis system, which is equivalent to invoking D, point group molecular
symmetry. Then only i, (A, +1,,), and (A,+4,,) are non-zero in the axis system. If the
orientation tensor of the molecule has cylindrical symmetry (point group D,,), then the potential
must be independent of angle o in equation (17), i.e., we must restrict the expansion of U(L,,)
to terms for which k¥ = 0. Then only A, (and A,) will be non-zero in our approximation of
retaining just the lowest values of L. (We shall usually restrict the rotational diffusion tensor to
be cylindrically symmetric as we have described. By equation (2) there is still a dependence upon
the quantum number & (hence rotations by angle y). It is often important to retain the A,,, terms
in the potential, giving rise to an asymmetric ordering tensor, since such orientational asymmetry
does have significant effects which may be distinguished in the ESR spectrum.)

3.2. OTHER SYMMETRIES

The symmetries which we have noted are the ones most commonly used in the simulations of ESR
experiments, but others may be necessary as various ordered phases are considered in more detail.
We now consider examples of such situations.

3.2.1. Director Tilt. (a) In smectic phases such as S , the orientational or nematic director n is
titted from the normal to the smectic layers. In this case, if a well-aligned single-crystal-like
sample is prepared, we should just continue to use the director frame in which z" is parallel to n
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(but see later). Our orientation dependent ESR spectra in the aligned Sc phase of 4,4'-di-n-
heptyloxyazoxybenzene using a highly ordered probe, which were performed by rotating the
magnetic field to an angle close to the S tilt during the preparation in order to obtain true
monodomains, showed no signs of director distribution that are typical of spectra due to
macroscopic disorder in two dimensions, ie., the plane containing the magnetic field and the
director. Thus, our results were consistent with the S, phase being rather similar to S, , but with
the director axis tilted from the normal to the layer (see also Chapter 15)

(b) Another model, suggested for lipid bilayers, is based on measured tilts of the hydrocarbon
chain, whereas the region at or near the phospholipid head group is not tilted. Then we may
conceive of a cooperative rotation of the chains in a cone. We may take the director n to be
parallel to the layer normal, but we must recognise the fact that the chain axis prefers to be tilted
by an angle S, with respect to n, although all orientations in the x’y’ plane are equally likely. This
may be achieved by a potential of the form 4Y,( 8,0)+BY,(B,0) or acos’ f+bcos’ g with B/A (or
b/a) adjusted such that the potential minimum occurs at ;. (Of course higher order Y,,($,0) could
be added if desired.

3.2.2. Biaxial Phases. A biaxial phase would imply that even a rod-like molecule would align with
a preferential alignment along the laboratory x" and y" axes (or vice-versa), so that there would
no longer be cylindrical symmetry in the laboratory frame about the mean director n (with n
parallel to the smectic normal). We would have to impose another director d, perpendicular to n.
(Note that in the special case of smectic C alignment, case 3.2.1.(a), it was possible to remove this
complication by a redefinition of m no longer parallel to the smectic normal). We now discuss
some cases of this situation.

(a) Quasi-biaxiality: Hexagonal Packing. Smectic B phases involve positional order within the
smectic layer corresponding to hexagonal packing [25]. Such six-fold symmetry about n would
imply that U(S2) be expanded in D L(Q) such that m = 6n, n = 0, £1, £2, since these are invariant
to the C, group operations. However, whereas this reduces the symmetry from cylindrical, there
is sufficient symmetry that there is no preferential axis of alignment in the x"y" plane [ie.,
<D,,,> of equation (18) is zero], so this is not a true case of biaxiality from the molecular point
of view. In fact, for a potential expandable in DL with L < 4, there will be no distinction
“between six-fold and cylindrical symmetry; we would have to include L 2 6 terms, and they are
very likely to be small [25].

(b) True biaxiality: e.g., lipid bilavers with aligned head groups. When there are distinct laboratory
x" and y" axes for alignment such that both n | z" and d_ | x" need to be specified, then in this
axis frame we may again invoke D, symmetry, but in the laboratory frame. Thus, we would utilise D 4(€2)
with m = 0, £2, =4 ... in this principal laboratory axis system, and the extent of biaxiality on the
molecular alignment would be measured by <Dj},,>, for example.

3.3. COMMENTS

This discussion and these examples are based upon the fact that the D5(Q) functions for (afy)
transform as spherical harmonics ¥;,(,y) in the molecular frame and also as spherical harmonics
Y, (B.) in the laboratory frame, so that we can simultaneously impose laboratory frame and
molecular symmetries upon the U(€) expandable in these functions. This is specifically related
to the property of the D.(Q) that they transform as double tensors [26].
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3.4. ANISOTROPIC VISCOSITY

Because of this double tensor property of the D,5(Q), we can by analogy to equation (2)
introduce J, the vector operator for infinitesimal rotation with respect to the laboratory coordinates.
Then, for an ordered fluid, there can be an anisotropic viscosity even for a spherical molecule.
Equation (2) becomes

r,=§.p.1, (26)
where

J oL@ =L + 1) DLQ)
S oL@ =[C = M+ )] ¥, (@ @7

L. oL Q) = MOL(Q).
In a uniaxial laboratory frame we have D}" = D) and D.*" = D" = ). and equation (26)
becomes

« By - Dy J; @)
with the eigenfunctions ®;(Q) of equation (26) and eigenvalues
(o) = [DRLL + 1) + (D) - Dy)ym?]. (29)

The problem of combined anisotropic diffusion and anisotropic viscosity is difficult to treat in
the general case. Lin and Freed [27] have discussed some general properties of such a diffusion
equation and Moro et al. have discussed a hydrodynamic model [19,31].

3.5. SMECTIC POTENTIAL AND ORIENTATIONAL-POSITIONAL COUPLING

We now consider positional order that exists in smectic phases, and how to introduce the
appropriate symmetries for U(r). In these phases there is a characteristic repeat distance d, the
smectic layer thickness, which is of molecular dimensions. Thus, we can Fourier analyse Up(r)
along the z" axis [28,29]:

UL(r)/k,T = iam cos[(2mnz"/d) ~ 4}, (30)

mel

where ¢ = 2nz;/d, is a phase shift which specifies the origin of the coordinate system. For
example, the arbitrary zero of Uy(r) may be chosen to be at z" = md, where m = 0, 1, 2, ..., by
selecting ¢ = n/2, so z; = d/4. Usually, only the leading terms, e.g., a,, are taken as non-zero.
When we consider the total potential U(r,Q), then we should expand it in products of D(Q) and
cos [(2mnz"/d)-¢p]. A simple form for the S, phase, that is suggested by McMillan’s molecular
field theory of the smectic phase transition [30], has been used by Moro and Nordio [19,32]; it
is
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U(Bz")/ k,T =[4 + Bcos(2mnz”/d)]D§o(Q) + Ccos(2mnz"/d). €)Y

The A4 term reflects the molecular potential for an axially symmetric molecule relative to the
nematic director, and the C term is the smectic potential. The significant new feature is the B term,
a coupled orientational-positional potential term representing the idea that the orientational
(positional) potential of the probe molecule should depend upon the probe location (orientation)
within the smectic layer.

4. Relative Translational Diffusion: The Pair Correlation Function

The ESR techniques for measuring microscopic translational diffusion actually examine the
relative diffusion of two probe molecules A and B [33]; ie., U(r,.rp), and there is a general
diffusion tensor [14]:

(32)

>

- D, Dy
D:=b b
BA BB

where Dy, = D, If we focus on the relative motion of these two molecules, and ignore any other
effects such as external fields or ordering potentials, then we can write the Smoluchowski equation
for the motion of the relative coordinate r = r, - ry as

oP(r,0)/0t = V,.D(r).[V. + F(r)/k,T|P(r.,)) (33)

which has the same form as equation (8), but now
D(r) =D,, +D,, -D,, +D,, (34
and the mean relative force
F(r) = -V, Ur) =V, U = -V, Ur) (35)

with U(r) denoting the potential of mean force between molecules A and B. We may obtain U(r)
from the equilibrium radial distribution function g(r) [34], ie.,

1n g(r) = -U(r)/k,T (36)
so that the effective force becomes:
F(r) = V. lng(r). (37

This means that in the limit t — oo, P(r,?) will yield the equilibrium value g(r), whereas for finite
times, F(r) is the driving force acting to restore this equilibrium. Relative translational diffusion
in both three and two dimensions [35] has been studied in this context (but with D,; = 0)
displaying the importance of the radial distribution function on the motion.

5. Fluctuating Torques and Slowly Relaxing Local Structures

The spin probe dissolved in a liquid crystal environment is oriented with respect to the solvent
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molecules surrounding it. Besides the potential of mean torque, it also experiences fluctuating
torques from the time dependent interactions with the surrounding molecules. In particular, the
rapid random components of the fluctuating torques give rise to the frictional resistance to
rotational motion, from which the diffusion tensor D, may be calculated in the brownian motion
limit. Qur development in the preceding sections assumed the basic validity of this brownian
motion limit. When, however, the probe molecule is not much larger than the solvent molecules,
it experiences fluctuating torques with relaxation times not much faster than that of the probe
molecule, and this can lead to non-brownian effects on the molecular motion.

A general approach to this problem was provided by Hwang and Freed [14]. We shall use a
somewhat simpler approach [15], wherein we consider only rotational motion, to illustrate two
general cases that arise depending upon the time scale of the fluctuating torques. What is
observed, after the incorporation of the effects, is non-exponential relaxation behaviour with
Fourier transforms yielding non-Debye types of spectral densities. We begin with the generalised
Fokker-Planck equation and reduce it to its Smoluchowski form. Then we consider the two
limiting situations corresponding to fluctuating torque modes that are fast compared to R;" or R’
and modes that are slow compared to 1,. We refer to these cases as the fluctuating torques and
the slowly relaxing local structure models, respectively.

The generalised Fokker-Planck equation for probe molecule B in the liquid crystal may be
written for the distribution function f5(Q,Lg,?) as

% —iw,.d +L,.(V,), + <TB>.(VL)B]fB(t)
(38)

= (V). L’ GGt - 7). [0, /T + (V)] fi(D),

where wj is the angular velocity of molecule B, L; is its angular momentum, and J is again the
vector operator that generates infinitesimal rotations. The third term (L;.(V,)) is the inertial (or
precessional term whereas <T;> represents the mean torque experienced by particle B. (The
instantaneous torque is just T,(f), and the angular brackets imply ensemble averaging). Also,
G(t -1) is the operator equivalent of the correlation function for the fluctuating or random torques
on particle B, and its calculation is, in principle, a many body problem. The random part of the
torque has a zero time average. If we assume that G(f) relaxes extremely rapidly so that it has a
white noise spectrum [i.e., G(?) = G,3(7)], then equation (38) becomes the typical Fokker-Planck
equation for rotational reorientation of a brownian particle.

Assuming that the angular momentum L, relaxes on a much shorter time scale compared to
both D;' and any fluctuations in the <T,> term, we may proceed to obtain the gencralised
Smoluchowski form by integrating over the angular momenta after a generalised perturbational
approach, based upon the rapidity of angular momentum relaxation, is introduced. We
obtain [5,14}:

P,/ 3t = L’driJ.DR(t - 1) [+ <T,0,Q)>/k,T]|PQ), 39)

where Dg(?) is a time dependent rotational diffusion tensor defined by its Fourier-Laplace
transform Dy(s) (where s = iw):

D, (s) = (k,TV K"(s) (40)
and K(?) is given by
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K@) =<(T,t = 0)-<T,>)(Ty () -<T,>}> (4D

i.e., the actual time correlation function of the fluctuating part of the torque averaged over the
ensemble of solvent molecules. Using the fluctuation-dissipation theorem we may relate K(s) to
a friction tensor

K(s) = Ik,TB(s), (40a)

where f(s) is the friction tensor, and I is the moment of inertia tensor. Hence Dg(s) may be
looked upon as the generalised rotational diffusion coefficient which is frequency dependent
because of the fluctuations in T(Q,#). If the memory in Dy(?) is extremely short [i.e., Di(H) =
D; (2), with 8(s) the Dirac delta function], then equation (39) becomes just the rotational
Smoluchowski equation given by equation (1). To proceed further, we must know the time scale
of the various fluctuation modes. We decompose the effects of the spectrum of fluctuating torques
into two parts for simplicity: (i) the faster components for which 1,<,, that lead to the diffusive
type reorientations and which are included in equations (40) and (41), and (ii) the more persistent
components, which represent systematic local torque effects over time scales greater than t,, but
which average out in times 1, >7,. They are included in a slow time varying mean <Ty(#)> with
correlation time 7,. The components relaxing on the order of 7, will contribute both types of
effects, but, because of the greater complexity of their analysis, we implicitly include them in both
types of effects.

5.1. FLUCTUATING TORQUE INDUCED REORIENTATION

It is important to remember that the <T;> is non-zero in liquid-crystalline phases due to the
presence of an average orienting potential felt by the probe molecule. Further, assuming a single
exponentially decaying correlation function,

K@) = Ik TV exp(-t/t,)
we obtain for Dy(w):
D () = (k,T/IV?) (-iw +1,) = D(O) (1 - iwTy). 42)
This equation can easily be generalised to take into account the anisotropic nature of Dy. It is
convenient to Fourier-Laplace transform equation (39) to give
[-io - D(-iw)][J? - id <T,>/kT|PQ, -iw) = P(Qt=0) 43)
and solve this equation by expanding P(£,-iw) in the complete orthonormal set of functions or,

given by equation (6); further details may be found elsewhere [5,14]. Because of the complexity
of the results, we only give here that for <T;> = 0:

L
T
JYw) = _L”*_Z__, 44)
1+ g, (1) @

where the t2;' are given by equation (16) corresponding to the eigenfunctions @, and
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Ene = (1 + 1, /T (45)

The parameter €, represents the correction to the Debye spectral densities. It is also possible to
consider anisotropy in the fluctuating torques as well as <T,> # 0 [5,14]. Added in proof: A
recent general analysis of this case by the multi-dimensional Fokker-Planck-Kramer's method
shows that the range of validity of equation (45) is limited to (7 / 1) « 1. This new work gives
the complete numerical solution; [cf. Polimeno, A. and Freed, J. H. (1990) Chem. Phys. Lett., 174,
338.]

5.2. FLUCTUATIONS IN THE LOCAL STRUCTURE

In this case we neglect any memory in D,(f) and assume that it becomes time independent in
either a body fixed or a laboratory fixed frame. In the body fixed case

aP(Q,1)/at ==iJ.D(Q).[iJ - <T,(1Q) >/ k,T|PQ,0). (46)

Now we decompose <Ty(£,Q)> as:
<T () > =T + T'(1), @7

where T is the true mean component and T’ is a slowly fluctuating time dependent component
with relaxation time 1, such that 1, » 1. This means <T,(£,Q) > remains essentially constant over
time intervals in which molecular reorientation of particle B occurs. We may regard T’ as
quasistatic, and calculate an ESR lineshape due to the combined effect of T + T’. Then we
consider the effects of T’ on a longer time scale. (More complicated cases of cooperative
hydrodynamic modes of fluctuation near phase transitions fall under this category and are treated
in detail in Chapter 14). We shall assume | T’ | # 0, and define the local director orientation
with respect to the laboratory z axis by Euler angles @. It is further necessary to define the local
order parameter Q_;

0, = S,D,,(8). (“48)

We then calculate the spectral densities as a function of ® and average them over an isotropic
reorientation of ®@ with the slow relaxation time t, [5,12,36]. It leads to the prediction that the
spectral densities become:

1 Sit
JHe) = — ™ 1 -8hH L1 49
(1 + o' () 1+a'r,
Note that spectral densities of this form may be written down quite generally for any relaxation
process whose correlation function is expressed as the sum of two exponential decays, and the
slowly relaxing local structure model is one such case that is believed to be relevant in molecular
dynamics in ordered fluids. Added in proof: This model has now been studied in great detail
including the range of validity of equation (49); [cf. Polimeno, A. and Freed, J. H. (1990) Chem.
Phys. Lett. 174, 481.]
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