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Theory of Multiple Resonance and
ESR Saturation in Liquids and
Related Media '

Jack H. Freed

L. Introduction to Saturation

1.1. General Considerations

The well-known result from the steady-state solution of the Bloch equa-

fions is that the absorption is given by the y component of magnetization M,
in the rotating frame'!):

Y vH, T,
M =

PTG M0l + BT T )
with M, the equilibrium magnetization, f, the strength of the rf magnetic

field, and y, the electron-spin gyromagnetic ratio. When we switch to a
quantum mechanical description, we can calculate

My =M, +iM,= (M, £ iM,)e*" (2)

statistically from its associated quantum mechanical operator
My =NhySy (3)

where 4" is the concentration of electron spins, by taking a trace of the spin
density matrix o(t) with the spin operator S, :

M(t)= A hy. Tra(t)S, (4)

The trace is invariant to a choice of zero-order basis states.

Jack H. Freed e Department of Chemistry, Cornell University, Ithaca, New York
73



( 74 Jack H. Freed

The basis of our analysis here will be the equation of motion for a(t)
appropriate in the motional narrowing region, which has been derived in
several places."'-* That is, we write in operator form

6= —i[#o + &(t), ]+ R(o — 0,,) (5a)
which may be rewritten in terms of matrix elements as

Ou(t) = — i3y Oy — ife(t), 0)ue + 5 Raa'py'(o'ﬂp' = Geqpp’) (5b)

where , is the zero-order spin Hamiltonian leading to the resonant transi-
tion frequencies w,, between eigenstates a and o, £(t) includes the interac-
tion of the spins with the various oscillating rf and microwave fields, which
induce the resonances as well as any high-frequency modulation of the dc
field, while R is the relaxation matrix with elements R,q4p- - The relaxation
matrix yields the linewidths and the transition probabilities for relaxation
from nonequilibrium population distributions. It is clear, from the form of
equations (5) that in order to get stable exponential relaxation, we must
require that the real part of R,,.z,- be negative (i.e., Re R < 0). We will give
simple examples of the use of the relaxation matrix below. The inclusion of
the equilibrium density matrix o., in equations (5) is part of a high-
temperature approximation for which we write

. exp(—hot'o/kT) zl( _hAty
U Trfexp(— hAt'o/kT)] A kT

(6)

where A is the total number of spin eigenstates and k is Boltzmann’s
constant.

1.2. A Simple Line: Two-Level System
We have from equation (5b) that when E(t) = 0 and R = 0, then

oaa'(t) = cxp( - iwan’ t)oua'(o) (7)

Thus, if 6,,(0) # 0, then a,,(t) will be oscillatory. Now suppose we have
only a simple line with @, = w,,, where a and b are the M, = { and —1
levels, and there are no other spin levels. Then

<b|S-|a) =<a|S.|b) =1 (8)
and .
Tr[a(1)S+] = 0(t)paS + a6 = 6(t)pa 9)
with ~

Tpa(t) = eXP[( =iy, + Ry, pa)t]61a(0) (10)
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We have in equation (10) included only the “diagonal” element of this
four-indexed variable. In this form, we see that —~Ryspa= T3 " for this
simple line whose relaxation is uncoupled to any other lines. Since Re R is
negative, a,,—0 for > |ReR|™!. Thus, there will be no steady-state
absorption unless we include effects of the rf field. So we add to the
Hamiltonian

he(t) = $hy B,[S, e™ ™" + S_e*i] (11)
“fhich is the interaction of the spin with a rotating field B, = B,(cos wti +
sin wtj). Then for our simple line the {b| — |a) matrix element of equation
(5a) is
Opa = (i + Ry, ba)0ba — id(a),, — Tua)e™™ (12)
where
d=%)’¢Bl<bls— |a>=%)’¢Bl (l3)

Now the power absorbed from the rotating field is just‘h:

—wBli

P=wB M, = 5

(M, e it — M_ e (14)

where from equation (4) M4 oc Tr,[o(t)S,] and S, ,, requires a(t),, in the
trace. Thus, only the component of a(t),, oscillating as e** will give a net
time-averaged power absorption. So, let

O'ba = Zei"" (15)

and assume Z is time independent to achieve the steady-state solution.
[More rigorously, the steady state o,, may be expanded in Fourier compo-
nents nw, where n=0, 1, 2, ..., but only the component oscillating at
frequency w need be considered (see Freed et al®).] Thus we have

(Aw + iRy, 4a)Z = d(oy, — 0,, (16)

where (g,, — 0,,) is the population difference in the two states. Now note
that ¢ is Hermitian, so a,, = ¢, and

o:b — Z‘:e—i(ul (17)
Thus,
PxclmZ =2" (18)

We may begin to suspect that Z plays the role of A + (while Z* is M _). Also,
we have already noted that

Rba. ba = “‘(I/Tz)ba = _(I/TZ)ab
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We now need the diagonal spin-density matrix elements o,, and a,,, which
in steady state are not oscillating in time. We get from equation (5b),

Raa,aaaaa+ Ruhbbdbb=dl‘(z—2‘)= _2dImZ (198)
Ry, 00000 + Ryp, pp0pp = 2dIm Z (19b)

Here we see that R,, ,, and Ry, ,, play the role of transition probabilities.
Thus, we may write

Raa. b = Rbb, aa = Ygp = u/bu (208)
while
Raa.aa = - Z u/ay (20b)
. Y+#a
where W, is the transition probability from state b to state a, which leads to
spin relaxation. Note that in the high-temperature approximation,
Wop = Wy,; e, the matrix formed from the transition probabilities is
symmetric.
For simplicity, let y = b only (i.e., our simple line). Then we have

Was(Xa — X) = 2dZ" (21)

where , :
Xa =040 — Oeqaa (223)
Xb = Opp — Oqpp (22b)

so that the eflect of the W,, etc., is to lead to thermal equilibrium [cf.
equation (6)] in the absence of &(t). Now equation (16) is rewritten as
(Ao — iT3 1)Z + d(x, — x») = quod (23)
where the high-temperature approximation [cf. equation (6)]
exp(—E,/kT) — exp(—E,/kT —how,
Ocqaa — Oeqbb = p( / ) p( 2 ) = > = —qug (24)

Y. exp(—E,/kT) ~ kT4

has been used. Here, A4, the number of spin states, is 2 in our example. We
now need to solve the coupled equation

Aw T3' d z qwod
-T;' Aw O z" = 0 (25)
0 -2d W,/ \ta—1s 0
This gives:
Z =Aw T, 2" (26a)
Zu qdwO TZ (26b)

"1+ A0’ T2 + 4T, T,
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where T, = 2W,)~! and
LT
1+ Aw’T? + 4d°T, T,

These results are very similar to steady-state solutions of the Bloch equa-
tions, and we can get correspondence if

(xa — 1) = quodd? (26¢)

hw
2A”O = 4o = Z—k—;——- = Oeqan — Oeqbd (273)
L= (TZ)abv T, = (Tl)ab (27b)
YB= —wok + 2|d|(icos wt + jsin wi) ' (27¢)
Z=M, ZzZ=M, Z=M, (27d)
Xa— Xp=2(Mo — M,) (27¢)

The above treatment is based on the high-field approximation w,/y, =
|Bo| > | B, |, as well as the fast motional condition |o# 4|t < 1, where
H ((t) is the random perturbation leading to the relaxation matrix Ryapp - T
is the relaxation time for the random process modulating 5, (t), and this
second inequality is the basis of the motional narrowing expression equation
(5) for 0.=% 1t also requires that |yB, |t < 1 in order that the R not be
significantly affected by the presence of the rf field.(!:5)

1.3. A Simple Line: Multilevel System

The next most complicated case is a simple line coupled by relaxation
to other spin eigenstates (see Figure 1). We now have

Z Waa(Xa - XG) =2dImZ (283)
atao
2 Waults = %) = —2dIm Z (28b)
atd

And, for « # a, b, we get A — 2 equations
> Wes(ta — 25) = 0, B+a (28¢)

In equation (28c), we have assumed all transitions other than a - b are too
far off resonance to have any appreciable off-diagonal density matrix ele-
ments; i.e., they are not excited by the rf field. Note that we can rewrite
equation (23) as

Z = d[woq — (X — %))
Aw —iT;!

2%)
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Figure 1. The pair of states corresponding to a simple line that are coupled by relaxation to
other spin eigenstates.

When Aw is very large, then Z — 0 as (d/Aw) — 0.1n discussing this limit, we
shall often use the convenient artifact of letting d —» 0 for that transition
instead of more rigorously letting (1/Aw)— 0.

The conservation of probability is

Tro=Tro,,=1 or Try=0 (29)

This is needed, because the above set of 4 equations are not all linearly
independent. We can write these A equations in matrix notation as'®:

Wy=U (30)

withU; = —U, = 2d Im Z. When the rank of W is 4 — 1, then replacement
of any one equation by equation (29) yields the matrix W', which is now
nonsingular, and we have

X = (W)U (30)
Proper solutions of this W inversion are crucial in all saturation and

double resonance analyses. It is possible to obtain general solutions by

taking advantage of the general properties of W as developed in the
Appendix.'6-7

(Xa - Xb) = Qba.bn Vba[qwo - (Xa - xb)] (31)
where from equations (16) and (22)
dZ" = V[qwo ~ (Xa — 15)] (32)
with .
Vie = 2d*Th /(1 + T3 Aw?) (33)
and
Qba. ba = 2Cba. ba/C (34)
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where C is any cofactor of W (they are all equal, as may be shown from the
properties of W'), and C,, ,, is the double cofactor of W obtained as the
(signed) determinant resulting when the ath and bth rows and columns are
deleted from W (see the Appendix).‘®’ More generally, we write

Q0 =2C; u/C (35a)

where C;, ,, is the double cofactor of W obtained by deleting the ith and jth
rows and the kth and Ith columns of W and giving it the correct sign (cf. the
Appendix).

The proof of equation (31) from equation (30') is as follows. First we
note that equation (30') may be rewritten as

Xi= Z (C,'(,-/[W'l)U,'( (36)

where Cj; is the kith cofactor of W', Now

k

where the second equality follows from identity (1) in the Appendix [equa-
tion (A.22)]. Now, for this case of a single transition, we have

1
(Xa - Xb) = A—'C 2“: (Cll(a - Cl’(b)Ul'(

1
=C Y CuaUi= Y QuaUL2 (38)
K K

where identity (3) of the Appendix has been used. We now recognize that
only U, = — U, are nonzero, and since [ is arbitrary, we let [ = b to yield
equation (31).

The net result is to obtain our earlier results of equation (26), but now,

T, - TItha. ba = %Qba (39)

where Q,, is the saturation parameter for the b« a transition. It is not a
simple T; nor decay time. In fact, there are as many as (4 — 1) different
nonzero decay constants in the transient solution (which come from diagon-
alizing the W matrix). This Q,, may be regarded as a steady-state sell-
impedance representing the response of the b«sa transition to the
application of an rf field. That is, we rewrite equations (31) and (32) as

(Xa — x5) = Qpa (‘12") (40)

and make the electrical circuit analogy by letting (x, — x,) = E. Q,, = R, and
dZ" = I. Thus, we see that inducing a resonant transition is formally equiva-
lent to inducing a current flow, which causes a voltage drop (x, — x,) pro-
portional to the resistance Q,,.
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2. ELDOR

Now we introduce a second Esr microwave field. Assume there are only
two transitions of interest (see Figure 2). Now we have

o{t) = 42, B[S, exp(—it, 1) + S_ exp(+ it 1)]
+39.B,[S . exp(—iw,t) + S_exp(+ iw, )] (41)

where 0 and p refer to observing and pumping modes, respectively. We are
looking to the applied fields to generate steady-state off-diagonal density
matrix elements as a result of the resonance phenomena. We assume

ly¢Bol’ h’eBpI’ lRl < 'wan' —wbb'l ~ 'aI (42)

so the hyperfine lines always remain well separated. Then we may have
Wog = Wy = —Aw, ~0, while |w, ~w,| ~ la] ‘and w,, —w,= —
Aw, ~ 0, while |wyy — @, | ~ |a|. Thus, the important elements are:

aa‘a = Xa’a = Za‘a CXp(i(Da[) = Za CXp(i(Dat) (43&)
Opy = Yoy = Zypexplin,t) = Z expliw,t) (43b)
We obtain from equation (5)
(Awo - '/TZ. a)za + do(Xn - Xa') = qwaa'da = qwedo (44&)
(A(D,, - '/Tz p)zp + dp(Xb - Xb') = gy dp = qwedp (44b)
Also, the analogs of equations (28) are now
Z wm(Xa - x«) = 2daZ: (453)
ata .
Z u’a'u(Xﬂ' - Xu) = _2dozn’; (45b)
ata’
;bwba(x» ~Xa) =2d,Z; (45c)
Z u/b'a(Xb' - Xrl) = '_2de: (45d)
atd’
. W, . M, M,
tt  remm——— + =
A 4
\ \
| |
: Yaar™ Wo : Yor~ Y
\ \
~ :
af & wn [ v

-4 ‘v-""" -

Figure 2. Example of LDOR being performed on a simple four-level system.
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These equations may be rewritten in matrix form as

(K+iR)Z=dy+Q (46a)
(W)(y) = —2d"7Z" (46b)
where
d,
Q = qo, ( ) (473)
dP
Aw, 0
K= (47b)
0 Aw,
T34 0
-R= ) (47¢c)
0 T;}
d, —-d, 0 0
—d= (47d)

0o 0 d, -d,

W/ is a 4 x 4 transition probability matrix in the space of the four spin
eigenstates with the jth row replaced by ones, and d*/ is ll_le transpose ofd
with the jth row replaced by zero. Z is a vector in the two-dimensional space
of induced transitions. The formal solution is given by

77 = M—l(_R—l)Q (483)
Z' = (—-R™Y)KZ" (48b)
dy = —SZ” (48c)
where
M=1+ (R™'K)? + (—R"1)S (49a)
and
S = 2[D(W/)"'D"/] : (49b)

Suppose d, = 0. One recovers the single-line, simple saturation result, and
by comparison, we find

So0=AdX o =d2Q, , (50)
One finds more generally (cf. Section 6.2.2 and the Appendix),
Sl.l’=d‘.dﬂ91.ﬂ (51)
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where Q, , is a cross-impedance (cross-saturation parameter), which is
determined solely by the spin relaxation processes and represents the im-
pedance at transition i from an external disturbance (e.g., aresonant rf field)
on the transition j. [It is obtained by equation (35a) with i — j being the Ath
transition and k — [ the nth transition.]
Thus, equation (48c) is a generalization of equation (40) for the single
resonance case. In fact, it gives
Wa — 2)=4d,9Q,,2;+4d,9Q, 27 (52a)

p="0,. p™p

(o — 1) =d,9,,,Z; + d,Q, .,2;. (52b)

P"p. p

with an electrical circuit analogy similar to that of equation (40). It follows
from equations (47)-(51) that

L+ AwlT, + 2T,  4,d,9,,T;,
M= (53)
dpdan',,Tz_p 1+ AwﬁTg'p + df,Tz' 2

where we have let Q, , = Q, and Q, ,=9Q,. Then, from equation (48a),

- éo/np. [

B T Ry oy

(54)
with .
¢, = dﬁTLPQa_ 2. 0/(1 + AwﬁTg.p +diT;, »2) (54")

Now consider some special cases. Let us have Aw, = 0 (represented by a
superscript r) and very strong saturation of the pump mode:

diT,Q,> | ' (55)
(where we are now dropping the subscript 2 on the various T;). Then
' {ldy > 0)= 9, ,9,,/0, (56)

which is just relaxation determined. We now let T, ,=T,, etc. Then

(QP - Qa. p)/Qp
1+ T2 Aw? + diT(Q,Q, - Qa.' »2.0)/82,

Z,=q0,Td, (57)

I we also introduce the generalized no-saturation condition for the observ-
ing mode,

4 TQ.Q, - Q, ,9,.)Q,] <1 (58)
one has the simple result that

Z/I — nqweda [1 — Qa. p]
P

= 59
1+ Aw?T? (59)
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Since Q, is always positive," it follows from equation (59) that for
Q,, , >0, the signal is reduced by the presence of the resonant pump field,
while for Q, , < 0, the signal is amplified. The limiting (but not realistic)
case for equation (59) occurs when W, is very strong and W, is negligible.
(Here, W, and W, are, respectively, the lattice-induced electron spin-flip and
nuclear spin-flip rates.) Then the case for the energy levels shown in Figure
(2) .is easily understood. Let P; be the population of the ith state. Then
saturation by w, causes P, = P, a strong W, causes P, = P, and P, = P,.,
leading to a reduction in intensity of the observed signal. This extreme will
be seen to be equivalent to Q,,=Q2,=Q,.

There are actually two eflects that can be seen in ELDOR:

EFFECT 1. The no-saturation effect discussed above is a polarization
effect (not unlike an Overhauser effect in NMR), but the two transitions
involved have no level in common, and this places special requirements on
the relaxation processes in order to obtain significant effects. ,

EFFeCT 2. This effect is important only when Z; is being saturated. It
reflects the fact that the induced absorption mode Z, acts as an induced
transition, which, in conjunction with lattice-induced transitions, can facili-
tate the rate of energy transferred from the observing radiation field to the
lattice via the spin system.

Effect 1 is the main effect in ELDOR, while the analog to Effect 2 is the
dominant one in ENDOR. Further details are given in Hyde et al.*® It should,
however, be noted that typical ELDOR experiments yield derivative signals for
low-enough field-modulation amplitude and frequency.® Complicating
effects arising from high-enough field-modulation frequency (and ampli-
tude) are discussed in Chapter 5. :

3. ENDOR

3.1. General Considerations

We again consider our four-level system, but now,
&(t) = 3y, B[S+ exp(~iw,t) + S_ exp(+ iw, 1))
+ 3y, B,[I, exp(—iw,t) + I_ exp(+ iw,t)]
+ 37, B.[S+ exp(—iw,t) + S_ exp(iw,t)]
+ 4 B1, exp(—iw,) + I_ explio, )] (60)

In equation (60), the microwave field at frequency w, is to induce electron
spin flips, while the rf field at [requency w, is to induce nuclear spin flips.
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-

s= Y J=I=1
al+;4) b|+;-)
We
™ b’l . Figure 3. Example of ENDOR being per-
ol-iv> @n =i formed on a simple four-level system.

Thus, the last term in equation (60) can be neglected as being too far off
resonance to affect the nuclear spins. The third term in equation (60) does
have a nontrivial effect on the effective transition moment of the nuclear
spins.(®

This arises from the correction to the high-field wave functions to first
order in the off-diagonal hyperfine term: a,Sy I3 (e.g., for the four-level
system discussed below, the states a’ and b are more correctly (| — +) +
af+ =>) and (|+ =) —a|~ +)) where the small mixing coefficient
@ = a,/2B, . The elfective transition moment is then found to be

d,=d, (1% (y./7,)a,/2B,) (61)

where d,, is the nuclear transition moment in the absence of this correction
and the + signs correspond to M, = +).
Let us assume the four-level system shown in Figure 3. Let

Ar=w,— 0w, ~0 (62a)
A =w,— gy =0 (62b)

Then, for assumptions similar to those used for the ELDOR case, we expect
important steady-state off-diagonal density matrix elements:

Xoa=Zys€' = Z, & (63a)
Yoat = Zyg €94 = Z, gion (63b)

We obtain the series of equations:
A ~iT)Z, + d(xa - x0) + d, 2, = qu,d, (64a)
By = IT)Z, + d (e = 1) — d. 2, = qu, d, (64b)
[Ac+A,-iT)Z, -d,Z, + d,Z,=0 (64c)

where T,, T,, and T, are the T, for the ESR, NMR, and cross-transitions,
respectively, and all other terms we defined by analogy with previous
definitions. Note the appearance of

Xoa = Zy,expli(w, + w,)] = Z, expli(w, + w, )] ~ (65)
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This is an overtone term—a two-quantum effect. Also,

,;,W"(X" —X)=2d,Z, (66a)
l;W.,'a(xa- ~Xa)=~24.Z7+2d4,Z; (66b)
a;,, Wty — x2) = 0 (66¢)
; Woalty — xa) = ~24,2; (66d)

Again.we may write these equations in the matrix form given by equations
(46) with the formal solution given by equations (48) and (49). Note that the
K, or coherence matrix, is
A, 0 d,
K=10 A, —d, (67)
dn _dc Ae + An
and is no longer diagonal. Also, intensities are proportional to
| w,d,
= d
Q=g¢ w,d, (68)
0

but because w./w, ~ 660 for protons, we may usually set
wtdt
Q=gq| O (68')
0

which amounts to neglecting the analog of Effect 1 in the ENDOR case.

3.2. Neglect of Coherence Effects

The coherence effects arise from the off-diagonal elements in the K
matrix or, in other words, the contribution from Z . Consider the case of
exact resonance, when A, = A, = 0, since this is the condition under which
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double resonance effects will be maximized. Equations (64)-(66) and
(48)-(49) then yield
Zr=2r=2"=0 (69a)

q.d,T,
- 9b
ST i@, - &), T LT, (690)

where
TdUT + |Q. .|)?

“= T 0T+ T, (69¢)
Thus, from equation (69b), when
1+dQ,T,> 2T, T, (and & #Q,) (70)

the coherence effect on Z2" may be neglected. &. leads to an enhancement of
a saturated EsR signal, since it eflfectively reduces the saturation parameter
Q,. Now, when

1 +d0,T,» 22T, T, (71)

it follows from (69c) that the ratio S/ will not be affected by d,, and
further, if
Q.. > T, (72)

we may completely neglect the coherence effects.
If there is appreciable saturation and

d? ~ d? (73)
then we can replace equations (11)-(13) with the simpler set of conditions
Q.,Q,|Q,.|>T. (74)

for the neglect of coherence effects. The inequalities of equation (74) are
fulfilled if the T, or saturation parameters are much larger than the T, or
inverse linewidths.

Now our solutions for A,, A, =~ 0 are

q0.d, T,
" 7
Zc 1+ (AeTe)z + (Qe - fe)Tedg ( Sa)
2 2
ée dﬂ (Qe, ") 7:' (75b)

T QAT ET,

If the ENDOR spectrum is monitored after subtraction of the ESR signal, then

for A,=0and Q,T,d?> 1, we have

Q:., daT,

Q: 1+ (A1) +[1 - (Q2,/Q.0,)]T,Q,d?
(76)

Zinoor — Zgg = qwcde(

Multiple Resonance and ESR Saturation 87

Thus,. the signal strength is proportional to (Q.../2,)% and the shape is
a Lorentzian of width T ! and (modified) saturation parameter

n,( - QB%) (77)

The enhancement of an Esr line due to ENDOR is then, from equation (76),

"y "y
E Ziwoor — Zig _ &

[

4= (20, |
(Q2 - 1) (78)

” = —*
ZENDOR Qe - ée A,—0

where d? - oo implies

2T.Q,» 1 - (78')

Fur.ther details may be found in Ref. 6. Note, however, that typical ex-
perimental arrangements yield the derivatives of Zgse and Zgnoor (see
Chapter 2). , '

3.3. Coherence Effects in ENDOR

We now return to equations (62)-(67) and Figure 3. One obtains an M
matrix [(see equation 49)]: , :

M=
e n x
1+ T1A7 + T(T,d? + 0,4%)
Ldd@Q,,-T1)
Ld[TL A, + T.(A, + A,)]

T,d,d.(n.,. - T.) T,d.[T, A. + E(Ar + A-)]
~Td[T.A + T,(a, +A))

“LA[TA + TA +A)] 1+ THA, +A)+ T(T.d} + T,d})

(79)

Thus we see that the general solution is quite complex, so we consider
specific cases®:

1+ TIAL + T(T.d! +Qd3)

3.3.1. Negative ENDOR—W eak Examining ESR Field

Here we may set all terms in équation (79) containing d, equal to zero.
Let us consider the ENDOR mode of sweeping through w, while A, = 0. Then

" TIAY+ 1 + T,T.d?
Z!=qw,d,T, (80)

TTIAD+ (1+ TLTdYY
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b
'Figurc 4. Distorted ENDOR line shapes caused
by coherence effects. (a) High B2, long T,
medium B}. (b) High B?, long T,,, high BZ.
c (c) Low BY, long T,, high B2.

Thus, a finite d, acts to reduce the resonant ESR signal, and a maximum
reduction occurs for A, = 0. Thus, “negative ENDOR” can be used as a
means to detect ENDOR signals.

Now, in order to get appreciable reductions, the quantity T, T,d?
should not be too much smaller than unity. Usually, T, ~ T, (see Ref. 9), so
this condition may be restated as “ T?2d? should not be too small.” Since it is
often true that T, < Q,, it is not always possible to obtain sufficient rf power
to make this method work. An example of negative ENDOR superimposed on
anormat ENDOR signal is shown in Figure 4.

The cause of the reduction is readily seen by examining the expression
for A,=0and w, swept. Then

' T
Ze - qwede 1 + TgAZ + nndﬁ(l - ée) (Sla)
with .
272
¢ = _ (T + TpAl (81b)

1+ T+ T,T.d°

The denominator in equation (81a) can have more than one minimum.
Thus, differentiating Z” with respect to A, and setting it equal to zero, we get
extrema for

) A,=0 (82a)
dan
| A = yT Y d(T, + TNT,/T)' — y) (82b)
where
y=(l+ T,Td2)""? (82c)
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These expressions yield a critical value of d,

T Tx—Te i .
Ay = +T;'(2 + T,/T,)= 1 +1//3T, (83)
For d, > d¢™*, there are two peaks in the ESR experiment given by equation
(82b), but for d, < d=vit, there is only one peak at A, = 0. When T, T,d? » 1,
one has A, = +d,, and it is possible to use this as a method for measuring
B

ne

3.32. Very Weak NMR Field

All terms in equation (79) containing d, may be set equal to zero. Z!
becomes an ordinary saturated Lorentzian and is unaffected by d,.

~,

b
..

3.3.3. Strong ESR Field but Weaker NMR Field ~.

Here we require that d, be still strong enough to saturate thm, or
T,Q,d% 2 1 (84a)

so the induced relaxation effects of the NMR field on the ESR are not negli-
gible. We further require that

d,>d, (84b)

such that the inequality of equation (70) holds but the inequality of equation
(71) is reversed. This will lead to a coherence splitting of Z}, by d., but no
splitting of Z by d,. The coherence splitting on Z,, can then be observed via
an ENDOR enhancement technique (see Figure 5), and it could be used to
calibrate B, (or d,).

3.3.4. Splitting of ENDOR Lines by a Strong NMR Field

In this section, we start by assuming that we may neglect the electron-
nuclear coherence effects of the type discussed in Sections 3.3.1t03.33 [ie,
conditions like equations (70) and (71) apply]. The simplest case of interest is
then for S = §,J = I = 1 (see Figure 6). There is still a two-quantum transi-
tion Z_ involving coherence between the nuclear levels. We thus consider in
Z the four transitions given by Z,, Zy =(1/2'2)(Z, + Z,), and Z_, where
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~ N 2 1
{3 3 s=% J=I=y
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z£ o =E I ' :
o .3 ) P~ © = $
i £ bl-i+> di-io0) t-3i->
* =2 } @ Z4 IR 22
[\V]
L &
! < E Zc
N K g ; Figure 6. Transitions and eigenstates for double resonance in a radical with S =1} and a ’
o i S ; nuclear spin of I = 1 (or the J = | states of two equivalent nuclear spins). (From Freed et al!®)
|- q g .
N -2 '
N g ;
i 1 : i I . . .
Kl o % Z, can be any of the three allowed EsR transitions in Figure 6. The M matrix
& B in this case is
© Q © ;
< Lo & ; e + ¢
« ~ 9 i
i B~ ’ L+ T+ TS, (LTS, /TS, - 0
© S8 ,
» FS /DT S.. 1+ TLAI+ TS, 0 0
3 _g %’ w15, - 0 1+ T2A+ TS_ + 4IT,T. /2T +2T)T. ALd,
x 3 o § & ; 0 0 V2TAT. +2T)Ad, 1 +4T2A2 + 2T,T. &?
ZE - E
-— w ~ v (85)
am & g8
1 = alk
[ i 2 'E._g’ where S,y =S,,+S,, and T, =T, + |T, ,| [where Ty =T, = —
G . |~ 8% Ry (R}, i —R},)™" and T, ,= —R, (R}, —R%,)""' (see Section
! = o O.8 4.42)]. - _
Loy o & 8 ;’ We see that the symmetric nuclear mode Z, does not couple to either
.N L 8§ Z_ or Z,, but there is a coherence coupling between Z_ and Z,. The mode
o 23 k Z', represents the net rf induced absorption from state fto state b. Further-
& 28 more, it is easily shown that Z, is the only mode that is detected in a
g « B8 conventional NMR experiment, and this is consistent with the well-known
. ° ¢
- 2 ~ EE result that the only effect of the coherence of the rf field on a simple nuclear
| " ": ﬁ resonance experiment appears as a saturation effect with no frequency shifts.
© S &2 The difference mode Z_ is not detected in NMR but does affect the ENDOR
E L 27 spectrum by means of its coupling to Z, via a finite S, _ . Since Z” repre-
I Q 75 sents the net rf induced absorption from states b and f to state d (i, it is
:{, N § § proportional to ¢, + g, — 24,), it does not correspond'to any net energy
! To &3 absorption. The coupling of Z_ to Z_ and not Z, implies that it does not
& & EE correspond to any net energy absorption. In fact, when A, =0, one has
§ RS 5 Z;=2Z,=2Z_=0and Z,=2"%d,T,Z", so at resonance there is only a
i S 5.2 dispersive mode at the frequency 2w, .
o N &
FS (P
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One may analyze the effects of the coupled nuclear transitions Z_ and
Z.in M given by equation (85) to show that for T, ~ T = T, there are
extrema for '

A, =0 and A2 = 1[34,(2Xx)"? — X] . (86)
»here
X=T?*1+ Td?) (86)

Thus, for d,T>» 1, we have A,= 1d, or two peaks separated by
2d,=2"?y,B, (since J = 1). Also, there is a critical value 45 = (4T)"!
below which there is no splitting but only a single line centered at A, = 0.
The effectiveness of the Z’4 modes in contributing to ENDOR is determined by
the magnitude of the Q, ; . The results depend markedly upon whether the
center ESR line or one of the outside Esr lines is saturated, and this may be
understood in terms of simple symmetry considerations. We consider the
center ESR line first. We note then that Zj, = Z{ and Z;, = —Z7 (where a
minus corresponds to the transition arrow with a reversed direction) have
identical eflects on Zg,; i.c., they enhance symmetrically equivalent paths of
relaxation (provided linear M,-dependent relaxation effects are neglected).
Furthermore, the Zj, transition will have identical Overhauser type of
effects on each of these nuclear spin transitions so that Z] = —Z% and
Z’, =0, thereby rendering this mode ineffective in any ENDOR enhancement
of Zg, . [The way this negative relation between Z{ and Z’ shows up in the
detailed analysis is from Qq, ; = —€Qq,. , (sec the Appendix).] Therefore
only Z” can contribute to Zg,, and it will demonstrate a [requency splitting
for large values of d,. When either of the outside Esr lines is saturated, no
such symmetry exists, so both nuclear spin modes may contribute, but in the
region of appreciable ENDOR enhancements (i€, b= 1), one finds that
Q,, +>Q,, . This means that the relative importance of the Z” mode in
the ENDOR enhancements is diminished and the coherence effects are much
smaller for the outer ESR lines.

This basic treatment and analysis can be generalized to larger J values
and to sets of equivalent nuclei. We show in Figure 7 typical computer
simulations, demonstrating that the M = 0 line does indeed show the dom-
inant eflect. This coherence splitting has now been seen in a wide variety of
cases. Further aspects of coherence eflects are discussed in Ref. 9.

3.4. Triple Resonance'®

We now suppose that the ENDOR experiment is expanded to include a
second NMR exciting field that induces the a« b transition (see Figure 3),
yielding a Z,, = Z, added to equations (63). We shall, for simplicity, neglect
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any coherence effects, so that the K matrix is diagonal and three dimensional
[see equation (8) but now also including A, = w, — w,, = 0]. In this case
the matrix M [cf. equation (49)] becomes (see Ref. 10). ‘

M=

L+ T2Aw? + TdQ, d4.4,9,,T, dodyQ, . T,

d,d,Q, T, L+ T2A0? + T,d2Q, d,d,Q,,T,

ded,Q, T, dyd,Q,. T, 1+ T2A0% + T,d20,

| (87) .
We again obtain equation (75a) as the solution where now
r GO T (Y + BT, ,) +d202, TV, + 2T,Q,.)
‘ Y, - ddiQL, T,T,
and
Y,=1+TlAwl+ T,Q,d} " (89)

with an equivalent equation for Y,.. Then for A, — 0 and d2, d2 — oo we get

QZ, n(Qn’ + Qn. n') + Qg. n'(Qn + Qn. u')
QnQn' - szl. n

E(d, dy > 00) = (90)

compared to Q2 ,/Q, for ENDOR. Then the expression for the limiting en-
hancement [equation (78)] becomes

d2=o

1+ E!

Qt/éz(dn’ dn' - w) (91)

Awg—* 0

Note that the limiting conditions on d2 and d2 imply not only equation (78'),
but also

d:T;i(QnQn‘ - Q:. n')/Qn' > 1 (92)
as well as the other pair of inequalities resulting from interchanging the

indices n and n'. Equation (92) results from the coupled eflects of both
induced NMR absorptions.



% enhancement

% enhancement

3
~
(2]

©

% enhancement

% enhancement

-60

Figure 7. See legend on opposite page.

% enhancement

% enhancement

Multiple Resonance and ESR Saturation 95

r13.0

Figure 7. Top, opposite page: ENDOR line
shape when the M, = 0 esr line is saturated,
Bottom, opposite page: EnDor line shape
when the M, = 1 Esr line is saturated. To the
left: ENDOR line shape when the M;= 42
J = 2esr line is saturated. (A)J = 1, (B) J = 2,
(C) the composite line from four equivalent
spins of I = { obtained from A and B properly
weighted. All cases correspond to b= I,
To' =533 units. In A, d, = 104; in each, the
line shapes a, b, and ¢ correspond to d, = 1, 4,
and 10 units, respectively. Each signal height is

% enhnncement

&0 6 1 6.0 given relative to the magnitude of the original
A saturated EsrR line. (W, =W, =1 frequency
n unit.) (From Freed et al.?)

4. Transition Probabilities
Consider now the general four-level system with all types of spin-lattice

relaxation transitions as shown in Figure 8. We can solve for Cyand Cy,,,
the cofactors and double cofactors of the W matrix to obtain all the Q.

4.1. ELDOR—Generalized No-Saturation of Observing Mode

We have from equation (39) that the signal reduction is given by

R= % reduction (93)
- 100
_ Wa — W W,,
Q,  WOW, + W, W)+ (W, + W)W+ W.,)
' ’ W b
+ Soow 4
\ w, \
gwe ! : w,
\ \
} \
2’ L 4 n ~, 3’ v’

Y S S

Figure 8. The general four-level system with all types of transitions due to spin-lattice
relaxation,
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where we have let W, = W, = W, Clearly, if W2 > W, W, , onc has a
reduction in signal, while if W2 < W,, W,, there will be an enhancement.

a Let W, =1, =0 (ic, only pscudosccular dipolar terms important).
Then

W, b
T2V, W, 240 (4)
where
W, .
b= W (94')

or a reduction.

b. Let W, = W, =0 (i.c., isotropic hyperfinc modulation). Then R = 0 (i.c,,
no effect).

C. Let W,, =4I, W,, = 3W, (dipolar, extreme narrowing). Then

(95)
or an enhancemenlt.

T the éase of solids, one can also examine ELDOR cnhancements for forbid-
den Esk transitions.'V The limiting values for R are given in Table 1.

4.2. ENDOR—Limiting Enhancements

We have from cquation (78) that the enhancement E is given by

S, 00, )
l + E ! = "ﬁ‘j“‘

en

=[WQW. + W, + W) + (W, + W)W, + w,,)]
X [WRWo+ Wi+ W) & (W, + W, )W, + W, )
x WV, + W, + W,,) + W] 2 (96)

a let W, =W, =0 (i.e., only pscudosecular dipolar terms important).
Then '

by 1

—— {7
1 bai
£= 2+b+571 i ®7)
b=y

- o rra—- <+ ————————

Table | {

ELDOR in the Four-Level System**

ELnor
experiment
(0= obscrved,
P = pumpcd)

E1nor enhancement = — R [see equation (93))

FrLoor
frequency
(first-order)
lo, —w,| = apr

Ql'ﬂl
= =

NALNNL LR R

AW, W, ~ W, W)
" .

AWl —-w,w,)
q

(I, + W)W, + W, )-2)
P

(We + W )0V, + W, )(=2)
P

(¥, + W), + W, X-2)
P

(W + W )08, + W, )(=2)
P

(W, + W)W, + W )(-2)
q

(v + W)W, + W, )(-2)
q

(W, + W W, + W, (-2)
q

(¥, + WX, + W, )(-2) [
q9

2w,

“ From Rist and Frecd.!*"
PP (Wt W)W, + W, 4 W) (W, + W )20, 4 W, + W,);

q= (I, + W, )W, + W, +w, + W)+ (v +

ROV 0, 4, )
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b. Let W,, = W, = 0 (i.e, isotropic hyperfine modulation). Then

This would theoretically be a most effective ENDOR mechanism if W,
were larger.

¢. Case b but now the a« b ENDOR transition is saturated. Then E = 0.
d. Let W,, = 4W,, W,, = {W, (dipolar, extreme narrowing).

b>t '&b
>3
b{22.5 + 60b + 40b2] | <,
= » 3.7 99
6 + b[25 + 34b + 15b%] 3.13b 9)

b=l . 153

This is also a very effective ENDOR mechanism if b > 1.
e. Case d but now the a«— b ENDOR transition is saturated

b» 1
b[2.5 + 10b + 10b?) bei
= > f5b
E 6 + b{45 + 84b + 45b?) 1z (100)
b=1

4.3. Triple Resonance—Limiting Enhancements
We shall only consider case a, W,, = W,, = 0. Then one finds
byt b~ 1

W, 1 b«1
E= Ld = ~>l
W.+W, 1+b

(101)

b=1
e

Thus, for b < 1, one achieves much larger enhancements by triple resonance
than by ENDOR, and for b < 1, one achieves the maximum possible signal
enhancement of the saturated Esr of 100%. This is the case where both NMR
transitions short out the weak W, so that the EsR line is being relaxed via
its own W, process and equally well via a W, process of the other hyperfine

line. Thus, triple resonance is potentially a more powerful method than
ENDOR.” ) '

e e
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However, for b < 1 the “effective ” saturation of the NMR transitions is
determined by satisfying the inequality (92). For the present case, equation
(33) becomes

AT2W, + W) '> | = ad2TyW, > | (102)

while the simple ENDOR condition of equation (78') is d2T,/W, > 1 (for
b < 1), which is much easier to fulfill. Thus, the “effective " saturation of the
NMR transitions for the triple resonance experiment can require substantially
more rf field strengths than in ENDOR in order to realize its full potential.

4.4. Expressions for the Linewidths and the Transition Probabilities

In this section, we consider only the radical concentration-independent
contributions to the spin relaxation. We assume a single set of completely
equivalent nuclei with total nuclear spin quantum number J and total z
component M. [We do not explitly indicate the distinction between degener-
ate states of the same values of J and M. Note that there will often be
degenerate states for a given set of values of J and M. However, it is possible
for dipolar terms (but not quadrupolar terms) to order the degenerate states
according to a parameter x or J* such that the values of J and x are
preserved.'® We do not explicitly indicate « in the equations below.] We first
consider the transition probabilities.®

4.4.1. Transition Probabilities

44.1.1. Nuclear Spin Transitions (or Pseudosecular Terms)
a. Dipolar

Wists s, mx 1y = 3O + 1) = M(M + 1)] (103)
where the electron-nuclear dipolar (END) spectral density j°(0) is
JP0) =dy2vih? 3 | D™ e, (104)

with y, and y, the electronic and nuclear gyromagnetic ratios, respectively,
h = h/2n with h as Planck’s constant, and 1, is the rotational correlation
time, and it is assumed |w,tx| < 1. The dipolar coefficients are*?

6n

D™ — (_

1/2
5 ) e P72 Ya, (0, )W (105)

where &', ¢', and r' are spherical polar coordinates that define the position of
the unpaired electron with respect to a nucleus in the molecular coordinate
frame.
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b.’Quad.rupolar. (For this case only we consider a single nucleus of

spin I):

= 2)20)I(I +1)— M(M £ 1)]2M £ 1> (106a)

Wims, My~ (Ms. M1 1)

- Wirs =5 M2 2)

= 20011 + 1) — M(M £ D] + 1) = (M + 1)(M £2))

(106b)
where
2n2
tn__eQ m |2 107)
2(0) = — 33 Ve (
with electric field gradient irreducible-tensor components!?:
[Ve]@ = —B)"2<Ve| Vie| Vo (108a)
[VE]*V = (¥ |V £ iV Ve (108b)
[Vc](iz) = —%<¢e| V;:x - V’" s 2'V’xy| 'lle> (108C)

Also. there will, in general, be cross-terms between the quadrupolar and

. X Q2
dipolar interactions.
4.4.12. Electron Spin Transitions (or Nonsecular Terms)

Wiz, my-x. m= 2jP(0)M?* + 4§ w,)B,M + 2jC(w,)B] + wik (109)

Here

Plw) = PO + jtR] ™ (110)

The g-tensor spectral density is
L2l 3 (g = 30 e oy
joa)= LS e 0

where f, is the Bohr magneton. The g-tensor dipolar cross-term spectral
e
density is

1 my tmy TR 112
j(DGZ)(wO) == 'ﬁyeﬂz‘)'n ; D™g 1+ (,0%1.’2 ( )

R
with g@ = 6~ 2[2g, — (g% + g,)] and gt = 4(g; — g,)- The spin rotational
contribution to W, is in a semiclassic treatment: :

WSR_lkTCZ( 1, ) (113)

= )
¢ o\l + wsT)

e
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where | is the moment of inertia, C is the spin rotational constant of the
radical (and we have assumed both to be isotropic), and t, is the correlation
time for the angular momentum.!® In liquids, usually t, < 1z, w5 '. One
has for a Stokes-Einstein model

1g = 4nna’/3kT
1, =[6IkTtg] ™"

(114a)
(114b)

More generally!!® € =~ —2A Ag where A is the inverse moment-of-inertia
tensor and Ag = g — 2.00231. Then we have (for axially symmetric A):

Wéx=Y (g:—g,)/%0tx  for wlty > | (115a)
Wek = Z (g: — ge)*/1814 (115b)
I these are the dominant terms in W,, then (see Ref. 7):
W, octp! (116a)
or -
W, = AT/y (116b)

Usually, 1, > wq ! for free radicals in liquids below room temperature, since
at X band wg ! 2 1.7 x 10~ ! sec. Then pseudosecular dipolar terms dom-
inate in ELDOR or ENDOR. So, from equations (103) and (104),

W, oc g
or
W, = Bn/T
Then
B 2
qOE
If we let

noc TeVkT, W>0

~we get b increasing significantly with decreasing T. This usually leads to

better ELDOR and ENDOR signals at reduced temperatures.

The typical linear dependence of W, on T/n, as well as the dependence
of the linewidth parameters (from which W, is determined) on n/T are shown
in Figures 9 and 10.
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© PBSQ in DME

A}DSQ in DME
[

T x 107 ()

O

Figure 9. W, as a function of T/n for solutions of PBSQ and DSQ in DME.

4.4.1.3. Combined Electron Spin-Nuclear Spin Transitions (Cross-
Relaxation from Nonsecular Terms)

Wao Moryt 1, Mz = (3/P(wo) + 10l + 1) - M(M F 1)] (118)
Wit Mort 1 may = 25 Pwo)lJ( + 1) - M(M + 1] (119)

The isotropic dipolar spectral density is

@) =12 [ "Kalale + > — afJe o (120)

where a is the time-averaged hyperfine splitting. Note that for JP(wo) < j2(0)

[and small J!(wo)], W, < W, and pseudosecular terms dominate as noted
above.

o s g e i o
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Figure 10. The esr linewidth parameters A, B, and C for a dilute solution of PBSQ in ethanol
as a function of y/T. W, is usually determined from C.

442. Linewidths

One finds in the analysis of the relaxation matrix for the diagonal
elements R, ,, yielding the linewidths, that(!-2.6:12)

T3, = —Re Rapav =T}y + %( YW, + Zb Wby) (121)
r*a r#

where

Tiah= | <womem e - o) de (122)
0
and

% 2(t) = [ 1(Daa — <1 (8)Daa] = [H1(0)ss — Hi(he]  (123)
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In equations (122) and (123), the angular brackets imply an ensemble aver-
age over the randomly fluctuating spin perturbation term ¢ 1(¢). The term
T3,y is seen to result from fluctuations in the eigenenergy difference between
the two states a and b, which depends only on the diagonal elements of the
perturbation J#,(¢), so this contribution is known as the secular contribu-
tion to the linewidth. The terms in equation (131) of type W,,. W,y give the
mean of all the transitions away from states a and b. These are the nonsecu-
lar (as well as pseudosecular) terms yielding line broadening due to
the Heisenberg uncertainty in lifetime effect. We also note that the imaginary
parts of R,, ,, are not, in general, zero. One sees, from the form of equations
(5), that these imaginary terms must cause frequency shifts and are therefore
called “dynamic frequency shifts.” They are of potential importance, but
partly because they are not often studied, we will not discuss them further
here. Their contributions in simple cases have been reviewed by Fraenkel.*¥
We give below the expressions for the 751, (6 12
a. States a and b involve an electron spin-flip transition.

Tza's = (1/4)°(0) + /3 (0))(M, + M,)?
+ [J19(0) + (8/3)°°2(0)]Bo(M, + M,)
+ [j°0) + (8/3)°*(0)) B3 (124)

The new spectral density terms here are

100 = 74 [ a0l + 1) — g2l ds (125)

where g, is the time-averaged g value and

1900) = 45207 [ Kaloe + > - ag)de (126)

Also, M, and M, are the z-component quantum numbers of the equivalent
set of nuclear spins in states a and b, respectively. Note that an allowed Esr
transition corresponds to M, = M,, while M, # M, is a forbidden Esr
transition.

b. Linewidths for nuclear transitions (ie, AM, = 0).
oy = (1/4)[/7(0) + (8/3)/™(0)][M. — M,)? (127)

When M, — M, = +1, we have a single-quantum NMR transition, while for
M, —~ M, = +n, we have an n-tuple quantum NMR transition. The pseu-
dosecular and nonsecular contributions to T3.!, are obtained with the use of
cquation-(121). However, there are also ofl-diagonal R-matrix elements that
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must be included for the nuclear transitions. They may be written as,
—RESMI ms w2 = POV, —M)f(J, = (M + 1))] (128)
and 4
—RE a1 = —HPO U M)FU, M+ 1)) (129)
where
fWU, +M)=[(J £t M)J F M+ 1)) (130)

The subscripts on R indicate the values of M, of thc? states being coupled.
The quadrupolar terms will also make secular contrlbutlop§ as well as off-
diagonal contributions to the matrix B for the nuclear transitions. Aspects of
such terms are discussed elsewhere.'?!

In concluding this section, we note that more detail(?d analyses of these
spectral densities in terms of realistic models both for isotropic as well as
ordered fluids appear in several places.('2-23

5. Heisenberg Spin Exchange and Chemical Exchange

Heisenberg spin exchange is a very important re}dical-concentration-
dependent relaxation mechanism in normal liquids. It is prob'flbly the dom-
inant one for § = {. It may be analyzed by a simple model, which glso serves
as a simple example of the stochastic Liouville approach (see Sect.lon 8). \_’Ve
assume radicals exist either as well-separated “ monomers ™ or as mteractapg
pairs or “dimers,” each with mean lifetimes 7, anq Ty respectively, and with
density matrices o and p, respectively. The equations of motion are then:

2
i&=.)f’{,”"c+i—2—Tr,p—i—a (131)
1, 1,

ip = (HP+ HP*+ H)p — ity (p — 0 x 0) (132)

where #{"" is the spin Hamiltonian for radical I, etc., and Tr,p =

4(Tr, p + Tr, p) is a symmetrized trace over each of the two components of

the interacting dimer, and we have used the superoperator form, e.g,
50 = [#, a]. Also,

#J = JSM . §2) (]33)

where J is twice the exchange integral. One obtains a steady-state solution
for ¢ in the rotating frame. It is then possible to show that when

|J], 17> |ail, y.B) (134)
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Equation (131) is well approximated by

i6 = H"G + iwyg[Tr(Pa x a?) - p] (135)
where
1 J2?
Wy = o m (136)

is the Heisenberg exchange frequency. In equation (135), we have neglected a
frequenpy sl_lift term that is readily shown to be zero in the high-temperature
approximation [ie., As = 1 + ¢’ with |¢’| < 1](see equation 24). Here, 2 is
.the operator that permutes electron spins. The derivation of equation (135)
is based on the fact that for spins § = 4,

Hy =P~ (137)

For simple Brownian diffusion of the radicals in solution, we have
17! = dnDfN (138a)
1y ! = (6D/d?) fe* (138b)

where JV is the density of radicals, the diffusion coefficient is D = kT/6nan
flnd d is the interaction distance for exchange. The factors f and fe* are’
introduced for charged radicals to take account of Coulombic and ionic
atmosphere effects.(24-2%)

' The result, equation (135), means that Heisenberg exchange appears as
a synple exchange process analogous to chemical exchange processes for
which the well-known Kaplan-Alexander?® method applies. We let

Dyi(x) = e[ Tr, (P x o) — o] (139)

and add this relaxation term to equation (5). One then finds that for well-
separated hyperfine lines, the T, contributions are '

T3 he(EsR, i) = (A——j“D(A))wHE (140)
T;.IHE(NMR) = Jwye (141)

Here D(3) is the degeneracy of the Ath transition, and the T; '(NMR) is the
width contribution to a well-resolved ENDOR line. The diagonal elements of

equation (139) yield
[@4(0) 1oz = %wliE[(XaiF —Xaz) £ (X4 — x-)]

— el _2) 2.
oel(i-3e- 22k e

Multiple Resonance and ESR Saturation 107
where
2

) £ =2§,th (143a)
and

X+ +x-=0 (143b)
and

Te = Xav = Xa- : (143c)

The notation a+ in equations (142) and (143) refers to the ath nuclear spin L
configuration, and M, = +. _
The steady-state solution of equation (142) in equation (5) is

Xat = Xa- = 2X+ ' (144) »

ie, differences in population between all pairs of levels differing only in M,
are equal. The unlinearized rate equations yield the steady-state result that
all the ratios o,_ /a,, are equal. '

If in chemical exchange (CE) (i.e., electron transfer), the predominant
NMR relaxation of the diamagnetic radical precursors is the CE process, then
CE appears to be just like HE in magnetic resonance experiments on the
radicals and we indicate this by replacing awy; by the more general symbol
wex (see Ref. 7 for further details).

We now consider the W matrix including equation (142). Note first that
equation (142) generates a matrix WH"E, which is symmetric and which has
the properties that the sums of all columns (rows) are all zero. Thus, all the
theorems of the Appendix apply to the complete W matrix, including equa-
tion (142). Now, however, note that

[Pue(0))avas + [Pue(r)a-a~ =0 (145)

so each pair of rows of W labeled a+ and a— are linearly dependent. Thus,
while WHE is an 4 x A matrix, it is of rank A4/2; i.e, HE does not act to
change (x,+ + x,- ) but rather to equate all (x,4+ ~ .- ). One must add W, or
W, terms to reduce this high-order singularity.

One may alternatively employ another method. Sufficient conditions
for this method are:

Condition 1. All spin-flip relaxation transitions are of W,, W,, or wy,
type (i.e, no W,).

Condition 2

@) W m=-.m = We e (146a)

() Wi, =+, M2y = Wic my~- M2 (146b)
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Then we may define a 44-dimensional square matrix W (which is usually
nonsingular or readily separated into nonsingular components) according to

[Wi]l =Wyl — [Wxla- (147)

This reduced eigenstate space is found to include onlythe f, = x,+ — xa-,
which are closely related to pure EsR transitions.
Then, if only Esr transitions are induced, we find

. Sl.q = Mldq(w‘l)l.q = dldqQA.q (148)

[This method can also be generalized for ENDOR (see Section 6.2).] Using this
method, one can then prove!2¥

2 1+ D@AW”

*TW,D() 1+ 34b" (149)
b” = wye /AW, (149')

with
Ty, 2 =3[D(A)Q,] (150)

and
Q"”=—%ﬁﬁl#q (151)

Equation (149) illustrates the “shorting-out” effect spin exchange has in
coupling the different hyperfine lines [see equation (144)} without directly

leading to electron spin-flips. It follows from equations (54) and (149)-(151)
that

R= _ESR_—”_ZE'-_DQ_% (152)
ZESR »
is [for Aw, = 0 and the no-saturation condition of equation (58)]
R '= Q,/Q, ,+[(1+ AwﬁTf,)/'I;Qo. ol dp~? (153)
and
R'=Q/,,

_ L+ D(p)”
D(p)bn

Here, R, is defined in the same manner as the asymptotic R of equation (93).
Equation (154) shows how Heisenberg spin exchange is effective in enabling
significant ELDOR reduction factors. Equation (154) has been confirmed ex-
perimentally, as shown in Figure 11.

=[D(ph"] ' + 1 _ (154)
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Figure I1. Linear least-squares fit for R_" versus b* ! for aqueous PADS solutions at 24°C;
A = data for two hyperfine line separation (M = 1 line observed and A& = —1 line pumped);
O = data for one hyperfine line separation (M = 0 line observed and M = — 1 line pumped).
The slope and intercept are 1.03 + 0.08 and 1.07 + 0.07, respectively, as compared to values
of unity theoretically predicted. (From Eastman et al!?*)

Now for ENDOR and a single nucleus of spin I = 4 with W, = 0, one has

1 [2W, + (W, + oy /2)]

= 155
=W W+ W, + oucl2) (155a)
Q = ___]_'__[zuln + (W, + one/2)] (155b)
W Wt oye/2 + W]
Q.= (We+ W, + wye/2)™! (155¢)
and
o(d, - ) W (156)

T @W, + W+ one2) W + W, + one2)

In general, if W, =0 and W, = 0, then &,(d, — 00) = 0 even for more than
one magnetic nucleus. Thus Heisenberg exchange is not an elTecmfe ENDOR
mechanism; i.e., it is ENDOR “inactive,” although it is ELDOR “active.” ThF
manner in which Heisenberg exchange suppresses ENDOR enhancements is
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illustrated in Figure 12 representing a concentration-dependent study, while
the T/n dependence of the exchange contribution to the ENDOR linewidths as

predicted by equations (141), (136), and (138a) for strong exchange are
illustrated in Figure 13.

In the case of triple resonance, one has

1 We + wy /2

Q = 157
"W W+ W+ w2 (157)
1
dy,dp20)=—u - 158
ﬁe( n w) ”/e_i_ u/"+a)"E/2 ( )
and
W ,
= d 159
We b W, + e 2 (159)

s0 that maximum enhancements accrue from W, > W,, wy.

More detailed models of Heisenberg spin exchange are summarized
elsewhere.272® Also, another concentration-dependent relaxation mechan-
ism, which can become important at reduced temperatures, is that of inter-
molecular dipolar interactions between electron spins. Its ENDOR effects are
discussed in some detail by Leniart et q/2%

In concluding the last two sections, we note that the characteristic
behavior of the various relaxation mechanisms as differently manifested in
linewidth, saturation, ENDOR, and ELDOR is a useful approach for separating
out the many possible components of relaxation in a particular paramag-

netic system. We present in Table 2 a simplified summary of these
characteristics.

35

Figure 12. The percent enhance-
ment at infinite ff power as a
function of Ty for solutions of
DSQ in DME; A = concentration
of9.9 x 10~* M; @ = concentration
] L | L L ) of6.3 x 107* M; M = concentration
30 60 S0 120 150 180 2.0 of3.0 x 107* M; O = concentration
T/m (°K/cp) x 10! of 15 x 1074 M.

°
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6. General Approach

One finds that, in general, multiple resonance Esr expcriments in liqu.ids
may be expressed in the matrix form equation (46) thh formal so!utlon
given by equations (48)-(51)./® In this formal solution, Z is a vector in the
space of all induced transitions and X is a vector in the space of all spin
eigenstates. The only requirement is that a rai.sing convention apply. This is
the requirement that all induced transitions in the space of Z are those in
which there is (are) increase(s) in spin quantum numbf:r but no decrease(s) in

- spin quantum number (see Ref. 9). This requirement is often met for ENDOR
and ELDOR experiments, but it sometimes requires neglect of some multiple
quantum transitions. If it is not met, then a somewhat more 'complcx form of
equations (40) and (48)-(51) could become necessary. Also, in summary, the
validity of the general relaxation equation (15) for well-separated hyperfine
lines requires that

I‘Y¢BOI7 I‘)’iBO!’ I)’eail’tc_l >8(‘)' lRI (160)

where 1, refers to the relevant correlation time(s). We outline l?clow a “dia-
gram method ” for constructing the matrices needed for equations (46) and

(48)-(51).
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and Relaxation Mechanisms
Table 2. ESR Linewidth
: ENDOR
Saturation (Q2) ELbor
Linewidths — ook , Linewidth EnI;n(ncen.lcnl \
uclear spin . - tribution (%) (maximum
. Nuclear spin Field frequency Temperature and Activity dependence Activity Activity  contribu (% -
Mecchanism dependence dependence viscosity
t
Intramolecular None None None None None None
G-Isotropic—secutar only None Quadratic Ast, -
Dipole-isotropic None — None None z: Goes as W, /W,
Secular M2 None Ast, W, Yes None unless W, £0 W,
Nonsecular M? (1 + @)1 As [l + w@e?]-! ! _
Isotropic G-dipole None _ None None None
X-Term—sccular only M Linear Ast,
G-Anisotropic None — None t‘yone v&ne w,
Secular None Quadratic t, /T w, None w, N
Nonsecular None wifl + wde] ol + wled]? Y _ :
Dipole-anisotropic None — None tlvone y: W, /W, ~ |
Secular (S, 1,) M? None T, w, Yes W, reduction -
Pseudosecular (S.1:) M2 None Tx w w Yes W,
Nonsecula w M? H as W /W,
St M? [+ wded]-? [l + wled]"! W, W, Yes W, enhancement Won W, Yes Goes as W/,
! 2 X,
Sely 8,1, M? [l+‘”2‘“_l 'n[l+wzfn]—l b None None
Anisotropic G-dipole X-term None — None uone Yes W,
Secular M Linear T w, M W, ‘
Nonsecular M ool + wled]-! Tl + wf]! Y
o~ —
Quadrupolar None — None None
Secular No width . Y W, /W, ~ 1
contribution — t, W Yes W, reduction . « ‘
Pseudosecular M? and M* None T, N
e —
Spin rotation None — None uone y:sn w,
Secular None None t,c T/n W, None w, ’
Nonsecular None None t,c T/n
Intramolecular —
ne
spin-orbit processes None _ None :‘VOM u° w
Secular None None Independent w None W, . . ‘
Nonsecular None None Independent ’ N
" —
Zero-ficld splitting S > 3 None - None ::’or:e y:sn W, type
Secular None None T, W, type None W, type « lype
Nonsecular None 1+ b2wd 3]~ tll + b*wd i)
. Decreases
Intermolecular gy Some dependence  wy, reduction No Yes enhancements
Heisenberg spin exchange Symmetric None T/t + (Jr,)- 21 ) on D,
(+¢electron transfer) dependence on D, T, @ /T for HE None
o —
Dipole-Dipole None — None None "
Secular Symmetric None T, . No Yes Decreases
50,55, + S, 4 S5;; like dependence on D, Analagous  Some dependence  Reduction enhancements
Pseudosecular 5, , S Symmetric None T, 10 Wgy on D, analagous to wg,
unlike dependence on D,, w Yes w,
Nonsecular Symmetric [1 - $(2bw, t)'1] o[l - }Q2bw, )] w, Somc dependence W, .
Si148:,+ 5,5, dependence on D, (lowest order in wg) (lowest order in we) on D,
b=1or2
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We exclude in the present discussion any effects from high-frequency
and/or large-amplitude modulation of the dc field. They are discussed for

ELDOR in Chapter 5. Some discussion of such effects for ENDOR is given in
Ref. 29 and Chapter 2.

6.1. Diagram Method

An energy level diagram such as the one in Figure6forS =4{and I =1

is constructed.”” (In this example, w, is close to w,,, and w, is close to
Wy = wyy).

6.1.1. Forming the Transition Moment Matrix d

a. Draw an arrow between each pair of states for which the energy
difference hw, is nearly resonant with an applied radiation field and for
which a “transition moment " 4, or d, (see below) exists (i.c., the “allowed ”
transitions). Each arrow should point to the state of increasing quantum
number (i.e., the raising convention),

b. An element of the d matrix is labeled d; :, where A represents an
induced transition and i is a particular eigenstate. This matrix element is
minus (plus) d, if 4 includes that eigenstate and if the arrow for that transi-
tion points toward (away from) the eigenstate. Otherwise it is zero.

¢. For an allowed EsR transition near resonance, we have

| 4= b B~ 4 (M)|S_ |4 (M) (161)
where.d, is the “transition moment” for the Ath esr transition correspond-
ing to a particular nuclear configuration abbreviated as {M}}. In a similar
manner, we define NMR transition moments
where the subscript r refers to a particular set of equivalent nuclear spins
each of spin I that are “excited ” by the rf field, and

Jo= Y1, with J,=J, J -1 etc (163)
kinr

as allowed by the vector addition of the nuclear spins.

d. Now we introduce the notation that the higher letter is the one of
increasing quantum number (ie,j>iso j is of greater quantum number).
Thus if we let A refer to the i+ j transition, then

dii=dgy,i = dy (164a)
.y =dyp, = —dy (164b)
d;x=0 fork+#ij (164c)
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i i i ion (23'), we need only
Note that following the discussion below equation (. 3), reed only
E:or(:s?dcr those d,, d, to be nonzero if the Ath, nth transitions are ‘excited
by the rf field. In the example of Figure 6, dyy, 0 = —dary, b = 1r.B.,

2
dpay s = —diay.a = $7BaC1 O] |1, 1> = {— 1.8, (165)

J2
= Y—9,.Bn 165b)
dyp,a= —dup, s = $r.B:C1, —1 IJ- I L, 0> 2 7aB (

while all other d,_, are zero.] [Actually equations (1'62) and (1_65) r:srr:lscg;
only the|zero-order NMR transition moments, which must, in gc' ,

corrected according to equation (61).]

6.1.2. Saturation Matrix S

We now use equation (49b) as the definition of the S matrix. It is :1
matrix in the space of the induced transitions..C'Ionsnde'r the S, elcmclr:h. |
And let us suppose that A is the i« jth transition while n is the ke

transition. Then
Sl.q = S(m. ) = 2 Z d(m.m(wp);nldf.'('kn

2 [(WP)R" + (WO)E — (WD)t — (WO)R'] for p ke
(166)

where we have used the above rules for the d matrix. We now introduce the

. cofactors of W (see the Appendix) to get

Si,= M[(Ch —Cf)+(C—CEj)l, wherei#jand p#i,j (167)

o N AC

Then, by use of identity (2) of the Appendix [equation (A.22)], we have
2d,,d 2dydy 168)

San =—j€.h—‘[cii +Cil= AC [Chi — i) (

which by identities (3) and (5) of the Appendix [equation (A.22)), respec-
tively, give

2d;;dy

2duducu.“= C Ciju

C
= dudunu.u

S‘l_,'=

(169)
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Now suppose p = I. Then di¥, =0 for all r, s. Then, instead of equation
(166), we have

Siq = 2dyd [(W)5" — (Wi']
2dydy,
T AC

which is the same result as equation (169). These results then prove equation

(51).

Note that from identity (5) of the Appendix [equation (A.22)}, it follows
that S, , = S,., so that the S matrix is symmetric. It also follows from the
properties of d (viz., there are no nonvanishing transition moments between
pairs of states coupled by multiple quantum transition) that there are no
elements of S involving multiple quantum transitions; 4 and n must each refer
to an allowed single-quantum transition.

[C:u' - Cij] = duduQu.u (170)

6.1.3. Coherence Matrix K

The diagonal elements of K are obtained from
—[6 + i(#0, 6)] » K@ (171)

The only nonvanishing terms are for a,5, where E, # E; and a + B, is an

induced transition (not necessarily an allowed transition). The nondiagonal

elements of K are obtained from:
[e(t), 61— K® (172)

where only those terms involving o,,(E, # E;) and where a«sf is an
induced transition need be retained. [The terms diagonal in ¢ in this equa-
tion lead to dy + Q in equation (46a).]

a. Consider those pairs of states connected by an arrow [step (a) for
forming the d matrix]. Such an arrow represents a single quantum transition

corresponding to a steady-state, nonzero value for Z,, where Z, fulfills the
raising convention (see rule 1 for the d matrix). For example, in Figure 6,
theyare Z,,=2,,Zy =2, 2,y=2,. :

b. Now consider all pairs of levels connected by two contiguous arrows
(e.g, a and d, b and fin Figure 6). These lead to two quantum transitions,
with which are associated nonvanishing Z, (e.g., Z,, and Z,, = Z, in Figure
6). The pairs of levels connected by three contiguous arrows are the triple
quantum transitions (e.g., Z ,), etc.

c. The diagonal elements of K associated with the n-tuple quantum
transitions are obtained by adding the Aw, for the n consecutive single
quantum transitions; e.g., (@, — wy) + (w, — wyy) for Z .
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. d. The only off-diagonal elements of K for the n-tuple transitions are
with (n — 1)-tuple transitions and with (n + 1)-tuple transitions, such that
the (n £ 1)-tuple transition plus or minus a single quantum transition n
cql_lals the n-tuple transition. The matrix element is just +d,, where the plus
(minus) sign is used when the arrow for the n,th transition points toward
(a}\ray from) the state in common with the other constituent transition
(either an n — 1 or an n-tuple transition) (e.g., Kyosa= +d,; Ky 4o = —d,;
Kda. fa = +d,,) '

6.1.4. The Q Vector

. Q is a vector in the space of induced transitions. Its elements are given
simply by

0,=qw,d, - (173)

when.:,.again, g = h/kTA, and w, and d, are the resonance frequencies and
transition moments for the Ath transition. Thus, Q, is nonzero only for
allowed transitions.

6.1.5. Linewidth Matrix R

The R matrix is a matrix in the space of the induced transitions. It is
determined by the general expressions for the linewidths (see Section 4.4.2
and Freed and Fraenkel’?). It is only necessary to include linewidths for
!hose transitions that couple into the problem of interest. This will usually
imply that (1) it is some allowed or forbidden transition induced by d, and/or
(2) it is coupled to such a transition by off-diagonal elements of R.

6.2. Effects of Degenerate States and Transitions

Very often in ESR spectroscopy, one encounters multiple hyperfine lines
resulting from degenerate states. This is often the case if there are several
(completely) equivalent nuclei in the radical. (The distinction between equi-
valent and completely equivalent nuclei is discussed by Freed and
Fraenkel."!?) We shall, for simplicity here, only consider completely equiva-
lent nuclei.) It is then possible to sum over such degeneracies so as to reduce
the size of the matrices defined by equations (46) and (48)-(51).*® Let us
refer to a set of completely equivalent nuclei as the rth set and label the
degenerate states and transitions by x corresponding to a particular set of
values of the {J,} and {M,}. That is, a particular nuclear state is described by
the configuration |[{J,«}, {M, k}>, where for the rth set of equivalent nuclei,
the operators J, = 3,,, I, and J,, = Y,,., I,,, where the sum is over all
individual equivalent spins. The curly brackets refer to the collection of J,
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and M, eigenvalues, respectively, for all the different sets of completely
cquivalent nuclei. (In the case of a particular NMR transition, we of course
mean an M, < M, + 1 transition). Thus, we define

iy =) Z, (174a)
Y= zx: Xt (174b)

which are, respectively, sums over the z components for the Ath degenerate
transition, and the diagonal density matrix elements (actually their devia-
tions from thermal equilibrium value) for the states between which these
transition occur. (Note that we have not summed over all transitions, etc.,
corresponding to a particular hyperfine line regardless of differences in {J,}
value. This was discussed in Ref. 30.) It was shown in Ref. 30 that the solu-
tion may be rewritten as

Z" = (M) (-R)"'Q (175)
with . 3
M* =1+ (R°K*)* + (- R*)" 'S¢ (176)
and
S* = 2d(W) )~ 1g) (177)
Here,
Zs =D 2g (178)

where D'/? is a diagonal matrix whose elements are made up from the
degeneracies D(1) of the Ath transition (corresponding to a particular
configuration {J,, M,}).

D% = [D@)]'* é,,, (179a)
s0
(D'2) 4= (D"'?), , =[DQA)]" 2 5,, (179b)
One has Q" = D!2Q). One also has
Ri.n= (Ri.2 — DA)R3Y) 8, + R3S [D(A)D(n)]) ' (180)
where the diagonal elements R, ,. obey
Rl .=R%. (181a)

for ali the « in 4 (since the nuclei are completely equivalent), and the nondia-
gonal elements R}", , which only come from exchange effects (for the same
reason), obey

RYn, = RS = wx(2/4) A # 1, (181b)

Ax.np
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Note that for consistency we have
[RAF = DR ™) = —we(1 - D(A)AA] (182)

[This was not clearly given in Ref. 30, where the D(2) was left out on the
left-hand side.] One also has ‘

in'lp= K",’ 6,‘:'0 (183)
In the absence of exchange, one has
Wes=Wey=W,, forallxandp (184)

In the presence of exchange, it is more convenient to go over to the approach
bfised upon equation (147). Then if we assume the sufficiency conditions
given above equation (147), we have

Vi = Wi - DAWET ] 8, + Wity X(DADM] + Wiy =0}

(185)
where . ‘ .
. [WLE — D)Wy ™ = 2wus(4 — D(A)/A) (186a)
an
Wien B = —2wye/4 (186b)

(Which is also more clearly given than in Ref, 30).
When we use this second approach, then equation (177) becomes

s=a@ a0 ()= v s gy
(187)

where the submatrices d and d (as well as W* and W/ ¢) are defined in the
basis of linear combinations: 1 = fis — Xac} X2 = Yas + Xa- - [Note: that
the singularities in W due to equation (29) now appear in W and it may be
treated by the methods of the Appendix.] The construction of d and d are
similar to that of d, and was given explicitly in Ref. 30.

In either approach, we may define the symmetrized saturation par-
ameter by

o =dd, Q5 (188)
It then follows from the above, that
Z,=2, independent of k in 4 (189a)
Xact = Xat independent of k in 4 (189b)
SO
Z9 =Dp()'?z, (189c)
and
1P = D(2)'"*y, (189d)
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and we observe, for the Ath transition, Z}' = D(4)!/2Z%. One may now
obtain solutions as in the nondegenerate case.

In the case when equivalent nuclei are not completely equivalent, there
will, in general, be off-diagonal couplings due to the END terms in both W
and R between degencrate states and Esr transitions belonging to different
values of J,. This complicates the analysis,'® but by the use of general
symmetry arguments*!'? these difficulties may be minimized.*

1. Average ENDOR and ELDOR

The general multiple-level problem necessarily involves computer simu-
lations. However, under certain limiting conditions, it is possible to obtain
simple analytic expressions. This matter was discussed in detail in Ref. 30.
We only wish to summarize the results in their simplest form here. We must
make the following assumptions:

1. K* is diagonal, i.e., the rf and microwave powers are weak enough
that (ENDOR) coherence effects are negligible.

2. R* is approximately diagonal (except for exchange coupling of
degenerate transitions); i.e., (a) the END terms are not a very large compo-
nent of the ESR or ENDOR linewidths and (b) wgx is small enough that the
different Esr lines remain well separated.

1.1. Average ENDOR

Under the above conditions, it is possible to obtain a simple “average
ENDOR " or “average ELDOR ” result as though one had the simple four-level
Systems’ discussed earlier but with modified parameters. In particular, one
has [see equation (78)] for average ENDOR of spins I = §:

oo fov G ind2hp)W(0)?

S Qev—¢ew Q. 1+ A0l TS, + od? b, h(b")WOF
where the vth set of n, equivalent nuclei are near resonance, and from
equation (61), d, = 4y,(1 * r,a, )B,, where r, = (7./y,)(1/2B,) = 1/10 at X
band for protons; h(b”) = 1 + Jwgx/W,{0} W,{0} is the electron spin-flip rate
that is independent of quantum number M, , b, = };5,(0)/W,{0} [see equation

95)]; Th, ., = [W.{O}h(b")] . This is the very lowest-order result in the limit
that

(190)

3n,b,/h(b") < 1 (191)

* Relerence 30, footnote 25; and Ref. 31b. One, for example, avoids the problem of pseudotran-
sition probabilities.
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Figure 14. Comparison of the percent enhancements predicted by the average ENDOR approxi-
mation (dashed lines) and by the exact solutions (solid lines) for the case of four equivalent
spins of J = } given as a function of b for different values of [d,/W,(0)}®. (a) The M =0 esr
line is saturated, b" =0, Aw, = Aw, =90, and d?T, (M)Q,(M) = 1. (From Freed et al'’®)
(b) The M = 0 Esr line is saturated, b = 0.08, Aw, = Aw, = 0, and d1T; (M), (M) = 1.

The factor a = 1 for a radical containing a single set of equivalent nuclei, and
in the presence of other equivalent nuclei with small W, ( < W, ), but in the
opposite limit of W, > W, , it could be reduced to about 4 or 1.2 Thus, if
the NMR transitions are not saturated, i.e., d,f_, < b, h(b")W,, the ratios of the
ENDOR peak heights vary as nl,d,f, for this case of nuclear spins of . In this
limit, then, one could determine n,, which is helpful in assigning the ENDOR
transitions. The range of validity of the average ENDOR approach is shown in
Figure 14, where the more complete formulas for average ENDOR are
compared with the computer-calculated exact results for a case of four equi-
valent protons. The form of the average ENDOR expressions (e.g., that of a
simple four-level system) has been found to be useful also in cases where tl?e
detailed average ENDOR theory is not applicable.?® This is illustrated in
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Figure 15. (a) Plots of A}, ,; as a function of B? (as determined by the tf coherence effect)
for PBSQ (@) and DSQ (W) in ethanol at T = —30°C. (b) Plot of PE~! as a function of

B;? (as determined by the rf coherence effect) for PBSQ (@) and DSQ (M) in ethanol at
T = -30°C.
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Figure 15, where, for complex spin systems, the linear dependence of the
square of the ENDOR width and the inverse dependence of the ENDOR en-
hancement on B? as predicted for the simple case of equations (76)-(78)
is shown,

7.2. Average ELDOR

In the case of average ELDOR, we consider the results in the limit as
d? - o0, and d? - 0, [see equations (59) and (93)]. Then

_(DAMYYD M) M, M2}
~ MY

where the terms in angular brackets are the respective “average ™ saturation
parameters associated - with the pumped hyperfine line (nuclear
configuration {M;}) and the observing line (nuclear configuration {M,}).
Then, to lowest order in the b, and for I = 1, one has

+% Z [bu/h(b”)][(inv + Mv)‘sM,. M.x.] :
’ (193)

The éu,, m,,, terms are taken as nonzero only for combinations of {M,} and
{M,} such that only the vth set of equivalent nuclei differ in the observing
and pump spin configurations by AM, = + 1, and all other sets of equivalent
nuclei have the same M, values. This configuration corresponds to an ELDOR
*“fundamental line.” Overtone ELDOR lines, wherein the {M,} of the pump
line differs more significantly from the {M,} of the observing line, would yield
reductions, which come in higher powers of the b,, and are thus insignificant
for b, /h(b") < 1. Thus, in the absence of exchange, in the limits for which
average ELDOR applies, only fundamentals will be observed. However, if
exchange is dominant, then the ELDOR reduction will depend simply on
D {M}(wgx /AW,) and there are no selection rule restrictions upon which
lines are observed or pumped.

Wex

8. Saturation and Double Resonance in the Slow-Tumbling
Region '

8.1. General Considerations

We would now like to briefly show how the general theory for satura-
tion and multiple resonance in the motional narrowing region may be reform-
ulated to cover the case of slow tumbling. We shall only consider a simple
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line for this purpose.s-32e Details for multiple lines are given

elsewhere.®2-3% The basis for the slow tumbling theory is the stochastic
Liouville expression for ¢(Q, £)3:33.35-37),

6L 1) = ~i[H% + oty + A, Q) + iR — iF[o(@, 1) - 0.(Q)]  (194)

Here, ', is the Markov operator for the motional process; we will
specifically assume it is rotational tumbling, with Q representing the Euler
apgles between the fixed laboratory coordinate frame and a molecule-based
coordinate frame. Thus, the Euler angles Q are fluctuatin g in time. Note that
the expression is written for a (Q, t), which is both a spin density operator
as well as a classical probability function in the values of the random variable

Q. We can recover the ordinary spin density matrix we have used until now
by averaging over orientations:

o(t) = [dQ o(Q, )P, @) = <P (@) o(0, O[PL@)>  (195)

where P, (Q) is the equilibrium distribution of orientations and a convenient
bra-ket notation is introduced. We have also included in equation (194) a

term R', which is that part of the relaxation matrix that is orientation
independent.

We note that the Markov operator I'QQ has associated with it the
expression

;%P(Q, t)= —TaP(Q, 1) (19)

where P(Q, t) is the probability of finding Q at a particular state at time .

The process is assumed to be stationary, so that I" is time independent, and
also we have

FaPey(@) =0 - (197)

We again can make use of equations (14), (15), and (18), for the power
absorption, except that now,

Z" = f dQ Z(QY'P, (Q) (198)

where
ZQ) = 6,,(Q, t)e™ i (199)
We now introduce the normalized eigenfunctions of Iy, the Gim(Q):

FaGiu(Q) = 1 'Giku(Q) - (200)

e g e Y o
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where 17 !=RL(L+ 1), with R the Brownian rotational dilTusi.on
cocfficient, which we have assumed is isotropic. Note that 7, = g, Which
plays the principal role in motional narrowing theory. Also,

QL+ 1)]*

5 Q) (201)
8n

Gxm(@) = [

where P%(Q) are the Wigner rotation matrices or the generalized spherical
harmonics. We then expand in this orthonormal basis set:

Z@)= ¥ ChyGhi(Q) (202a)
x(Q) = Z bkMGkM(Q) (202b)
LK M

where the C%), and b%,, are expansion coefficients to be solved for. Tzhey are,
in general, functions of Aw. For an isotropic liquid, P, (Q) = 1/82, so the
ESR signal is proportional to -

1 1/2 ’ '
n

8.2. Saturation: A Simple Line
We now take as our orientation-dependent perturbation‘’
xq(Q)= 9"9(2)0(9)5, (204a)
with
F =3B Bo/M)(gy — 9.) (204b)

That is, we are assuming an axially symmetric g tensor, and we onl'y co_nsidgr
the secular contribution. (The inclusion of the nonsecular contnbutxon§ is
discussed by Freed et al®’) We now take spin matrix elements. of equation
(194), as was done in equations (12) and (19). Then we use the exgenfl.mctlon
expansions given by equation (202), premultiply through these equations b_y
Gxm-(Q)*, and integrate over Q.17 This yields a set of coupled algebraic
equations for the Cky and the bk,

[(A“’) -i(T;' + T l)]Cfio(A“’) —Z Ky, L'C'éfo(Aw) + 2”2‘”’(‘5. 0
&
= quodd, p) (205)

and
~i(Ty' + 1 ‘)b’(;. olAw) + 2'2dIm C o(Aw)=0 (206)
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Figure 16. Saturation of single line with rotationally invariant T;, as a function of B, for
[ # |/R = 100. The different values of B,/2 are 0.01 G (——), 0.025 G (--~), 0.050 G (),
and 0.75 G (---). These correspond to intensity factors of 1414, 1052, 580, and 352, respectively.
gy =2.00235,g, = 200310, T; = Ty = (2W,)"*, and (2/3'3)T; !/]y.| = 0.02 G. (A) absorption;
(B) derivative. (Intensity factor is integrated area under absorption curve in relative units.)
(From Freed et al*!)

Here, the orientation-independent T3 ! and T ! arise from R’, also

L 2 L >
ki, =[(QL + 1)(2L + 1)]'2 F (207)
0 00

where (5 § §') is a 3j symbol©®® that obeys the triangle rule so that I! = Lor
£+ 2. Al other symbols are as previously defined. We must now solve this
coupled set of equations to obtain Im CJ o(Aw) to obtain the spectrum, and
this may readily be accomplished on a computer. One merely truncates the
coupled equations at a high enough value of L to guarantee convergence. A
typical computer simulation is shown in Figure 16.

We can, however, arrange these coupled equations in a convenient
matrix array we have seen before by letting

(=T +E)o. = Re, (208a)
Aw+xk, =K, (208b)

also
(TY' + 1Y) 0= W o (208c)

e B P e S e g B
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and

quoddy o = Q. - (208d)

Also, we can introduce a d matrix and a d" matrix, which by equations (205)
and (206) only couple a C§, with a b§ ,.

In fact, once we make these substitutions we see that we again get the
same formal matrix structure as equations (48) and (49), but with equation
(49b) replaced by equation (187) and equation (48c) modified accordingly.
Also, the C§ , form the Z vector, while the bj o form the % vector~Note that
in the present application, the W matrix is already diagonal, as in the R
matrix. The off-diagonal couplings arise from the K matrix.

8.3. ELDOR: A Simple Line

We can exploit this approach to consider ELDOR on this simple line.
Here, we must replace equations (205) and (206) to yield®?

[Aw, — (T3 + 17 1)]CE, o(2) = X, Ko, 1-Cole) + 2'2dpbg,
X .

= qweda 6'.. 0 (209)
and
—iTi + 10 Ph0+/2 Y daImCh o(@)=0 (210)

a=o,p

where a = o or p, referring to observing or pumping signals. The observing
absorption line shapes are given by C§ 4(0) = C3. (0, Aw, , Aw,). This again
yields our standard form for the coupled matrix equations. We show in
Figure 17 a computer simulation of such a slow-tumbling ELDOR experiment
for this case of a simple line.

The more complex equations one obtains when there are several spin
eigenlevels are discussed elsewhere.32-2# Also, ENDOR in the slow-tumbling
region may be treated by similar methods.

The physically new feature here may be appreciated by first realizing
that b3 o, which is the average saturation, is just relaxed by T7 ', but the
b§, o for L > 0, which represent nonspherically symmetric components of the
saturation, are relaxed by the combination T7' + t['; ie, the rotational
motion actually transfers the saturation, which is introduced at one point in
the line by the pumping field to other points in the line, which may be
observed with a weak observing field. This effect becomes more important as
the ratio 7/ !/T7 ! increases (i.e., the rotational motion slows down).
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Appendix. General Properties of the Transition Probability

Matrix W
We first write the cofactor C;; of the W matrix:
1 2 i
1 ;Wu _le 0

2 - Wy, +ZW2k e 0
k

Ci= : : : (A.1)

Add all columns to the jth except the ith and use the property of W.that the
sums of all the columns are zero. Then add all rows to the Jjth except the ith
and use the property of W that the sums of all the rows are zero (note W is
symmetric). Then one has :

Zwu _le W“- <+ 0
k

-—PV“ sz" Wz;. e 0
k

Cy= j W, W, - Zu/‘" ves 0 e (A.Z)

R -

Figure 17. Observing frequency-sweep ELDOR line shapes for an axially symmetric g tensor
undergoing isotropic brownian rotational diffusion with ty = 2.3 x 107 sec. (A) absorption,
(B) first derivative; (——) pure EsR, (---) pump on and w,y) =04 G; (---) pump on and
w,ly| = —08 G. All have g, = 2.0235, g, = 2.00310, B, = 3300 G, Til=1.76 x 10*3 sec™?,
(2/3)'T7 '|y,| = 002 G. (From Bruno and Freed.*?)
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Now permute the ith and jth rows, then the ith and jth columns. It im-
mediately follows that C; = C,,.

Now consider C;;:

_ J i
ka —WIZ 0 _W“
k
- Wy, Y Wa 0 -Wy
x
Cj= i -w —Wp o 0 e =W e (A3)
i 0 0 | 0

Now add all columns to the ith except the jth. Then

j i
}k:u/u _.[,Vlz cer 0 eee n/u
- Wi, ZWZk e 0 sz
k
Cy= A4
] j _u{“ _u{lz e Q.- _Z n/ﬁ ( )
k
i 0 0 1 0

Then exchange the ith and jth columns (an odd permutation) to show that
Cu =Cy.

—— a2
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1t thus follows that
CU = C“ = C_u =C for a“ i andj (AS)
|Wt| =% Cy= AC (A.6)
j .

where A is the dimension of W.
We now consider

l
Z Wy Wi o 0
k
— Wy, z W, =+ 0
k
Ciy = : : : %)
i 1 1 0
j 0 0 1
and
l
z Wlk — le s 0
k
- Wi Z Wy - 0
x
= | . . | (A8)
j i 1 0

Now exchange the ith and jth rows (an odd permutation) of either one to
show

C‘i” = —'C'.'| (A'g)
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We now wish to prove that

We start with

Z Wlm
- Wy
1
Ch= k
J —le
i 0

Cii=Cj-C}

k
-W =Wy e
ZWZM “Wzk
1 1
-W, - _ij
0 0

—

Jack H. Freed

i
. _Wlf e
c =Wy, e
1
-W;
0

One now adds all rows to the jth except the kth and ith to obtain

k
Ci=
Zwln
“wzl
k 1
Iy W+ w,
i 0

k

—W, ~W,

Y W, Wy

1 1
W+ Wy o =Y W+ W, -

0 0

- Wy

- wzt

. —Z "’lm+ml o

(A.10)

(A.11)

(A.12)
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Thus, C¥ may be written as the sum of two determinants, in which the first
determinant has as it Ith row: -

[Wu Wiy - _z ka e 0 W“ ]

while the second has as its Ith row:

[Wu Wa == Wy - 0

I |

while all other elements are as in equation (A.12). Now, by permuting the jth
and kth rows of the first determinant, we find that it equals C{;, which, from
equation (A.9), is equal to —C};. Then, by permuting the ith and kth rows of

“the second determinant, we find that it equals Cj,. It thus follows that

C:' = C’l - Cj‘ . QED
We now wish to prove the relation

e

C}a - C:'u = AC,‘,_ ij (A-l3)
Let us first consider
i J
2 Wim  —W, - Wi
- Wy, z Wim -Wy -+ 0
Cu= 0 0 0 1 (A.14)
l 1 1 1 0




Zu/lm —an 0
_WIZI me -0
Cl, =
MT g 0 0 1
l 1 1 -0 -
Now consider
i
2Wim ~Wy -0 -
—u/u Zu/zm cr 0 e
’ =
Cu= 0 0 1
l 1 1 -0 -

__[4/21 ..
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(A.15)

(A.16)

|
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We now perform the operation C}; ~ Ci, by simply subtracting the elements
of the jth columns of equation (A.15) from (A.16) to obtain

I J
Zwlm _Wlz SRR | IEETI | T

._W2 ZWZm ee Qe o -

Cl:—Cb= k 0 0 ST BIETTRNY | R
l 1 1 0 - 4
i J
> W, W, 0 0
—-W, +Z Wy = 0 +-- 0 ---
= Axk 0 0 AR EEEETINY | IR (A.17)
l 0 0 0 1
= ACu.u=ACu.Ji=_Acu.ﬁ=“Al:.u (A-”I)

The last equalities follow from simple permutations of equations
(A.17). qQep

It also follows from equation (A.17) that

" Cuy=Cy (A.18)
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because we can interchange rows and columns since W is symmetric
Another important identity is '

Cixiy= Cu,yy= Cy, ;; (A.19)

The proof is as follows, We have from equation (A.13) that
ACy, = Cl - ¢}, (A.20a)
4Cu. iy=Ch—C} (A.20b)

Therefore,
A(Cy, y — Cuy)=—(C} - Ch) + (oA Y

= —C,’u"‘Cb: _ACH.!]:ACM.U (AZI)

Furthermore, one may show, utilizing a theorem of Ledermann,®? that

C, Ciy.ij»and Cyy , are al iti iti
» Cigigy 1 ik always positive quantities, but no g priori statement
can be made about Cy. 1 Where i + k,j#1. i "

We now summarize these important identities:
(1) ¢,=c;= C,)=C for all i, j

@) Ci=-ch=c4-cy, i#j,kandj+k
(3) Cllu' - Ct‘u = ACu, i
(4) Cu, ij =~ Cu, iy= Cu. ijr

(5) Cu. iy= —Clk. = Clk.ji = Cu.u,

I#kandi;éj (A.22)
I;ékandi;éj,k,l
I'#kandisj

Notation

The numbers in parentheses next to each definition represent equation numbers,

a, 1-7. a, b Spcciﬁg eigenstates of spin Hamiltonian (8)
a,4a,a,,a(t) I§olrop1c hyperfine splittings; the overbar explicitly indicates a
time average, the subscript n indicates the splittj fi
e (6351, 130 piltting for the nth set of
Hydrodynamic radius of radical of interest (114, 138)

a
A Total number of spin eigenstates of spin Hamiltonian ¢ (6)
A Inverse moment of inertia ter=or (114) ’
b Dimensionless ratio: W, /W, (94')
) b”  Dimensionless ratio: Wy [AW, (149')
by (Aw) Cpefﬁcient in the expansion of x(Q) in cigenfunctions of the diffu.
Ston operator; it is still a function of Aw (202)
B,  Strength of the rotating rf or microwave field {1, 11)
B,,B,,B,,B, Value of B, for observing or pumpi in £L
. ping mode in ELDOR (41) and the
value for the microwave and rf modes in ENDOR (41)
By  Strength of the de magnetic field {27)
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Cu=C  Ikth colactor of W and is equal to C independent of values of  and
k (34, 37) I
Cy.u  Double cofactor of W (35)
Cl,  kith cofactor of W' (36)
C  Spin-rotational constant of the radical (113)
Cim(dw)  Coefficient in the expansion of Z() in eigenfunctions of the diffu-
sion operator; it is still a function of Aw (202)
d=14y,B, Induced transition moment due to applied rf or microwave field
(13) )
d, d,.d,, Value of d for observing or pumping mode in ELDOR (44) and the
d,,d,  value for the microwave and rf modes in ENDOR (61, 64); 4 repre-
sents the value of d for the Ath induced transition (173)
d,,  Nuclear spin transition moment neglecting the high-field correc-
tion (61)
@7 Critical value of d, for coherence splittings in ENDOR (83)
d, d"  Matrix of transition moments and its transpose (46)
d,d  Partitioned components of d (187)
d  Interaction distance for exchange (138) : .
D™  mth irreducible-tensor component of the electron-nuclear dipolar
coefficients (105)
D Coefficient for translational diffusion of a radical (138)
D(1)  Degeneracy of the Ath transition (140)
D'?  Diagonal matrix whose elements are the [D(4)]''? (178)
Piu(Q)  Generalized spherical harmonics (Wigner rotation matrices) (201)
E  Enhancement factor in ENDOR (78)
J  Debye-Hiickel correction to rate of bimolecular collisions (138)
F =1(8.B./h)gy —9,) (204)
9. Ag  gtensor and deviation of g tensor from free electron value g, [below
(114)]
g.» 9, g lactor equal to Tr g. The overbar explicitly indicates a time aver-

Iir g+ 91> ™

Gi. ()
h(b")
Hy, HG

K1), <)), H'§

'*’Ji'*’;

1

I

Plw), j%(w), P (w),
JBw), j (@), J%(w),
J%+w)

age (111, 125)

g tensor components k = x, y, or z in its principal axis system,
gy =49, and g, = g =g, for axial symmetry; g* are irreducible
tensor components of g (111, 112, 125)

Normalized eigenfunctions of [, the diffusion operator (200)

= 1+ Jwg, /W(0} (190)

Zero-order spin Hamiltonian, and the superscript x indicates the
superoperator form, e.g., ¥'5o = [X,, o] (5, 131)

Randomly modulated perturbation term in the spin Hamiltonian,
its ensemble averaged value, and its superoperator form [below (27,
123, 194))

Heisenberg spin-exchange term in the spin Hamiltonian and its
superoperator form (132, 133)

Nuclear spin quantum number for single nucleus [above (85))
moment of inertia of radical (113)

Spectral density as a function of @ from random modulation of: D,
electron-nuclear dipolar interaction (END) (103); G,, g tensor
(111); DG,, cross-term between END and g tensor (112); @, qua-
drupolar interaction (106); I, isotropic dipolar (118); G,, g shift
(125); IG,, cross-term between isotropic dipolar and g-shift (126)
Total nuclear spin quantum number for group of equivalent
nuclear spins [above (65))
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Twice the exchange integral (133)

Boltzmann’s constant {6)

Coherence matrix and its symmetrized form in the presence of
degenerate transitions {46, 176)

;’Zr(;(r;;:ipal quantum number for generalized spherical harmonics
Equilibrium magnetization (1)

Components of magnetization in the laboratory frame (2)
Components of magnetization in the rotating frame (1)
Quantum number for projection of electron spin on z axis (8)
Quant}nm number for projection of nuclear spin on z axis; the
subscn.p(s aor b refer to the ath or bth spin state [above (103, 124)]
A particular configuration of the nuclear Spin states in a multj-
nuclear spin problem (161)
.llas{ic matrix in the solution of multiple resonance; the superscript s
:l;cix)ca(es the symmetrized form in the presence of degeneracies (49,
Quantum mechanical operator for the magnetization (3)
;\llgg;bcr of equivalent nuclei in the vth set of equivalent nuclei
Concentration of radicals with electron spin § = 1 (3)
Power absorbed from the resonant field (14)
Population of the ith state = o, [below (59)]
Classical time-dependent distribution function for orientation of
radical and its time-independent equilibrium value (195, 196)
Operator that permutes electron spins and jts superoperator form
(135-137)
(24)
Vector, in transition space, of the driving terms (47)
Quadrupole coupling constant (107)
:(l:(x;;i)al distance of the unpaired electron with respect to a nucleus
Din?ensionless parameter measuring importance of high-field cor-
rection to d, [below (190)]
Rc‘:laxation matrix and its general four-indexed matrix element (5)
Diagonal element of relaxation matrix for the linewidth of the
transition between states a and b (10); alkso its general form for the
Ath transition (180)
:Zlegl)axation matrix elements that yield the transition probabilities
Matrix yielding the {coupled) linewidths, its symmetrized form, and
lll;(:))matrix element coupling the Ath and nth transitions (46, 175,
Reduction factor in erpogr (93)
That.part of the relaxation matrix R that does not arise from
rotational tumbling (194)
Rotational diffusion coefficient (200)
Raising.and lowering operators for the electron spin 4)
Saturation matrix, its symmetrized form, and the matrix element

cc?upling the Ath and nth transitions (49, 51, 176)
Time (2)
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T
T

T3 T3 T3h
T: l, T: l' T; 1
Ty~ 1

Tr, Tr,

W, Wa,,

W, W, W,

Wer, w.(0)

w’ wl‘ wl.l

W, W, W, W
YZ.M(O'- ¢‘)
Z=2Z+iz2", 2"
Z,,27;

ZENDOI ’ Z"FSI

Z=2+iz
ZIV' Zl

a o, B, f
[ 4

8.

)’!‘ )’l

Iy

A =Aw,, A, = Aw,
£(t)

K [Ve}™
n

Kelvin temperature (6)
Longitudinal spin-relaxation time for a simple two-level spin
system (1) '
Simple linewidths contained in R, where o and p are for observing
and pumping transitions and e, n, and x are for electron spin,
nuclear spin, and cross-transitions, and the subscript 2 is often
dropped (1, 44, 64) i
Secular contribution to the linewidth for the transition between
states a and b (122)
Trace over spin states (and symmetrized trace for interacting
dimers) (4, 13)
A vector and its element as used in solving for the saturation of a
simple line.(30) .7 '
Obtained from U by replacing the ith element by zero (30)
Line-shape term for simple transition between a and b (31)
V is the electrostatic potential at the nucleus and Vi j=x,y,0r
7, indicates differentiation of V with respect to i and j (108)
Transition probability from state b to state a (and from arbitrary
state y to state a) leading to spin relaxation (20)
Transition probabilities for: e, pure electron spin flips; n, pure
nuclear spin flips; and x, combined electron spin and nuclear spin
flips; cross-transitions (26, 93) ' . '
Spin-rotational contribution to W, and the value of W, for electron
spin flips in the nuclear configuration specified by {0} (109, 190)
Transition probability matrix; the modified transition probability
matrix obtained by replacing the Ith row of W with ones; the

symmetrized form of W’ when one sums over degenerate states (30,

30, 177)

Partitioned submatrices of a rearranged W and their symmetrized
forms when one sums over degenerate states (147, 187)
Second-rank spherical harmonics (105) )

Function describing the induced transition, where Z” is the disper-
sive component while Z” is the absorptive component and Z* is the
complex conjugate (15, 17, 18, 26)

Absorptive components for observing and pumping modes in
ELDOR (44, 45)

Absorptive components in presence and absence of resonant NMR
field in ENDOR (78)

Vector of induced transitions (46)

Vector of elements Z3* involving a sum over all x elements of Z,.
belonging to the Ath degenerate transition; Z* is the symmetrized
form of Z* (174, 178)

Arbitrary spin states (5b)

Correction factor in average ENDOR (190)

Bohr magneton (111)

Gyromagnetic ratio: e, electronic; n, nuclear (1, 60)

Markovian (diffusion) operator for the motional process (194)
(62)

Term in the spin Hamiltonian that includes the interaction of the
spins with the oscillating fields (5)

Irreducible tensor components of the electric-field gradient (108)
Solvent viscosity (114)

.
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Polar angle for defining the orientation in the molecular frame of
the radial vector from the nucleus to the unpaired electron distribu-
tion (105)

Label of degenerate nuclear spin states corresponding to the same
value of J and M [above (103)]

L, Lth matrix element for “coherence matrix™ in slow tumbling
(20s)

Term representing effect of ELDOR on observing Esr signal for
simple case (54)

Term representing effect of ENDOR on observing Esr signal for
simple case; superscript r implies the NMR transition is exactly on
resonance {69, 75)

Spin-density matrix for an interacting pair of dimers (131)
Spin-density matrix for the radicals, the a-a’th matrix element, and
its Hermitian conjugate (3.5 17)

Equilibrium spin-density matrix and s aa’th matrix element (5)
Combined molecular classical orientation distribution function
and spin-density matrix (194)

Equilibrium value of o(Q, t) (194)

Correlation function for random process (27)

Correlation functions for rotational reorientation (104, 200)
Correlation function for angular momentum relaxation (113)
Mean lifetime of interacting radical pairs (132)

Mean time between bimolecular encounters (131)

Azimuthal angle for defining the orientation in the molecular frame
of the radial vector from the nucleus to the unpaired electron djs-
tribution (105)

Deviation of ¢ from 9., and its diagonal element for state g (222)
Column vector of elements xi (30)

Value of x for state M, = + and {M,} = a;also y, is a normalized
sum of r,, (142, 143)

A partitioned subvector of x whose Ath element equals y,, — x,.
[(142), below (187)]
Sum over all k elements of Xax3 belonging to the same degenerate
state. 1, (174)

Electronic wave function of the unpaired electron ( 105)

Larmor frequency for a«s o transition and for Ath transition (5,
173)

Larmor frequency for Esr transition (12)

Frequency of applied observing and pumping microwave fields in
ELDOR (44)

Frequency of applied esr and nmp fields in ENDOR (62)
Fluctuating component of frequency difference between states a
and b (122)

Heisenberg exchange frequency and general exchange frequency
including both Heisenberg exchange and chemical exchange [(135),
below (144)]

= ® — @y, with  the applied microwave frequency (1, 16, 44)
Diflerence between frequency of ith rotating field and Larmor
frequency for Ath transition that is nearly resonant with w, [below

(173)]

Multiple Resonance and ESR Saturation . l 41

Near-resonant frequency difference for observing and pumping
fields in ELDOR (44)

Aw,, Aw,

Aw,, Aw, Near-resonant frequency difference for EsR and NMR fields in
ENDOR (see A,, A,) o -
Q.9 General saturation parameter coupling the (i« j)th lransmf)r'l to
) " the (k — I)th transition and coupling the Ath and sth transitions
(35, 41) :
Q45 =9, Diagonal saturation parameter, which plays arole related to T, for

steady-state saturation of the a « b transizion (31, 39)
Q  Euler angles defining the transformation between laboratory and
molecular coordinate frames (194)
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Solution ENDOR

Neil M. Atherton

1. Introduction

ENDOR is one of the oldest double resonance techniciues, th(_z first exper-
iments on solids having been reported by Feher in 195@.‘ ’In. fluid solut.lohns,
the nuclear spin relaxation times are shorter than in solids, and higher
radiofrequency powers are required to observe ENDOR, for the nuclf:ar tran-
sitions must be driven at a rate comparable to that- due to relaxation. Thls
requirement makes the instrumentation for solution ENDOR more diffi-
cult than that for solids and explains, at least to some extent, \fvhy the
application of the technique to solutions has lagged somewhat behind that
N 50_]1_132- first solution ENDOR signals were obtained by Cederquist from
metal-ammonia solutions.®® Unfortunately, this work has never been pub-
lished in the conventional sense and so is probably not as widely known a.r(lg
discussed as it deserves. It was not until 19§4 that Hyde and Makg
reported signals from free radicals in solution, with a fuller account describ-
ing the spectrometer and results for a range of systems appearing a yeeX
later."*) Since that time, the field has expanded steadily but quite slowly.
fair assessment of the present state of affairs is probably that solution ENDOR
is well established and reasonably well understood, but th‘e_re are many
applications yet to be perceived and made. It would be surprising if experi-
ments still to be done did not yield some unlooked-for .results.

In ENDOR, one monitors the level of an ESR :_1bso_rpt10'n and records th;
change in it when a nuclear resonance transition is driven by a secon
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