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  11 
Molecular Motions  
  Sushil K.     Misra    and    Jack H.     Freed        

    11.1 
Introduction 

 In this chapter we will discuss the study of molecular motion by EPR, using both 
 continuous - wave  ( CW ) and pulsed EPR, in particular  two - dimensional electron –
 electron double resonance  ( 2 - D - ELDOR ). In recent years, the study of protein 
dynamics using  site - directed spin labels  ( SDSL ) by EPR has become an important 
subject. 

 The EPR spectra of a paramagnetic probe provide information on the motion 
of its environment. As compared to NMR, the information obtained from EPR of 
a spin label offers the following advantages:

    •      EPR is much more sensitive per spin than NMR.  

   •      The time scale in time - domain experiments of EPR is nanoseconds, whereas 
it is milliseconds for NMR.  

   •      EPR is capable of focusing on a limited number of spins, as the spin - label 
spectrum is simple.  

   •      EPR spectra change dramatically with the tumbling motion of the probe, being 
extremely sensitive to the local fl uidity; this is not the usual case in NMR, where 
nearly complete averaging of the spectra occurs, allowing only residual rota-
tional effects dictated by the  T  1  and  T  2  relaxation times.  

   •      Fast EPR  “ snapshots ”  can be taken with high - frequency EPR, whereas slow 
EPR  “ snapshots ”  are taken with low - frequency EPR. Thus, multifrequency EPR 
helps one to unravel the complex dynamics of biosystems occurring on differ-
ent time scales.  

   •      Pulsed EPR provides a tool to distinguish homogeneous broadening, which 
characterizes the dynamics of the entire environment, from inhomogeneous 
broadening, which displays the effect of the local structure.    

 The organization of the chapter is as follows. A historical introduction is provided 
in Section  11.2 , after which some relevant experimental data are described in 
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Section  11.3  to illustrate the importance of multifrequency EPR in studying 
motion. The theory of slow motion as studied by EPR is outlined in Section  11.4 ; 
this will include discussion of: (i) application of the  stochastic Liouville equation  
( SLE ); and (ii) the  slowly relaxing local structure  ( SRLS ) model together with the 
related  microscopic ordered - macroscopic disordered  ( MOMD ) model to analyze 
multifrequency EPR data. In Section  11.5  will be discussed the application of 
molecular dynamics to the prediction of multifrequency EPR spectra. Some con-
cluding remarks are made in Section  11.5 , while Section  11.6  includes the details 
of literature pertinent to molecular motion, as studied using EPR.  

   11.2 
Historical Background 

 An account of the historical development of lineshape theory is given by Freed 
 (2005) . Historically, the basic theories for magnetic resonance lineshapes mainly 
for the motional narrowing limit were developed, among others, by Kubo and 
Tomita  (1954) , Wangness and Bloch  (1953)  and Redfi eld  (1957, 1965) . 

 The  “ anomalous alternating linewidth ”  effect, wherein the electrochemically 
generated EPR spectrum of the  p  - dinitrotetramethylbenzene anion showed that 
well - resolved proton  superhyperfi ne splitting s ( shf s) appeared on the fi rst, third, 
and fi fth lines of the hf splitting from the two equivalent  14 N nuclei, while the 
second and fourth lines were so broad that the proton shfs were completely masked, 
was resolved by the application of a more generally inclusive theory (Freed,  2005 ). 
This is the theory of EPR linewidths for organic radicals (Freed and Fraenkel,  1963 ), 
and this is still valid today for spectra in the motional - narrowing regime. This 
theory has been improved since then, with the incorporation of more precise and 
detailed models of the molecular dynamics into the formulation. An example is the 
incorporation of anisotropic rotational diffusion into the linewidth theory, and its 
illustration by reinterpreting a linewidth study on  p  - dinitrobenzene (Freed,  1964 ). 

 When Hyde and Maki  (1964)  fi rst observed the  electron nuclear double reso-
nance  ( ENDOR ) of organic radicals in liquids, there was no theory to explain why 
ENDOR could occur in liquids, and the reason for their successful observation 
was a mystery. However, a reformulation and generalized theory of EPR saturation, 
by analogy with the Freed and Fraenkel  (1963)  theory, led to a general theory of 
EPR saturation and double resonance (Freed,  1965 ). To date, this formulation    –    and 
its later extensions    –    serve as the basis for interpreting EPR saturation and ENDOR 
experiments for motionally narrowed spectra (Leniart, Conner, and Freed,  1975 ; 
Dorio and Freed,  1979 ; Kurreck, Kirste, and Lubitz,  1988 ; M ö bius, Lubitz, and 
Freed,  1989 ; M ö bius, Lubitz, and Plato,  1989 ). Using the saturation and double 
resonance theory, an appropriate theory for  electron – electron double resonance  
( ELDOR ) in liquids was developed by Freed (Hyde, Chien, and Freed,  1968 ) to 
explain the data obtained by Hyde and Chien. ELDOR serves, among other things, 
as a powerful means of studying spin relaxation for exploring rotational and trans-
lational motions in liquids. 
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 Freed ( 1968 ) provided a formal, general formulation of the Redfi eld theory valid 
to all orders, using Kubo ’ s method of generalized cumulant expansions in statisti-
cal mechanics (Kubo,  1962, 1963 ). However, in order to study spin - labeled mac-
romolecules, which yield slow - motional EPR spectra, the most powerful method 
for simulating them is based on the SLE, which only requires the assumption that, 
for a complete analysis, the motional dynamics can be described by a (general) 
Markov process. The matrix representation of the SLE, and its solution, then 
requires computational methods. Such a theory was elucidated by Freed, Bruno, 
and Polnaszek  (1971a)  for the relevant cases of  g  - tensor and hyperfi ne anisotropy, 
and included saturation phenomena. The slow - motional spectra of  peroxylamine -
 disulfonate  ( PADS ) in ice, which did not show the substantial inhomogeneous 
broadening of typical spin labels, could be fi tted with jump - type reorientations 
rather than with simple Brownian motion (Goldman  et al .,  1972 ). This was an 
indication that the slow - motional spectra were more sensitive to the microscopic 
molecular dynamics than were the fast - motional spectra. The SLE approach was 
also extended to a complete solution of slow - tumbling triplets (Freed, Bruno, and 
Polnaszek,  1971b ), generalizing the fi ndings of Norris and Weissman  (1969) . 

 Slow - motional EPR spectra were exploited during the 1970s to acquire new 
insights into molecular rotational motions in isotropic fl uids, in liquid crystals, 
and in model membranes (Hwang  et al .,  1975 ; Polnaszek and Freed,  1975 ; Lin 
and Freed, 1979; Smectics, 1979). In addition, the SLE approach was exploited to 
provide a quantitative theory for the then new phenomena of  chemically induced 
dynamic electron polarization  ( CIDEP ) and  chemically induced dynamic nuclear 
polarization  ( CIDNP ) (Freed and Pederson,  1976 ). The SLE was also employed to 
provide a theory for Hyde ’ s saturation - transfer technique, which was useful for 
studying very slow motions (Hyde and Dalton,  1979 ; Beth and Robinson,  1989 ). 

 These rather tedious slow - motional calculations were challenging, however, and 
to address this a very effi cient method of computing solutions to the SLE was devel-
oped during the 1980s, namely the  Lanczos algorithm  ( LA ). This drastically reduced 
the computation time, by at least an order of magnitude, greatly reduced storage 
requirements, (Moro and Freed,  1981 ) and also ultimately led to the versions that 
could be made generally available (see below). The strength of the LA technique is 
that it takes full advantage of the sparsity of the SLE matrix; also after just a few 
Lanczos projections it produces a greatly reduced matrix sub - space that includes 
very effectively what is important to describe the EPR lineshapes. This is partly 
because the initial or  “ starting ”  vector represents essentially the EPR transition 
moments that include the physics of the EPR experiment. Further, the slower -
 decaying eigenvalues of the SLE, which dominate the EPR experiment, are obtained 
accurately from the small Lanczos sub - space. Unnecessary eigenvalues which are 
poorly represented in this small sub - space are automatically projected out of the 
solution when the specifi c EPR observable    –    that is, the lineshape    –    is calculated. 
Finally, a plaguing problem of the LA approach, namely the accumulation of round -
 off error, is overcome because the calculation is terminated before it becomes 
serious, as one needs only a small sub - space generated by a relatively small number 
of Lanczos projections. To further enhance the usage of SLE algorithms, very power-



Wile
y-V

CH 

—
 fin

al 
—
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ful methods have been developed for selecting the minimum basis set to represent 
the SLE (Schneider and Freed,  1989a, 1989b ), and for determining reliably that suf-
fi cient Lanczos projections have been utilized (Schneider and Freed,  1989a, 1989b ). 
These references provide the most effective computational algorithm to date.  

   11.3 
High - Field Multifrequency  CW  -  EPR  Experiments to Unravel Molecular Motion 

 Figure  11.1  shows the experimental EPR spectra of PDT/toluene at 250   GHz in 
various motional regimes: motional narrowing, slow motion, and the rigid lattice 
limit. Figure  11.2  shows a series of simulated multifrequency spectra covering the 
range of 15 to 2000   GHz for a spin - bearing molecule with a rotational correlation 
time of 1.7   ns. This shows that a motional process that appears fast at lower 

     Figure 11.1     EPR spectra of PDT/toluene at 250   GHz in various motional regimes. Motional 
narrowing ( − 40    ° C,  − 60    ° C), slow motion ( − 81    ° C,  − 100    ° C), and rigid limit ( − 119    ° C,  − 129    ° C).  

 ESR Spectra in a Fluid

PDT/Toluene at 250GHz

T = –40C
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Motional
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     Figure 11.2     (a) Simulated fi rst - derivative 
EPR spectra at 9.1 and 250   GHz for a dilute 
powder containing a cholesterol - like nitroxide 
(CSL; short vertical lines. The magnetic - fi eld 
values where CSL absorbs when its x ′  - , y ′  - , 
and z ′  - axes are parallel to  B  0  (Barnes and 
Freed,  1998 ); (b) Simulated fi rst - derivative 
multifrequency EPR spectra for a nitroxide, 

reorienting with a rotational diffusion 
constant  R     =    10 8    s  − 1  (corresponding to 
rotational correlation time   τ   R     =    1.67   ns) in the 
range 15 to 2000   GHz. From this, it is clear 
that a motional process that appears fast at 
lower frequencies will appear slow at higher 
frequencies.  

�
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frequencies will seem slow at higher frequencies. Thus, for complex systems, such 
as proteins or membranes, the slow overall and collective motions will be displayed 
better at lower frequencies, whereas the fast motions will be more sensitively 
demonstrated at higher frequencies. An example of monitoring the anisotropy of 
the motion can be seen in Figure  15.5 , which shows how high - frequency (170   GHz) 
EPR spectra can demonstrate convincingly the anisotropy of motion for molecular 
rotations about the X - , Y - , and Z - molecular axes (cf. Dzikovski,  et al .,  2009 ). An 
example of the simple detection of a biological process in a model membrane is 
shown in Figure  11.3 , which includes spectra at 9.6 and 170   GHz. Here, the forma-
tion and dissociation of head - to - head dimers by spin - labeled gramicidin A   ( GAsl ) 
in aligned samples of DPPC is observed. Dimer channels of GAsl form above the 
main transition point in a lipid membrane. Channel formation in the sample 
manifests as a breaking of Z - ordering of monomers, due to the tilt of the nitroxide 
moiety upon dimer formation. The conclusion which could be made at 9.6   GHz, 
after detailed simulation, is very clearly evident from a visual inspection of the 
spectrum at 170   GHz, namely that the spectral intensity shifts from the Z -  to 
the XY - spectral region and back upon performing a heating and cooling cycle. 
Another example of how multifrequency EPR distinguishes motion at different 

     Figure 11.3     EPR spectra at 9 and 170   GHz, showing detection of the formation and dissocia-
tion of head - to - head dimers by GAsl in aligned samples of DPPC. Channels begin to form 
above the  L   β      –     P   β   transition point in spin - labeled gramicidin A in DPPC.  

Formation & dissociation of head-to-head dimers
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temperatures is exhibited by the spectra in Figure  11.4  of T4 lysozyme spin - labeled 
at mutant site 131 at 9, 95, 170, and 240   GHz at 2, 12, 22, and 32    ° C.   

   11.3.1 
Determination of the Axes of Motion from High - Field, High - Frequency ( HFHF ) 
 EPR  Spectra: Orientational Resolution 

 Since the EPR spectra at millimeter - wave frequencies exhibit very high sensitivity 
to the  g  - tensor, the spectra provide excellent orientational resolution as compared 
to that achieved at conventional microwave frequencies (Budil  et al .,  1989 ; Earle, 
Budil, and Freed,  1993 ; Earle  et al .,  1997, 1998 , and the previous paragraph). This 
is discussed more in detail in Chapter  15  (see Figure  15.3a and b ). Therefore, at 
250   GHz for example (Earle, Budil, and Freed,  1993 ), one can discern about which 
axis, or axes, the motion occurs in the CW - EPR spectrum. An excellent demonstra-
tion of the orientational resolution at 250   GHz in studies utilizing nitroxide spin 
labels was provided by the data on aligned membranes containing a mixture of 
headgroups: zwitterionic  phosphatidylcholine  ( PC ) and negatively charged  phos-
phatidylserine  ( PS ), using the  cholesterol - like spin label  ( CSL ) (Barnes and Freed, 
 1998 ). The macroscopic alignment of the membranes further enhanced the 
orientational resolution at 250   GHz, allowing for an orientation - dependent study 
(this topic is discussed in greater detail in Chapter  15 ).  

     Figure 11.4     An example of how multifrequency EPR distinguishes motion at different 
temperatures, as exhibited by the EPR spectra of T4 lysozyme spin - labeled at mutant site 131 
at 9, 95, 170, and 240   GHz at 2, 12, 22, and 32    ° C.  
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Lysozyme spin- labeled at mutant site 72 at

different frequencies & temperatures* 
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   11.3.2 
Observation of Motion as a Function of Frequency 

 It is found that, the higher the EPR frequency, the slower the motion appears for 
a given diffusion rate, as shown in Figure  11.2 . It is found that at the low - frequency 
end one observes simply the motionally narrowed spectra, which become slow -
 motional, consistent with the rigid limit (powder - like), at the high - frequency end. 
This is tantamount to the higher - frequency spectra acting as a faster  “ snapshot ”  
of the motion (Earle, Budil, and Freed,  1993 ; Earle  et al .,  1997 ), due to the enhanced 
role of the  g  - tensor (Zeeman) term, linear in the magnetic fi eld,  B  0 , in the spin 
Hamiltonian. This is explained as due to the fact that the condition for motional 
narrowing,   H R1

2 2 1( )Ω τ <<  is no longer valid, rendering the spectra slow motional; 
here,   τR is the rotational relaxation time and   H1( )Ω  is the orientation - dependent 
part of the spin Hamiltonian, with  Ω  referring to the Euler angles describing the 
molecular orientation, which increases in magnitude with increasing frequency, 
  ω0 and magnetic fi eld,   B0.  

   11.3.3 
Virtues of Multifrequency  EPR  in Studying Molecular Motion 

 By exploiting multifrequency EPR spectra, one can decompose complex modes of 
motions of proteins and DNA according to their different timescales (Liang and 
Freed,  1999 ). This also applies to the study of the dynamics of complex fl uids, such 
as glass - forming fl uids (Earle  et al .,  1997 ) and liquid crystals (Lou  et al ., 2001). This 
would result, for example, in  “ freezing - out ”  the slow overall tumbling motions in 
protein spectra at higher frequencies, leaving only the faster internal modes of 
motion. On the other hand, at lower frequencies one can observe clearly the motions 
at a slower timescale with the faster motions averaged out. In glass - forming fl uids, 
the faster motions consist of reorientations of the probe molecules, whereas the 
slower motions relate to the dynamics of the solvent cage (Earle  et al .,  1997 ). 

 This was convincingly demonstrated in the case of proteins by Barnes  et al . 
 (1999) , using the 9 and 250   GHz CW - EPR spectra of spin - labeled mutants of the 
stable protein T4 lysozyme in aqueous solution. At 250   GHz, the overall rotation 
was too slow to signifi cantly affect the spectrum, so that it was satisfactorily 
described by the simpler MOMD model (Meirovitch, Nayeem, and Freed,  1984 ; as 
discussed in Section  11.3.4.2.1 ), because the overall motion was perceived to be so 
slow at 250   GHz that it corresponded to the rigid limit, and a good resolution of the 
internal dynamics was achieved. Using the internal motion parameters so obtained 
at 250   GHz, the 9   GHz lineshape data were fi tted to the SRLS model (as described 
in Section  11.3.4.2.1 ) to successfully obtain the rates for the global dynamics. In this 
manner, with multifrequency data, the two types of motion were separated and the 
spectral resolution of these motions was signifi cantly enhanced. The details of the 
SRLS model as applied to protein dynamics are illustrated in Figure  11.5 . Very 
recently, an extensive multifrequency study on spin - labeled T4L covering four fre-
quencies showed how simultaneous quantitative fi ts could be obtained with the 
SRLS model (Zhang  et al ., 2010).   
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 The same multifrequency approach was applied to a study of the dynamic struc-
ture of model membranes using an end - chain lipid (Lou, Ge, and Freed,  2001 ), 
where the 250   GHz data were exploited in terms of the MOMD model relating to 
just the internal dynamics and ordering of the ends of the acyl - chains, whereas 
the 9   GHz spectra are affected by both the internal and overall motions, and ana-
lyzed in terms of the SRLS model. It should be pointed out here that if the 250   GHz 
spectra are not taken into account, then the 9   GHz spectra, which provide only 
limited resolution to the dynamics, could be fi tted to the simpler MOMD model. 
However, the dynamic and ordering parameters obtained must be interpreted as 
a composite of both the internal and overall motions, with no obvious way of sepa-
rating them (Lou, Ge, and Freed,  2001 ).  

   11.3.4 
Stochastic Liouville Equation ( SLE ) to Describe Slow - Motional  EPR  Spectra 

 A quantitative treatment of slow - motional EPR is accomplished by solving the SLE, 
using the combined spin and orientational distribution function,   ρ  (  Ω  , t ), which is 
composed of both the spin density matrix,   ρ  ( t ), and the orientational distribution 
function,  P (  Ω  , t ), governed by the differential equation:

   
∂

∂
= − −ρ ρ ρ( , )

[ , ] ( , ),
Ω Γ ΩΩ

T

t
i H tˆ ˆ    (11.1) 

     Figure 11.5     Protein dynamics of spin - labeled protein (left), showing three types of motion: 
spin - label reorientation; side - chain fl uctuations; and global tumbling. The SRLS model is 
illustrated, including relevant motional parameters (Liang and Freed,  1999 ).  
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where   ̂Γ  is the operator for the rotational diffusion, and   Ω again represents the 
Euler angles between the fl uctuating molecular frame and the laboratory frame. 

 It should be noted that: (i) the normal density matrix is obtained by averaging 
  ρ  (  Ω  , t ) over all   Ω  :   ρ ρ( ) ( , )t t= Ω Ω; and (ii)   ρ  (  Ω  , t ) reduces to  P (  Ω  , t ) when there are 
no electron or nuclear spins:  S     =     I     =    0. Schneider and Freed  (1989a)  describe the 
details of calculating slow - motional EPR lineshapes for a nitroxide radical in solu-
tion, and Misra  (2007)  describes similar details for an electron spin ( S     =     ½ ) coupled 
to two nuclei with arbitrary spins, whereas Zerbetto  et al .  (2007)  describe details 
for a doubly spin - labeled system. 

   11.3.4.1    Calculation of Slow - Motion Spectrum 

  The EPR lineshape function:  This is expressed as follows:

   I i I iHx( ) ( ) ( ) ,ω υ ω ω υ= − + −⎡⎣ ⎤⎦
−

0

1ˆ ˆΓΩ     (11.2)  

where   |ν >> is the  “ starting vector ” , which contains the information that: (i) 
the spectrum is an isotropic average over all orientations (except, of course for 
macroscopically aligned fl uids, e.g. liquid crystals), which implies that only the 
components of   |υ > which contain   D0 0

0 1, =  are nonzero; and (ii) only the compo-
nents of   |υ > which correspond to  p s      =    1;   ′ =m mI I , (where p s  refers to the coher-
ence order of the electron spins cf. below) excited by the radiation, are nonzero:

   | ( ) | , , ,,v p p ms I I>>= × = = >>φ0 0
0 1 0Ω     (11.3)  

with  m I     =      + 1, 0,  − 1 for  14 N. 
 Finally, the spectrum is calculated to be;

   I
C

i
j

jj

N

( ) Re
( )

,ω
π λ ω ω

=
+ −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑1 2

01

    (11.4)  

where   λ  j   is the  j th complex eigenvalue of the SL operator, and  C j   is the component 
of the  j th eigenvector along the direction of the starting vector | v  >> . The real 
part of  λ j; Re λ j corresponds to a  T  2    − 1   - like decay and Im λ j; to the resonant 
frequency of the jth  “ mode. ”  Equation  11.2  yields the Redfi eld motional 
narrowing result (Redfi eld,  1965 ) for fast motions, whereas it yields the rigid -
 limit (solid - like) powder pattern in the very slow motion limit. 

  The Stochastic Liouville Equation     Using the superoperator notation for the spin 
Hamiltonian,  H x  , the SLE (Equation  11.1  above) can be expressed as

can be expressed as

   
∂

∂
= − − = −ρ ρ ρ ρ( , )

[ , ] ( , ) [ ] ( , )
Ω Γ Ω Γ ΩΩ Ω

T

t
i H t iH txˆ ˆ ˆ ˆ     (11.5)   

 The last equality of Equation  11.5  defi nes the superoperator form,  H x  , by relating 
it to the second term of Equation  11.5 . [For more details, see Schneider and Freed 



Wile
y-V

CH 

—
 fin

al 
—

 11.3 High-Field Multifrequency CW-EPR Experiments to Unravel Molecular Motion  507

 (1989a,b)  and Misra  (2007) .] The spin Hamiltonian in Equation  11.5 , which con-
sists of hyperfi ne and Zeeman terms for  S     =    1/2, can be expressed as:

   
ˆ ˆ ( ) ,,

( , )
,

( , )*H A D Fm
mm LG G

l m

sum
over
indices

= ′
′∑ μ μ�

� � Ω
    (11.6)   

 In Equation  11.6 ,   ̂ ,
( , )A m
μ �
�  is the irreducible spin tensor with spin operators quantized 

in the laboratory (L) frame in which the  z  - axis is along the external magnetic fi eld, 
B 0 ;   ̂ ,

( , )*F G
m

μ
� ′′  are molecular functions quantized in the molecular (G) frame, which is 

fi xed in the molecular frame; and   Dm m LG, ( )′
� Ω  are the Wigner rotation coeffi cients, 

which effect transformations of the matrix elements between the L and G frames 
(for more detail, see Section  11.3.4.1.8 ).  

  Simple Anisotropic Tumbling with Axial Symmetry     In the simplest model of rota-
tional diffusion such as the motions of rods or discs, one can express the rate of 
change of the orientational distribution function as follows:

   
∂

∂
= −∇ ⋅ ⋅∇ = −P t

t
R P t P t

( , )
( , ) ( , ),

Ω Ω Γ ΩΩ Ω Ω     (11.7)  

where  R  is the rotational diffusion tensor, diagonal in the appropriate molecular 
frame. The solution of this diffusion equation has well - defi ned eigenfunctions, 
which are for the case of axial symmetry:

   Φ Ω ΩM K
L

M K
LL

D, ,( ) ( ),= +2 1

8 2π
    (11.8)   

 These are normalized Wigner rotation coeffi cients, whose eigenvalues are given 
by the damping rates:

   E R L L R R KM K
L

, ||( ) ( ) ,= + + −⊥ ⊥1 2     (11.9)  

where   R R Rxx yy= = ⊥  and   R Rzz = || . These can be generalized to nonaxial diffusion 
(Freed, 1994).  

  Matrix Representation of the  SLE  Operator   ( )iHxˆ ˆ− Γ      First, the matrix elements 
of the SLE operator must be expressed in a convenient orthonormal basis set, 
which is in the direct - product space of the orientational and spin functions, as 
follows:

   | ( ) (| , , |) (| , , |),,σ >> = ⊗ >< ′ ⊗ >< ′Φ ΩM K
L

s s I IS m S m I m I m     (11.10)   

 For the nitroxides being considered here,  S     =     ½ , and  I     =    1 ( 14 N) or  I     =     ½  ( 15 N) (with 
this understanding, the spin indices  S  and  I  will be dropped hereafter). For ease 
of considering coherence order, modifi ed spin magnetic quantum numbers will 
now be used, as follows:

   p m m q m ms
s s

s
s s= − = +′ ′;     (11.11)   
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 Here,  p s   defi nes the coherence order:  p s      =    0 corresponds to the diagonal elements 
of the density matrix, whereas  p s      =     ± 1 corresponds to off - diagonal matrix elements 
between which the radiation fi eld induces transitions.  

  Basis Sets of the  SL  Operator:  L anczos Algorithm     The basis set required to 
represent the SL operator is rather large, of dimension  N , which requires rather 
exorbitant times to diagonalize the SL matrix. One can achieve order - of - magnitude 
and even greater reduction in computation time by employing the LA, given that 
the SL matrix is sparse. This is achieved by providing an objective criterion to 
determine when a suffi cient sub - space, with dimension  n s      <<     N , has been gener-
ated by exploiting the starting vector   |ν >> to select out a small sub - set of vectors, 
known as Lanczos vectors, which span the sub - space required to calculate the EPR 
lineshape. This subspace is then projected out, and the SL matrix is converted to 
tri - diagonal form, which is easily diagonalized, or else solved by the method of 
continued fractions (Schneider and Freed,  1989a,b ). In this manner, a greatly 
reduced number of multiplications is required. In a modifi ed form, the LA can be 
used to provide an objective method to prune the original basis set to go from  N  
to a minimum  N min   needed to represent the relevant eigenvectors.  

  Diffusion in Anisotropic Media     In an anisotropic medium, such as liquid crystals 
or membranes (or in the presence of side - chain motion in proteins), the orienta-
tional distribution of the spin probe is not isotropic. In that case, its equilibrium 
distribution,  P eq  (  Ω  ), can be derived from an orientational potential energy,  U (  Ω  ), 
which is the potential of mean torque experienced by it:

   P
U k T

d U k T
eq

B

B

( )
exp[ ( ) ]

exp[ ( ) ]
,Ω Ω

Ω Ω
= −

−∫
/

/
    (11.12)  

where  k B   is Boltzmann ’ s constant and  T  is the temperature. 
 The diffusion operator then becomes:

   ˆ ( , ).Γ ΩΩ Ω Ω Ω= ∇ ⋅ ⋅ ∇ + ∇ ⋅( )⎡
⎣⎢

⎤
⎦⎥

R
k T

U P t
B

1
    (11.13)   

 Equation  11.13  is known as a Smoluchowski equation. It has the property that for 
any initial  P (  Ω  ,0),   lim ( , ) ( )t eqP t P→∞ =Ω Ω ; in other words,  P eq  (  Ω  ) is an eigenfunction 
of   ̂ΓΩ with the zero eigenvalue.   ̂ΓΩ, as given by Equation  11.12 , is nonsymmetric 
but can be converted into the symmetric form by the following transformation:

   �Γ Ω Γ Ω ΩΩ Ω= −P Peq eq
1 2 1 2/ /( ) ( ) ( ),ˆ     (11.14)   

 which yields:

   �ΓΩ Ω Ω Ω Ω= ∇ − ∇( )[ ] ⋅ ⋅ ∇ + ∇( )[ ]U k T R U k TB B/ /2 2 .     (11.15)   

 The diffusion Equation  11.7  may be solved for   �P t P P teq( , ) ( ) ( , )Ω Ω Ω= −1 2/ . The sym-
metric matrix   �ΓΩ can be diagonalized after calculating its matrix elements explic-
itly in the basis formed by the functions   Φ ΩK M

L
, ( ). The new SL operator becomes:
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   iHxˆ ,− �ΓΩ     (11.16)   

 for which the new starting vector is:

   | ( ) | ,�υ υ>> = >>Peq
1 2/ Ω     (11.17)   

 Finally, the slow - motional EPR lineshape is given by

   I i I iHx( ) ( ) ( ) ,ω π υ ω ω υ= − + −⎡⎣ ⎤⎦
− −1

0

1� � �ˆ ˆΓΩ     (11.18)   

 where  H x   is defi ned in Equation  11.2 . Equation  11.18  is solved using the same 
procedure as before, by diagonalization of this SL operator and using the original 
basis set. For more details see Schneider and Freed  (1989a,b)  and Misra  (2007) .  

  The Potential Function,  U ( Ω ), and the Ordering Tensor  S      The potential energy 
operator,  U (  Ω  ), can be expanded in terms of the Wigner rotation matrix elements 
  DM K

L
, ( )Ω  as follows:

   − = ∑U k T c DB M K
L

M K
L

L M K

( ) ( )., ,

, ,

Ω Ω/     (11.19)   

 The resulting ordering tensor elements can be obtained by using  P eq  (  Ω  ) as follows:

   
S D d P D

S D D

eq0 0 0
2

0 0
2

2 0 2
2

0 2
2

= =

= +
∫

−

, ,

, ,

( ) ( ) ( );

( ) ( ) .

Ω Ω Ω Ω

Ω Ω
    (11.20)   

 It should be noted that only  S  0  and  S  2  are utilized in most cases of interest here.  

  The Spin  H amiltonian Operator     This can be expressed as:

   ˆ ( ) ( ),
( , )

,
( , )*H A D D Fm

mm LM m m MG G
l m

m

l

m

= ′ ′ ′′
′′

′′=−′=−
∑ μ μ�

� � �

�

Ω Ω
���

� l

mlg A
∑∑∑∑

=−== 0 2,,

.
μ

    (11.21)   

 In Equation  11.21 , the tensor elements   ̂ ,
( , )A m
μ �
�  are constituted by the external mag-

netic fi eld  B  0 , and the spin operators  S ,  I ,  S · I , expressed in the laboratory frame, 
whereas the tensor elements   F G

m
μ ,
( , )� ′′  are constituted by the diagonal matrix elements 

 g xx  ,  g yy  ,  g zz  ,  A xx  ,  A yy  ,  A zz   of the  g  -  and  A  - matrices expressed in the  g  - matrix frame. 
The reference frames: L, M, and G in Equation  11.20  are defi ned next.  

  Reference Frames Used in the  MOMD  Model to Defi ne the Orientation of a Spin 
Probe to Study its Structural and Dynamic Properties     The various frames used for 
this purpose are defi ned as follows, and illustrated in Figure  11.6 :

    •      Lab frame ( L ):     This is defi ned with respect to the external magnetic fi eld, 
whose direction is used as its  z  - axis.    

   •      Director frame ( D ):     The director,   ̂n, parallel to the membrane normal, defi nes 
this frame, which is tilted relative to the magnetic fi eld by the angle   ψ  , and is 
obtained by transformation by the set of Euler angles   ΨL D→  from LF to DF.  
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   •      Molecular frame ( M ):     This is defi ned by the principal axes of the molecular dif-
fusion tensor (or molecular ordering frame), and is fi xed within the molecule.  

   •      g - Tensor frame ( G ):     This is the principal - axis frame of the g - matrix, and is 
obtained by transformation by the set of Euler angles   ΦM G→  from MF to GF.  

   •      A - tensor frame:     This is defi ned by the principal - axes of the A - tensor, and is 
obtained by the transformation by the set of Euler angles   ΩA from GF to AF.    

 In order to defi ne the orientation of the spin - label, the typical molecular magnetic 
tensor in irreducible tensor notation is transformed from the MF to LF frame as 
follows:

   F F D D Dm
m
m

m m L D m m D M mμ μ,
( , )*

,
( , )*

, , ,( ) ( )�
2 2 2 2= ′′′

′ → ′ ′′ → ′′ ′′′Ψ Ω mm M G

m m m

2 ( ),
, ,

Φ →
′ ′′ ′′′
∑     (11.22)   

 where   ΨL D→ = ( , , )0 0ψ  is a suffi cient set of transformation Euler angles, from LF 
to DF. 

     Figure 11.6     Reference frames used to defi ne 
the orientation of a sample to study its 
structural and dynamic properties. (i) Lab 
frame (LF), defi ned with respect to the 
external magnetic fi eld, whose direction is 
used as its  z  - axis; (ii) Director frame (DF), 
defi ned by the director,   ̂n, of the membrane, 
tilted relative to the magnetic fi eld by the 
angle   ψ  , and obtained by the transformation 
by the set of Euler angles   Ψ L D→  from LF to 

DF; (iii) Molecular frame (MF), fi xed within 
the molecule; (iv)  g  - tensor frame (GF), 
the principal - axes frame of the  g  - tensor of the 
paramagnetic ion, and is obtained by the 
transformation by the set of Euler angles 
  ΦM G→  from MF to GF; (v) A - tensor frame, 
defi ned by the principal - axes of the A - tensor, 
obtained by the transformation by the set of 
Euler angles   ΩA from GF to AF.  

Reference frames which define the structural and
dynamic properties of the spin-bearing molecule

lab
Frame
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director
Frame

DF

molecular
Frame

MF
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 Figure  11.7  shows a simulated X - band CW - EPR spectrum for the nitroxide 
radical as a function of the director tilt (  ψ  ), along with its MOMD spectrum (as 
discussed in Section  11.3.4.2.2 ).     

   11.3.4.2     MOMD  and  SRLS  Models 

  Slow - Motional  EPR  Lineshape     This is calculated using Equation  11.1  . 

   MOMD      This is applicable, for example, to membrane vesicles or a very slowly 
tumbling protein with internal (side - chain) motion (Meirovitch, Nayeem, and 
Freed,  1984 ). In order to take into account random macroscopic disorder, for the 
case when there exists microscopic order, one should take an average of the spectra 
from all orientations,   ψ  , which defi ne the transformation angles   Ψ L D→  that appear 
in Equation  11.23 , to obtain the composite MOMD spectrum, as follows:

   I I d( ) ( , )sinω ω ψ ψ ψ= ∫     (11.23)   

 By defi nition, this spectrum is inhomogeneously broadened, but it happens in a 
characteristic manner, which depends on the ordering potential, or equivalently 
upon the ordering tensor  S     –    for example, that given by Equation  11.21 .  

  Diffusion Operator     This operator used in the SLE, as described by Equations  11.7  
and  11.13 , based on the assumption of over - damped motions inherent in 

     Figure 11.7     X - band CW - EPR spectra for the NO radical, shown as a function of the director 
tilt (  ψ  ) in the second and subsequent plots from the top in descending order, for   ψ      =    90 ° , 
75 ° , 60 ° , 45 ° , 30 ° , 15 ° , 0 ° , respectively, along with its MOMD spectrum displayed at the top.  

MOMD cw-ESR spectrum

3340 3360 3380 3400
Field

3420 3440 3460
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Smoluchowski equations as well as axially symmetric diffusion, is expressed as 
follows (see Schneider and Freed,  1989a ; Misra,  2007  for more details):

   ˆ ˆ , ˆ ˆ ˆ ˆ ,Γ Γ Ω Ω Γ Ω Ω Ω ΩΩ = ( ) = ( ) + ( ) + −( ) + −( )′ ′LM LC LM
C

LC C M
C

C MF F F0 0     (11.24)   

 where,

   ˆ ( ) ˆ ( )ˆ ;||Γ Ωo
LM

o o
z
oR J R R J= + −⊥ ⊥

2 0 0 2     (11.24a)  

   ˆ ( ) ˆ ( )ˆ ;||Γ Ωc
LC

c c c c
z
cR J R R J= + −⊥ ⊥

2 2     (11.24b)  
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(11.24c)
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(11.24d)

   

 Equations  11.24  implies   ΓΩ  depends on several quantities, as follows:

   ˆ ˆ( , , , , , ).|| ||Γ ΓΩ = ⊥ ⊥R R R R c co o c c
0
2

2
2    

  Internal - Ordering Potential     The explicit form of this potential, to be used in Equa-
tions  11.24c  and  d , is

   
u U k T

c D c D D
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   S lowly  R elaxing  L ocal  S tructure ( SRLS ) Model     With the enhanced resolution 
offered by the HF - HF EPR, more sophisticated models of molecular reorientation 
have been proposed to fi t these EPR spectra. Now, the many - body problem of 
dealing with the microscopic details of fl uids is approximated by a set of collective 
degrees of freedom which represent the main effects of the solvent on a rotating 
solute. These collective variables are modeled as a loose solvent  “ cage, ”  which is 
considered to be relaxing slowly and within which the solute is assumed to be 
reorienting more rapidly. This so - called  slowly relaxing local structure  ( SRLS ) is 
obtained by generalizing the MOMD model by allowing the Euler angles   Ψ L D→  to 
fl uctuate in time due to some slow overall process; this may be a slow tumbling 
of the vesicle or an overall rotation of the protein. The enhanced sensitivity of  very 
high frequency  ( VHF ) EPR to rotational dynamics was exploited successfully to 
explore the details of the dynamic solvent cage in a 250   GHz EPR study of the 
dynamics of several nitroxide spin probes dissolved in the glass - forming solvent 
  ortho  - terphenyl  ( OTP ) (Earle  et al .,  1997 ). As shown in Figure  11.8 , the SRLS model 
adequately fi ts the model - sensitive regions of the 250   GHz spectra, leading to a 
coherent picture of the dynamics. The rotational diffusion tensors of the various 
probes appropriately conform to the simple expectation that the diffusion constant 
becomes larger as the probe becomes smaller. The relaxation rate of the cage is 
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found to be the slowest, and independent of the particular probe, consistent with 
the fact that the cage relaxation involves primarily the movement of the OTP 
solvent molecules. Further, it was possible to estimate the magnitude and direc-
tionality of the cage - orienting potential. In addition, the dynamics affected the 
slow - motional EPR spectra in a nonlinear manner. This enables one to discern 
between two limiting cases: (i) a homogeneous liquid characterized by a complex 
motional dynamics, such as described by the SRLS model; and (ii) an inhomogene-
ous liquid characterized by a distribution of simple relaxation times, for example, 
Brownian tumbling, with (ii) shown to be incompatible with the 250   GHz spectra.    

 The SLE remains valid in this augmented SRLS model, since the combined 
system of solute plus cage is represented by collective Markovian equations. The 
Lanczos projections then effectively determine the extent to which the cage vari-
ables are needed to analyze the EPR spectrum (Polimeno and Freed,  1995 ). The 
various details applicable to the consideration of a membrane vesicle are shown 
in Figure  11.5 , together with details of the various rotational motions, and restricted 
internal motion, as well as the orientation of the  g  - tensor frame. It should be noted 
that in the limit when   R and Rc c

|| ⊥ → 0, the SRLS model becomes the MOMD model. 

     Figure 11.8     Comparison of two models for 
fi tting effects of rotational diffusion on 
250   GHz EPR spectra of spin probe of a 
cholesterol - like nitroxide (CSL) in  ortho  -

 terphenyl solvent (solid line) experiment. The 
dashed line indicates the SRLS model, and 
the dashed - dotted line simple Brownian 
diffusion (Earle  et al .,  1997 ).  
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 The coordinate systems used in considering the SRLS model are shown in 
Figure  11.6 . These are: (i) Laboratory (LF); (ii) Global diffusion (CF ) , obtained via 
transformation by the set of Euler angles   ΩLC t( ) from LF; (iii) Internal director 
(C ′ F), obtained by transformation by the set of Euler angles   ΩCC ′ from CF; (iv) 
Internal diffusion (MF), obtained by transformation by the set of Euler angles 
  Ω ′C M t( ) from C ′ F; and (v) Magnetic - tensor frame (GF ) , obtained by transformation 
by the set of Euler angles   ΩMG  from MF. 

 According to an earlier version of the SRLS model (Freed,  1977 ; Meirovitch 
 et al .,  2010  review), the spectral density is derived to be:

   J
K M
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 where   ′ = + ≅ >>− − − −τ τ τ τ τR R x R x
2 1 1 1 1. For an isotropic medium   κ  ( K ,  M )    =    1/5, which  

is equivalent to what is known as the model - free form in NMR (Meirovitch  et al ., 
 2010  review). 

  SRLS lineshape function:  The dependencies of this are expressed as follows:

   I I R R R R c cSRLS
o o c c

MG( ) ( , , , , , , , ).|| ||ω β ω= ⊥ ⊥ 0
2

2
2       

   11.4 
Pulsed  EPR  Study of Molecular Motion 

 A major drawback of CW - EPR for relaxation studies is its inability to extract homo-
geneous line broadening reliably from inhomogeneously broadened EPR spectra, 
such as those obtained with nitroxide spin labels. This homogeneous line broaden-
ing is due to the motional modulation of the hyperfi ne and  g  - tensors, as well as 
that from the other spin - relaxation processes. The inhomogeneous broadening, 
which is typically due to the undesirable effects of unresolved proton superhyper-
fi ne splitting and local ordering in the MOMD model, obscures the homogeneous 
line broadening. However, by using pulsed EPR    –    specifi cally  electron spin echo  
( ESE )    –    the inhomogeneous broadening can be canceled and the homogeneous 
linewidths, i.e. the inverse of  T  2 , determined. ESE spectrometers of this type have 
been constructed by Stillman  et al . (1980) and in much refi ned form by Borbat, 
Crepeau, and Freed  (1997)  and reviewed by Freed  (2000) . 

 It emerges that there occurs a homogeneous  T  2  minimum as a function of 
temperature, an example being that observed by Brown  (1974) , Stillman, Schwartz, 
and Freed  (1980)  and Millhauser and Freed  (1984) . This occurs because  T  2  depends 
differently on the rotational correlation time ( T  R     =    1/6R), for fast and slow motions. 
Specifi cally, for fast motion,  T  2  exhibits the well - known inverse dependence on 
correlation time, whereas for slow motion the homogeneous  T  2  depends on the 
correlation time to a positive (usually fractional) power. A detailed explanation of 
this in terms of the SLE was provided by Schwartz, Stillman, and Freed  (1982) . In 
the slow - motional regime, the  T  2  is affected in two limiting cases as follows. First, 
in the strong jump reorientation limit, each jump causes a large change in the 
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resonant frequency, which leads to an uncertainty in lifetime broadening, and  T  2  
becomes equal to the correlation time (Mason and Freed,  1974 ). On the other 
hand, in the limit of simple Brownian motion (the infi nitesimal jump limit),  T  2  is 
roughly proportional to the square - root of the correlation time, as interpreted by 
Kivelson and Lee  (1982)  in an heuristic manner. 

   11.4.1 
 T  2  - Type Field - Swept  2D   ESE  

 It is obviously not possible to extract much information on motional dynamics 
from a single value of  T  2 . In the fast - motional regime one observes different  T  2  ’ s 
for the different hf lines. In the slow - motional regime, one can study the variation 
of  T  2  across the spectrum to obtain information on motional models. This would 
be superior to studying the CW lineshape of a slow - motional EPR experiment, in 
that the  T  2  relates solely to the dynamic processes. This advantage is dispelled in 
the regime of very slow motions, however, where  “ solid - state ”  relaxation processes, 
such as spin diffusion, become dominant in  T  2 . In one approach, the homogene-
ous  T  2  can be measured by using pulsed EPR, wherein the magnetic fi eld is swept 
and the spin echo is collected from weak, i.e. highly selective, microwave pulses 
(Millhauser and Freed,  1984 ). The Fourier transform of these signals in the echo -
 decay time,   τ  , provides a 2 - D spectrum in which the homogeneous lineshape 
appears along the frequency axis, while the EPR lineshape essentially appears 
along the fi eld axis. This is shown for tempone in 85% glycerol/H 2 O at  − 75    ° C in 
Figure  11.9 . Thus, the homogeneous  T  2  variation across the spectrum can be 
studied, and explained quite successfully by a Brownian reorientational model. 
Subsequently, it was found that the patterns of  T  2  variation across the spectrum, 
when plotted in a normalized contour fashion, could be used to distinguish the 
model of rotation and also the degree of rotational anisotropy (see Figure  11.9 ). 
This technique found further application to spin labels in oriented model mem-
branes and to labeled proteins, as well as to slow motions on surfaces (Millhauser 
 et al ., 1987; Freed,  1987 ).    

   11.4.2 
Magnetization Transfer by Field - Swept  2 - D - ESE  

 This technique, which can be used to determine the magnetization transfer rates 
across the EPR spectrum, is performed in the same manner as a  T  2  - type 2 - D - ESE 
experiment, but where a stimulated echo sequence   π  /2 –   π  /2 –   π  /2 replaces the echo 
sequence   π  /2 –   π  , and the time  T  is stepped out between the second and third pulses 
(Schwartz, Millhauser, and Freed,  1986 ). The variation with  T  is governed by two 
exponential decays according to the approximate theory; one is in  T  1 , and the other 
is in  T  A , an effective magnetization transfer time (for  T  A     <<     T  1 ). The spin - bearing 
molecules irradiated by the fi rst two   π  /2 pulses are shifted by slow - rotational reo-
rientations to frequencies outside the irradiated region, and are therefore not 
detected by the third   π  /2 pulse. Thus, this magnetization transfer process leads to 
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a more rapid decay of the stimulated echo as a function of  T . A Brownian rotation 
model also predicts a  T  A  variation across the spectrum. Dramatic variations of  T  A  
across the spectrum for NO 2  adsorbed onto crushed vycor, attributed to very aniso-
tropic rotational motion on the surface (Freed,  1987 ). There was found an enhanced 
 T  A  for the spectral regimes corresponding to  x -   and  z -  molecular axes being parallel 
to the magnetic fi eld, implying more rapid rotation about the  y  - axis, which is paral-
lel to the line connecting to the two oxygen atoms. This motional anisotropy was 
clearly visible from the 2 - D contours, without requiring further detailed analysis.  

     Figure 11.9     (a) The 2 - D - ESE spectrum of 
tempone in 85% glycerol/H 2 O at  − 75    ° C. The 
slices along the width axis provide the 
homogeneous lineshape for the different 
magnetic fi eld positions of the EPR 
spectrum; (b) Normalized contours for panel 
(a) as well as the spectral slice from panel 

(a) taken along the width    =    0 axis; (c) The 
analogous contours for cholesterol in 
 n  - butylbenzene at  − 135    ° C. These show the 
different contour patterns from the 
near - spherical tempone compared to that 
from the cigar - shaped cholestane (Millhauser 
and Freed,  1984 ).  

WIDTH (MHz) GRUSS
3237.5

3190.0

0.00

2.44

R
M

P
L

IT
U

O
E

W
ID

T
H

 (
M

H
z
)

0
.0

0
0

0
2

.1
0

0
0

W
ID

T
H

 (
M

H
z
)

0
.0

0
0

0
2

.1
0

0
0

3285.0

(b) (c)

(a)

3237.5

GAUSS GAUSS

3190.0 3285.0 3237.5 3190.0



Wile
y-V

CH 

—
 fin

al 
—

 11.4 Pulsed EPR Study of Molecular Motion  517

   11.4.3 
Stepped - Field Spin - Echo  ELDOR  

 This is a more informative method of studying magnetization transfer. In this 
technique, an alternative to using two microwave frequencies, the magnetic fi eld 
is stepped out during the time between the fi rst inverting   π   pulse and the detecting 
  π  /2 –   π   spin - echo sequence (Hornak and Freed,  1983 ; Dzuba  et al .,  1984 ). The 
comprehensive theory of spin relaxation in ESE for fast and slow motions includes 
both longitudinal and cross - relaxation in liquids (Schwartz,  1984 ; Schwartz, Mill-
hauser, and Freed,  1986 ). In ELDOR, one observes the transitions out of a certain 
spectral region, and the spectral region to which the transition is made.  

   11.4.4 
 2 - D  Fourier Transform  EPR  

  Two - dimensional  ( 2 - D ) NMR was fi rst developed by Richard Ernst and coworkers 
in 1976 (Aue and Ernst,  1976 ), and this led in 1979 to the study of magnetization 
transfer. In 2D NMR one uses nonselective  radiofrequency  ( rf ) pulses to success-
fully irradiate the entire spectrum and to collect the data shortly after pulse applica-
tion. This process introduced coherences simultaneously to all spectral components, 
and enabled the observation of coherence transfer between these components. 
Ernst and Jeener subsequently showed how magnetization transfer could also be 
studied in this manner (Jeener  et al .,  1979 ). Nonetheless, it took another ten years 
for 2 - D - EPR to incorporate these ideas (Gorcester and Freed, 1986), for the simple 
reason that the EPR experiment is much more diffi cult to carry out. In the case 
of EPR, microwaves are used rather than rf used in NMR. As the EPR relaxation 
times are orders of magnitudes faster, pulse widths are required that are orders 
of magnitude shorter, and the spectral bandwidths that must be orders of magni-
tude wider. Consequently, it proved necessary to develop modern FT techniques 
in EPR as a requirement for developing 2 - D - EPR. Modern FT - ESR appeared at 
Bowman ’ s laboratory in Argonne (Angerhofer, Massoth, and Bowman,  1988 ), at 
Dinse ’ s laboratory in Dortmund, Germany (Dobbert, Prisner, and Dinse,  1986 ), 
at Lebdev ’ s laboratory in Moscow (Panferov  et al .,  1984 ), and in Freed ’ s laboratory 
at Cornell (Eliav  et al .,  1984 ; Gorcester and Freed, 1986; Freed, 1986). The 2 - D 
FT - EPR experiments conducted at Cornell consisted of a 2 - D - ESE experiment, 
appropriately called spin - echo - correlated spectroscopy (SECSY) which utilizes two 
  π  /2 pulses, and a  free induction decay  ( FID ) - based 2 - D - exchange experiment 
which utilizes three   π  /2 pulses, now referred to as 2 - D - ELDOR (Gorcester and 
Freed,  1986 ). With SECSY, it was possible to obtain homogeneous  T  2  –1  values from 
the whole spectrum simultaneously from an (inhomogeneously broadened) EPR 
signal. In contrast, the (fi rst) FT - based 2 - D - ELDOR experiment exhibited cross -
 peak development that had resulted from a Heisenberg spin - exchange. To make 
the technique of 2 - D - FT - EPR generally applicable, sophisticated phase - cycling was 
introduced on the technical side, whilst on the theoretical side a full analysis was 
developed for the fast - motional 2 - D spectra, taking into account the generation of 
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cross - peaks by the  Heisenberg exchange  ( HE ) and  electron - nuclear dipolar  ( END ) 
terms. Additional studies involved how to distinguish between the respective 
contributions to enable quantitative measurements could be made of HE in an 
anisotropic fl uid (Gorcester and Freed,  1988 ), and of END terms in a liquid crystal 
(Gorcester, Ranavare, and Freed,  1989 ). The measurement of END terms led to 
sophisticated insights being acquired into molecular dynamics in ordered fl uids, 
that could not be obtained with CW - EPR. The measurement of rates of chemical 
exchange in a semi - quinone system was also demonstrated, by using 2 - D - ELDOR 
(Angerhofer, Massoth, and Bowman,  1988 ). 

 Subsequently, 2 - D - FT - EPR was further developed to address the slow - motion 
regime by introducing further improvements. This was accomplished by increas-
ing the spectral coverage to 250   MHz, enhancing the data - acquisition rates, sig-
nifi cantly reducing the spectrometer dead times (Patyal  et al .,  1990a    in the case of 
SECSY:ESR, and Patyal  et al .,  1990b    in the case of 2 - D - ELDOR), and developing 
the general theory for the quantitative analysis of 2 - D spectra (Lee, Budil, and 
Freed,  1994b ). Complex fl uids could then be studied in detail, including phospholi-
pid membrane vesicles (Lee  et al .,  1994a ; Crepeau  et al .,  1994 ), liquid crystalline 
solutions (Sastry  et al .,  1996a, 1996b ), and liquid - crystalline polymers (Xu  et al ., 
 1996 ). The dead times here were reduced to approximately 50 – 60   ns. Simultaneous 
fi ts of 2 - D - ELDOR data at several mixing times,  T m  , provided a third dimension 
in that one could monitor how the cross - peaks would grow in relation to the auto 
peaks with increasing mixing time, as shown in Figure  11.10  (Costa - Filho, Shi-
moyama, and Freed,  2003a ) for a liquid - crystalline phase of lipid vesicles, and in 
Figure  11.11  (Costa - Filho, Shimoyama, and Freed,  2003b ) for the effects of the 
peptide gramicidin A of lipid vesicles. This information provides quantitative 
information on the nuclear spin - fl ip - inducing processes of both HE, which are 
related to translational diffusion, and the intramolecular electron – nuclear dipolar 
interaction, which is related to tumbling motions. In those studies further techni-
cal improvements had brought the dead-times down to 25 – 30   ns. The more recent 
work of Chiang  et al . ( 2007 ) on lipid-cholesterol mixtures of varying compositions 
and temperatures is a tour de force that illustrates the great power of 2D - ELDOR 
in extracting  all  the available dynamical information for complex systems. It was 
aided by an improved method of 2D - ELDOR data analysis called the “full  S  c -  ” 
method (Chiang and Freed, 2006).   

   11.4.4.1    Lineshapes of the Auto and Cross - Peaks: Homogeneous ( HB ) and 
Inhomogeneous Broadening ( IB ) 
 Two types of line shape can be obtained from the  correlation spectroscopy  ( COSY ) 
and 2 - D - ELDOR data. Depending on the coherence pathway, one can obtain 
either the FID - like signal ( S  c +  ), which is sometimes referred to as the  “ anti - echo, ”  
or the echo - like ( S  c -  ) signal, wherein there is refocusing of the inhomogeneous 
broadening terms in the spin Hamiltonian, which leads to their cancellation in 
the echo that is formed. The echo - like  S  c -   2 - D signal can be Fourier transformed 
and rearranged to obtain the homogeneous broadening along one frequency 
dimension, and essentially the CW spectrum along the other frequency dimen-
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     Figure 11.10     2 - D - ELDOR signals at 17.3   GHz 
versus mixing time,  T m  , of 16 - PC in 
liquid - crystalline phase from pure lipid 
vesicles (left column) compared with 16 PC 

in liquid - ordered phase from 1   :   1 ratio lipid 
to cholesterol (right column) at 50    ° C 
(Costa - Filho, Shimoyama, and Freed,  2003a ).  
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sion. In this way, one obtains the 2 - D - SECSY format from the COSY format by 
this transformation. In the case of 2 - D - ELDOR, the same transformation provides 
the HB for the auto peaks in the 2 - D - ELDOR  S  c -   spectrum, whereas the cross - peaks 
are affected by any differences in the IB that exist between the two spectral lines 
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connected by the particular cross - peak. The information so obtained from the auto 
and cross - peaks can be further exploited to study spin relaxation in detail. The 
 S  c -   format is particularly useful for studying ultra - slow motions, e.g. macromole-
cules in viscous media (Saxena and Freed, 1997). On the other hand, the FID - like 
 S  c +   2 - D spectra contain the full effects of inhomogeneous broadening.   

   11.4.5 
 MOMD and SRLS Models and 2 - D - ELDOR  

 From the above discussion, it is clear that the dynamics and structure of complex 
fl uids can be studied in great detail by exploiting the  S  c -   2 - D - ELDOR spectra. This 
enables one to study the microscopic alignment in lipid membranes, which gives 
rise to a superposition of the  “ single crystal - like ”  spectra obtained for each orienta-
tion of the membrane normal with respect to the static magnetic fi eld. This ori-
entational alignment is provided by the microscopic structure that typically 
characterizes complex fl uids, about which the molecular tumbling occurs. Mem-
brane vesicles exhibit  “ powder - like ”  spectra, as they possess membrane compo-
nents at all angles with respect to the magnetic fi eld, which is referred to as 
MOMD. The local ordering determines the IB and the information on dynamics 

     Figure 11.11     2 - D - ELDOR signals at 17.3   G, 
showing the effect of peptide gramicidin A 
(GA) on the dynamic structure of a lipid 
membrane containing (end chain) nitroxide -

 labeled lipid (16 - PC) at 75    ° C. (a) Pure lipid, 
mixing time,  T m      =    400   ns; (b – d) 1   :   1 lipid to 
GA with  T m      =    400   ns, 50   ns, and 1.6    μ s, 
respectively (Costa - Filho  et al .,  2003b ).  
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can be obtained from the  S  c -   spectra, which yields homogeneous  T  2  - values, as well 
as the development of the cross peaks with mixing time. [See Crepeau  et al . ( 1994 ); 
Patyal, Crepeau, and Freed ( 1997 ) and Chiang  et al . ( 2007 ), who studied several 
different nitroxide spin labels in phospholipid membrane vesicles to obtain accu-
rate dynamics and ordering parameters in the context of MOMD.] 

 2 - D - ELDOR is extremely sensitive to the properties of membrane vesicles, with 
the data acquired showing dramatic changes in the membranes ’  properties. Moreo-
ver, such changes can even be detected visually from the spectral patterns by a 
simple inspection; an example is seen in Figure  11.10 , which shows the 2 - D - ELDOR 
contour plots as a function of the mixing time,  T m  , for the spin - labeled lipid, 
 1 - palmitoyl - 2 - (16 - doxyl stearoyl) phosphatidylcholine  ( 16 - PC ) in pure lipid vesicles, 
in a standard liquid - crystalline phase and also for a lipid - cholesterol mixture in 
1   :   1 ratio, in a  “  liquid - ordered  ”  ( LO ) phase (Ge  et al .,  1999 ). The qualitative differ-
ence in the spectra indicate that the LO phase exhibits a signifi cantly greater 
ordering than the liquid crystalline phase, due to its increased microscopic order-
ing. In addition, the LO phase exhibits a much slower development of cross - peaks 
as a function of  T m  , due to a restricted range of orientational motion as a result of 
the presence of microscopic ordering (Costa - Filho, Shimoyama, and Freed,  2003a ). 

 In addition to the complex inhomogeneous lineshapes that are caused by MOMD 
(the theory of which was provided by Meirovitch, Nayeem, and Freed,  1984 ), there 
exists another often - encountered source of IB. This, specifi cally, is the slow -
 motional regime that does not average out the rigid limit line shapes completely, 
as the motions are too slow. This problem is dealt with effectively in the MOMD 
theory. As the slow - motional spectra have a comparable time scale to that for 
molecular dynamics, they provide a greater insight into the microscopic details of 
the molecular dynamics. As with complex fl uids, it was found that a more sophis-
ticated model than the MOMD model    –    specifi cally, the SRLS model as described 
above    –    was needed to analyze the 2 - D - ELDOR spectra in order to achieve a reason-
ably good agreement with experiment. The SRLS model was tested in studies on 
a macroscopically aligned liquid crystal solvent, called 4O,8 (Sastry  et al .,  1996a, 
1996b ). This solvent exhibits many phases as a function of temperature, including 
isotropic, nematic, liquid - like smectic A, solid - like smectic B, and crystalline phases. 
This model, in addition to using the macroscopic liquid crystalline - orienting poten-
tial, has provided consistently better fi ts than were obtained with the simpler 
MOMD model, and does not include any local structure. Hence, one could, using 
the macroscopically aligned samples, obtain very extensive relaxation, dynamic, 
and structural information which includes virtually all of the parameters obtainable 
from any EPR experiments on spin relaxation in a complex fl uid! These ten param-
eters are as follows: the two - term (asymmetric) macroscopic ordering potential in 
the liquid crystalline phases; the axially symmetric diffusion tensor for the probe; 
its two - term orienting potential in the local structure or cage; the relaxation rate 
for the cage; the residual homogeneous   T2

1−  due to processes other than the reo-
rientational modulation of the  14 N dipolar and  g  - tensors; the residual (Gaussian) 
inhomogeneous broadening not due to the specifi c slow - motional contributions 
from the  14 N hf -  and  g  - tensors; and the overall  T  1  for the electron spins. 
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 When investigating the effects of the peptide  gramicidin A  ( GA ) on the dynamic 
structure of model membranes, the changes in 2 - D - ELDOR spectra    –    when as 
compared to those in the CW - EPR spectra    –    were found to be more dramatic, thus 
demonstrating the much greater sensitivity of 2 - D - FT - EPR to molecular dynamics 
(Patyal, Crepeau, and Freed,  1997 ). It emerges that in these studies, performed at 
9.3   GHz and with dead times of 50 – 60   ns, one could only be used to study the bulk 
lipids and not the boundary lipids that coated the peptide, evidence from which 
was provided in the CW - EPR spectra, albeit at very limited resolution. This problem 
was overcome, however, by invoking the higher - frequency, 17.3   GHz, 2 - D - ELDOR, 
with an increased  signal - to - noise ratio  ( SNR ) and reduced dead times ( ∼ 25 – 30   ns) 
to demonstrate the presence of two components (Costa - Filho  et al .,  2003b ). These 
were: (i) the bulk component, as reported by Patyal, Crepeau, and Freed  (1997) , 
which exhibited relatively fast dynamics; and (ii) the boundary lipid, which grows 
in as the GA is added, and whose 2 - D - ELDOR spectrum is undoubtedly that of a 
more slowly reorienting lipid, as expected. Moreover, these spectra could be simu-
lated with a model of bending the end - chain of the lipid as it coated the GA. Such 
details of the dynamic structure of complex membrane systems can only be 
obtained using 2 - D - ELDOR. The recent studies of membrane systems (Chiang 
 et al .,  2007 ) carry even further the capabilities of 2 - D - ELDOR.  

   11.4.6 
  Extension of 2 - D - ELDOR to Higher Frequencies 

 Just as in CW - EPR described earlier in this chapter, one can hope to perform 
multifrequency 2 - D - ELDOR studies. That this is feasible was demonstrated by 
Hofbauer  et al . (2004) and Earle  et al . ( 2005 ) at 95   GHz. We show in Fig.  11.12  just 
such an example. The challenges here are the much greater spectral bandwidths 
to irradiate and the much shorter  T  2  decays. In addition, these higher frequency 
spectra with greater orientational resolution pose a much greater challenge to their 
theoretical simulation in the slow - motional regime. However, a new computa-
tional algorithm has very recently been developed (Chiang and Freed,  2011 ) which 
promises to overcome these diffi culties.   

   11.5 
Simulation of Multifrequency  EPR  Spectra Using More Atomistic Detail Including 
Molecular Dynamics and Stochastic Trajectories 

   11.5.1 
Augmented SLE 

  Improved modeling has been used for  the stochastic modeling of the side - chain 
dynamics of spin - labeled proteins, an example being  MTSSL  ( 1 - oxyl - 2,2,5,5 -
 tetramethyl -  Δ  3  - pyrroline - 3 - (methyl)methanethiosulfonate spin label ) linked to poly 
 α  - helix domain (Tombolato, Ferrarini, and Freed,  2006a ). The features of this 
model are described briefl y as follows. Here, one considers stable conformers as 
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determined from quantum mechanical calculations and utilizes estimates of the 
chain dynamics. The simplifying assumption is made that conformers with low 
barriers exhibit a fast exchange, while those with high barriers exhibit no exchange 
in the EPR time scale. There are no free parameters used in these calculations. 
The modifi ed SLE used here is:

   
∂

∂
= − − − +[ ]−ρ ρ ρ ρ( , )

( ) ( , ) ( , ) ( ) ( ) ( ,
Ω Ω Ω Γ Ω Ω Γ Ω ΩΩ

D
D D D D D D

t

t
iL t t T2

1 tt),     

 (11.25)   

     Figure 11.12     2D - ELDOR spectra of 
Gramicidin A spin label (GASl) in aligned 
DPPC membranes at 7    ° C: with the director 
parallel to the applied fi eld ( ψ     =    0 ° ) with 
mixing times (a) 50 and (b) 200ns, 

respectively. The spectral extent is approxi-
mately 350   MHz, corresponding to  ± 6   mT 
( ± 60   G). The B 1  in this case is about 1.7   mT 
(17   G).  
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 where   L D( )Ω  is the Liouville superoperator with the magnetic tensors partially 
averaged out by chain dynamics,   Γ Ω( )D  is the diffusion operator for overall protein 
tumbling, and   T D2

1− ( )Ω  is the linewidth contribution from chain dynamics, 
as calculated using Redfi eld theory (Redfi eld,  1965 ), i.e., motional narrowing 
theory. The torsional energy profi les were obtained using quantum mechanics, 
taking into account the constraints imposed by the local environment. Torsional 
motions about each of the fi ve dihedral angles were taken as independent. The 
details of the potential energy provide the description of the system in 
terms of the signifi cant rotamers undergoing conformational jumps and the 
librations which occur about the minima of the side - chain torsional potentials. 
The approximate diffusive treatment of the dynamics used provides a reasonable 
account of energetic and frictional features of the tether. This analysis enables 
one to estimate the amplitude and time - scale of the chain motions. Then, by 
Equation  11.25 , it is possible to derive some general considerations on the 
effect of the tether dynamics on EPR spectra. This approach is thus based on 
a simple model, which leads to an easier interpretation of the determining 
factors of conformational dynamics of the side chain. The theory contains many 
realistic features, predicting some general results on the geometry and kinetics 
of this dynamics. These results have been exploited to directly introduce the 
dynamics of the nitroxide on lineshape analysis, for example, to interpret the EPR 
spectra of mutants of T4 lysozyme (Tombolato, Ferrarini, and Freed,  2006b ). 
Another approach for obtaining detailed simulations is to employ either Monte -
 Carlo simulations (Sale  et al .,  2002, 2005 ), which are not covered here, or MD 
simulations using dynamic trajectories. General procedures for simulating the 
EPR spectra of nitroxide spin labels from MD and stochastic trajectories are 
described below.  

   11.5.2 
 MD  Simulations Using Trajectories 

 The EPR spectrum may be calculated from a time evolution of the transverse 
magnetization, which is determined from the time dependence of the spin 
Hamiltonian. In order to take into account the dynamics of the spin label, 
one needs to consider appropriate models, such as the SLE technique described 
by Schneider and Freed  (1989a) , as outlined above. The dynamics of the 
electron – nuclear spin - coupled system of the spin label is treated quantum 
mechanically, whereas the rotational dynamics of the spin label can be treated 
classically. When one deals directly with the probability density to take into 
account the dynamic stochastic processes, the coupled classical - quantum evolu-
tion is described by the SLE, as discussed above. However, another approach 
was developed more recently by Sezer, Freed, and Roux ( 2008a, 2008b ; Sezer, 
Freed, and Roux,  2009 ), and used successfully to simulate EPR spectra. This 
involves the use of dynamic trajectories with explicit realizations of the process in 
the time domain.  
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   11.5.3 
Use of Dynamic Trajectories to Simulate Multifrequency  EPR  Spectra 

 The simulation of EPR spectra using trajectories has been carried out in the past, 
for example by Saunders and Johnson  (1968) , Pederson  (1972) , and Robinson, 
Slutsky, and Auteri  (1992) . It has been claimed that this approach has the following 
advantages:

    •      It is possible to generate trajectories for more complicated stochastic models 
that can be treated by the SLE formalism, as suggested by Hakansson, Persson, 
and Westlund  (2002)  and by Persson  et al .  (2002) . But, the SLE approach does 
allow for a wide range of sophisticated models (Meirovitch  et al .,  2010 ), and is 
orders of magnitude faster (Sezer  et al ., 2008a).  

   •      It is possible to simulate EPR spectra directly from atomistic MD trajectories, 
without invoking any stochastic model (Eviatar, van der Heide, and Levine, 
 1995 ; Steinhoff and Hubbell,  1996 ; Hakansson  et al .,  2001 ; Stoica,  2004 ; and 
Beier and Steinhoff,  2006 ), although in much of this work the quantum spin 
dynamics has been overly simplifi ed (Sezer  et al ., 2008a). A major disadvantage 
is the much greater computation time by orders of magnitude for computing 
EPR spectra by trajectories vs. use of the SLE (Sezer  et al ., 2008a).    

 High - frequency EPR provides an increased sensitivity to dynamics on the sub -
 nanosecond time scale, and therefore provides experimental spectra which can be 
exploited to establish a tighter connection with MD simulations. 

 The treatment of Sezer, Freed, and Roux  (2008a)  will be detailed here (albeit 
only in outline due to restricted space) to provide a description of the procedure 
of using MD trajectories to simulate multifrequency EPR spectra. In general, 
many, long trajectories are required for the convergence of spectra (Robinson, 
Slutsky, and Auteri,  1992 ; Hakansson  et al .,  2001 ; Stoica,  2004 ; Eviatar, van der 
Heide, and Levine,  1995 ). Alternatively, it is possible to use MD trajectories to 
estimate the parameters of a preselected stochastic dynamic model, and then to 
use these parameters either by solving the SLE (Budil  et al .,  2006 ) or by generating 
trajectories (Steinhoff and Hubbell, 1996; Beier and Steinhoff, 2006). Previously, 
spectra from more sophisticated rotational dynamical models, such as MOMD and 
SRLS (as discussed above), were not simulated by applying the trajectory - based 
approach. Only simple isotropic diffusion (Pederson,  1972 ; Robinson, Slutsky, and 
Auteri,  1992 ) or isotropic diffusion in a cone (Fedchenia, Westlund, and Cegrell, 
 1993 ) were taken into account, by employing rotational diffusion trajectories to 
simulate the EPR spectra. The trajectory - based approach was not exploited to its 
full potential, due to a lack of any rigorous formalism to simulate the trajectories 
for anisotropic diffusion. 

 An effi cient numerical integrator to generate trajectories for sophisticated ani-
sotropic rotational diffusion models, such as MOMD and SRLS, was developed to 
achieve this. In the practical algorithm, the gap between the small time steps at 
which the snapshots along the MD trajectories are available, and the longer time 
steps required for numerical propagation of the stochastic or quantal dynamics is 
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accounted for by using time - averaging procedures. One describes the quantal spin 
dynamics in relation to the numerical propagation of the relevant part of the 
density matrix in Hilbert space, and the classical anisotropic Brownian diffusion 
in a potential, so as to develop an accurate and effi cient numerical integrator for 
general rotational diffusion. Finally, one can compare the spectra for free and 
restricted rotational diffusion models simulated by using the developed time -
 domain integrators with the SLE. To this end, one utilizes time - averaging argu-
ments to bridge the gap between the various integration time steps. Multifrequency 
spectra may then be simulated by using rotational diffusion or MD trajectories.  

   11.5.4 
Numerical Integrators 

   11.5.4.1    Integration of the Quantal Spin Dynamics 
 Since the CW and FID spectra are formally equivalent (Abragam,  1961 ), the dis-
cussion here will be based on terms of the latter, which is numerically more 
appropriate. 

  The Spin  H amiltonian and the Interaction Picture     The case of the nitroxide spin 
probe, which consists of an unpaired electron spin  S    =      ½  and a  14 N nucleus ( I     =    1), 
will be considered. (The case of 15N follows in a similar manner.) In units of angular 
frequency, using the standard notation, the spin Hamiltonian of a nitroxide is

   H t B G t S I A t Se( ) ( ( ) ( ) ),= ⋅ ⋅ + ⋅ ⋅γ     (11.26)   

 where   γ  e   is the electronic gyromagnetic ratio,  A  is the hyperfi ne tensor (in units of 
magnetic fi eld) and   G t g t ge( ) ( )≡ / , with  g e   being the free - electron  g  - factor. (Note this 
is the same Hamiltonian as in Equations  11.4  and  11.5 .) Typically, the  G  and  A  
tensors are diagonal in the same coordinate frame, referred to as  N . They are also 
time - dependent due to the motion of the frame  N  with respect to the laboratory 
frame,  L , (this explicitly time dependence is only implicit in Equations  11.4  and 
 11.5 .) defi ned with respect to the external magnetic fi eld  B : (0,0, B  0 ), in which the 
electronic spin is quantized, so that all the vector and tensor components in Equa-
tion  11.26  are defi ned with respect to  L . The nuclear Zeeman and quadrupolar 
interactions are neglected here, but they can be easily included if required; the 
coupling with other spins is also ignored. The electronic and nuclear spins localized 
on a single spin label are described by the state vector   ψ ( )t , the dynamics of which 
is governed by the spin Hamiltonian via the Schr ö dinger equation. The spin Ham-
iltonian given by Equation  11.26  can be broken into two parts: (i) a large and time -
 independent part  H ; and (ii) the remaining time - dependent part, which is denoted 
as  V ( t ). One can express

   H G B S S G Tr Ge z z≡ = ≡γ ω0 0 0 0
1

3
; { }   

 The state vector oscillates with the Larmor frequency   ω  0   in the absence of  V ( t ), 
whereas in its presence the instantaneous frequency of precession fl uctuates 
around   ω   0  by a time - dependent modulation, much smaller than   ω   0 . 
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 It is more convenient to transform to the coordinate frame rotating at the 
Larmor frequency, i.e. what is referred to as the  “ interaction picture, ”  so that one 
does not have to use extremely small integration steps required to resolve the fast 
oscillations at   ω   0 . To go into the interaction picture, one transforms the state vector 
and the operators as follows:

   ′ ≡ ′ ≡ −ψ ψ( ) ( ) , ( ) ( ) ,t e t V t e V t eiHt iHt iHt   

 which transforms the Schr ö dinger equation to

   � ′ = − ′ ′ψ ψ( ) ( ) ( ),t iV t t     (11.27)   

 where the dot indicates a derivative with respect to time. The spin operators are 
transformed as

   ′ = ′ = ′ =+ +
+

− +
−S S S S e S S ez z

i t i t, ,ω ω0 0     (11.28)   

 Finally, the time - dependent part of the Hamiltonian becomes, in the interaction 
picture,

   ′ = +
=±

∑V t V t V t ez
i t( ) ( ) ( ) ,κ
κω

κ

0
    (11.29)   

 where the operators   V t b t a t S zν ν ν ν ν( ) ( ) ( ) , ,≡ +( ) = ±, are defi ned as follows;

   

a t A t I

a t A t iA t I

z e iz

i x y z

i

e ix

i

iy i

( ) ( ) ,

( ) ( ( ) ( )) ,

, ,

≡

=

=

±

∑

∑

γ

γ 1

2
∓

  

 which act only on the nuclear spin state, and the scalars

   
b t B G t

b t B G t iG t

z e zz

e zx zy

( ) ( ),

( ) ( ( ) ( )),

≡ ′

≡ ′ ′±

γ

γ

0

0
1

2
∓

  

 are expressed in terms of the traceless tensor:

   ′ = −G t G t G E( ) ( ) ,0   

 where  E  denotes the identity matrix in the electronic space.  

  The High - Field ( HF ) Approximation     In the interaction picture    –    or the rotating 
frame in the present case    –    the fast - varying term responsible for Larmor precession 
has been removed in the effective Hamiltonian. This means that   ′ψ ( )t  varies on 
a time scale which is now much longer than the Larmor precession time scale. 
However, there are parts of the Hamiltonian which oscillate at the Larmor fre-
quency; these are the terms containing   ei tκω0  in Equation  11.29 , which average out 
the effect of the slowly varying coeffi cients   V t±( ), that depend in turn on the mag-
netic tensors  G ( t ) and  A ( t ). Then, in order to calculate the slowly varying quantity, 
the transverse magnetization in this frame, one can consider only the slowly 
varying part  V z  ( t ) of Equation  11.29 . This leads to the high - fi eld approximation, 
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derived as the zeroth - order term in the expansion of the Schr ö dinger Equation 
 11.27  in powers of   ε      =    1/  ω   0 , by seeking a solution of Equation  11.27  in the form:

   � ′ = +
=±

∑ψ ψ ε ψ κ κ ε

κ

( ) ( ) ( ) ,t t t ei t0 /
  

 where both   ψ 0( )t  and   ψ κ ( )t  are slowly varying. Proceeding in this fashion, one 
tries to derive an equation of motion for   ψ 0( )t . Finally, one obtains an equation 
for the slowly varying part of the state vector, correct to the fi rst order in   ε  :

   �ψ ψ0 0( ) ( ) ( ) ,t iH t tS= −     (11.30)   

 where the effective slow Hamiltonian is as follows:

   H t V t V t V tS z( ) ( ) ( ), ( ) ,≡ + [ ]+ −ε     (11.31)   

 In carrying out further analysis of  H S  ( t ), neglecting the terms which depend on 
1/  ω   0  as justifi ed in the high - fi eld approximation, and retaining only the  V z   part of 
the Hamiltonian, one is led to the effective Hamiltonian:

   H t B G t I a t S a t A tHF e zz z i iz( ) ( ) ( ) ; ( ) ( ).= + ⋅ ⋅( ) ≡′γ 0     (11.32)   

 It should be noted that an equivalent form of Equation  11.32  is the starting point 
for the SLE analysis of slow motion for the unsaturated line shapes (Freed, Bruno, 
and Polnaszek,  1971a ; Polnaszek and Freed,  1975 ; Meirovitch, Nayeem, and 
Freed,  1984 ; Schneider and Freed, 1989a, b; Polimeno and Freed,  1993 ; Polimeno 
and Freed,  1995 ; Budil  et al .,  1996 ; Liang and Freed,  1999 ). In the HF approxima-
tion, the contribution of spin fl ips to the decay of transverse magnetization has 
been neglected; this is due to ignoring the terms in   S±  in the spin Hamiltonian. 
It emerges that the slow Hamiltonian, given by Equation  11.31  and its lowest -
 order approximation, expressed by Equation  11.32 , are diagonal in the electronic 
Hilbert space, and do not allow spin fl ips. As a consequence, these Hamiltonians 
are not suitable to describe the arrival to equilibrium of the longitudinal magneti-
zation, which is effected by these spin fl ips. Thus, in order to treat the phenom-
ena which cause  T  1  relaxation, it would be necessary to consider fast dynamics at 
the time scale of the Larmor precession. 

 The HF approximation decouples the spin dynamics of the   ms = +1

2
( )  and 

  ms = − −1

2
( )  sectors of the Hilbert space, seen by introducing the state vector 

  ′ =
′

′
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+

−
ψ

ψ

ψ
( )

( )

( )
t

t

t
, and the Hamiltonian, given by Equation  11.32  in Equation 

 11.30 , obtaining

   
�

�

′

′
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = − ⎛

⎝
⎜

⎞
⎠
⎟

′

′

+

−

++

−−

+

−

ψ

ψ

ψ

ψ

( )

( )

( )

( )

( )t

t
i

H t

H t

tHF

HF

0

0 (( )
,

t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟     (11.33)   

 where the slow state vector   ψ 0  was replaced by the state vector   ′ψ  in the inter-
action picture. In view of Equation  11.33 , numerical integration of the quantum 
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dynamics is achieved by keeping track of the temporal development of the two 
parts   ′±ψ  separately, following the short - time propagation scheme, as follows:

   ′ + = ′± ±++
ψ ψ( ) ( ) ,( )t t e ti tH tHFΔ Δ∓     (11.34)   

 where the equivalence   H HHF HF
−− ++= − , valid in the HF approximation, was used. It 

is noted that the quantum integrator summarized by Equation  11.34  was also used 
by Eviatar, van der Heide, and Levine  (1995) , with their vectors  P  and  Q  corre-
sponding to   ′±ψ .  

  Calculation of the Spectrum by the Use of Reduced Density Operator     The CW 
spectrum, the object of the present simulation, is the Fourier – Laplace transform 
of the transverse magnetization   M M iMx y+ = + :

   �M e M t dti t
+

−
+= ∫( ) ( ) ,ω ω   

 where   M t M t+ +=( ) ( )ˆ  is the quantum - mechanical expectation value of the opera-
tor   ˆ ( ) ˆM t S+ +∝ . It is noted, using Equation  11.28  that

   M t t M t e t M ti t
+ + += ′ ′ ′ = ′ ′( ) ( ) ( ) ( ) ( ) ,ψ ψ ψ ψωˆ ˆ0   

 which shows that equivalently one can use the Schr ö dinger picture by sandwiching 
the operator   M̂+ with the state vector   ′ψ ( )t  in the interaction picture and simply 
shifting the spectrum by the Larmor frequency by multiplying with   ei tω0 . Accord-
ingly, one gets

   �M e t M t dt e t M t dti t i t
+ +

∞

+
−

∞

+( ) = ′( ) ′( ) = ′ ( ) ′ ( )∫ω ω ψ ψ ψ ψω ω
0

0 0

0 0ˆ ˆ+∫∫ ,    (11.35)   

 where the last equality has been written in view of   S+, proportional to   M̂+, being 
a raising operator. Defi ning the reduced density matrix:

   ′ ≡ ′ ′−+ − +ρ ψ ψ( ) ( ) ( ) ,t t t     (11.36)   

 one obtains

   ′ ′ = ′{ }+ +
−+ψ ψ ρ( ) ( ) ( ) .t M t Tr M t   

 It should be noted here that, in the HF approximation, the time evolution of   ′−+ρ  
is independent of the time evolution of the other sectors of the reduced spin 
density matrix (  ′++ρ ,   ′+−ρ , and   ′−−ρ ), defi ned analogously to   ′−+ρ  as in Equation 
 11.36 . It follows from the short - time propagator described by Equation  11.34  and 
the defi nition of   ′−+ρ , Equation  11.36 , that the short - term dynamics of   ′−+ρ  is:

   ′ + = ′−+ −+++ ++
ρ ρ( ) ( )( ) ( )t t e t ei tH t i tH tHF HFΔ Δ Δ     (11.37)   

 It is also noted that the same matrix acts on both sides of   ′−+ρ  in the above equation; 
this is different from the evolution of the full density matrix in the Hilbert space. 

 Equation  11.37  is the key expression for the integrator for the relevant sector 
of the quantum spin dynamics being developed here. In order to evaluate this 
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effi ciently, one needs to quickly calculate the matrix in the exponential part of 
Equation  11.37 :

   e ei tH t i t B G t a t IHF e zzΔ Δˆ ( ) ( ) ( ( ) ( ) ),
++

= ′ + ⋅1 2 0/ γ     (11.38)   

 at each step. It is easy to take into account the fi rst term in the second parenthesis 
in Equation  11.38 , as it amounts to a simple, time - dependent phase factor. However, 
the second term in this parenthesis is more complicated to evaluate. The straight-
forward method to evaluate is by fi rst diagonalizing the matrix   a t I( ) ⋅  in the nuclear 
space by a similarity transformation, exponentiating its eigenvalues, and then 
applying the inverse similarity transformation. Sezer, Freed, Roux  (2008a)  discuss 
a more effi cient alternative by invoking the relation between the nuclear spin matri-
ces and the  three - dimensional  ( 3 - D ) representation of the rotation group, so that

   
ˆ ˆ,N n Ii i

i

= ∑   

 where   ˆ ( , , )N n n nx y z=  is a unit vector that satisfi es the exponential expansion:

   e E i N Ni N
I

− = − − −θ θ θˆ (sin )ˆ ( cos )ˆ ,1 2     (11.39)   

 where  E I   denotes the identity operator in the 3 - D Hilbert space of the nuclear spin. 
As a consequence, one can avoid solving the eigenvalue problem of   a t I( ) ⋅  at each 
time step, and instead calculate the magnitude a and the direction  n  of the vector 

 a  (  t  ) . One needs to use the angle   θ γ= e t aΔ 1

2
 and the unit vector  n  to construct the 

short - term propagator (Equation  11.39 ), as shown explicitly by Sezer, Freed, Roux 
 (2008a) , who used the following equations:

   Re( )e I

c n n n s n c n n

i N

z x y y z x

− = +

+ ⎛
⎝

⎞
⎠ +( )⎡
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⎤
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ˆ
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 Sezer, Freed, and Roux  (2008a)  make the argument that it is preferable to work 
with the density matrix,   ′−+ρ , rather than using the state vector   ′±ψ , since the 
former represents the ensemble average of all the state vectors consistent with the 
macroscopic initial condition, when calculating the FID after a   π  /2 (90 ° ) pulse 
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applied at time  t     =    0, which renders   M t+
+= =( )0 1, which does not uniquely deter-

mine the state vector   ψ ( )0+ . Thus, if one used the state vector, an additional 
averaging over all the possible starting state vectors that give the correct initial 
magnetization is required. One, therefore, eliminates the sampling noise associ-
ated with averaging over a fi nite number of initial state vectors by propagating the 
density matrix rather than using the state vector. This justifi es the extra computa-
tional cost of propagating a   3 3×  matrix as compared with a   3 1×  vector.  

  Equilibrium and Time - Dependent Density Matrix     Starting with the decoupled 
initial conditions, one can express the density operator in terms of the average 
Hamiltonian:

   ρ ρeq
B zH k T a E bS= ∝ − ≅ −( ) exp( / ) ( ),0 � ˆ ˆ     (11.40)   

 where   Ê  is the identity operator in Hilbert space and a and b are scaler coeffi cient. 
In writing the last term, the fact that the sample is equilibrated under the infl uence 
of a constant magnetic fi eld, and the average Hamiltonian is less than 1% of   k TB  
so that the exponential can be expanded to the fi rst order only, have been taken 
into account. At a later time, given that   Ê  commutes with the Hamiltonian, one 
can write the density matrix in the form:

   ρ σ( ) ( ( ))t a E t≅ +ˆ .   

 It should also be noted that   ̂E  does not affect the expectation value of the magneti-
zation, since   Tr MEˆ ˆ{ } = 0, as   M̂  is proportional to   ̂S. Thus, one need only keep 
track of   σ ( )t , which is, in fact, the only relevant part of the density matrix. It is 
further noted from Equation  11.40  that   σ σ( )0 = ∝eq

zS . After applying the 90 °  
pulse,   σ ( )0+ ∝ Sy , which means that   σ −+ + ∝( )0 EI.   

   11.5.4.2    Generation of Stochastic Trajectories for Rotational Diffusion 
 In this section, an explanation is provided of how to develop an effi cient numerical 
integrator for the rotational Brownian diffusion of a body - fi xed frame (B) with 
respect to a space fi xed frame (S). If there exists an ordering potential  U (  Ω  ), it can 
be parameterized by using the Euler angles,   Ω  ; here,   Ω = ( , , )α β γ  describes the 
instantaneous orientation of B with respect to S. The basic model considered here 
forms the basis for more sophisticated motional models such as MOMD and SRLS. 

  Use of Quaternions to Treat Rotational Dynamics     The kinematics of rotations 
required here can be conveniently treated by using quaternions (Lynden - Bell and 
Stone,  1989 ), rather than Euler angles. The components of the quaternion for the 
orientation of B with respect to S being given in terms of the Euler angles 
  Ω = { }α β γ, ,  are calculated as follows (Lynden - Bell and Stone,  1989 ):

   

q

q

q

0

1

2

2 2

2 2

2

= +
= −
=

cos( )cos(( ) ),

sin( )sin(( ) ),

sin(

β γ α
β γ α
β

/ /

/ /

/ ))cos(( ) ),

cos( )sin(( ) ),

γ α
β γ α

−
= +

/

/ /

2

2 23q

    (11.41)   



Wile
y-V

CH 

—
 fin

al 
—

 532  11 Molecular Motions

 In terms of the components of the quaternion, the   3 3×  rotation matrix emerges 
as (Biedenharn and Louck,  1981 ):

   R

q q q q q q q q q q q q

q q q q q q=
+ − − − +

+ − +
0
2

1
2

2
2

3
2

1 2 0 3 1 3 0 2

1 2 0 3 0
2

1
2

2 2 2 2

2 2 qq q q q q q

q q q q q q q q q q q q
2
2

3
2

2 3 0 1

1 3 0 2 2 3 0 1 0
2

1
2

2
2

3
2

2 2

2 2 2 2

− −
− + − − +

⎛

⎝

⎜⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.     (11.42)   

 The bottom row of Equation  11.42  contains just the components of the vector  z  
of the stationary coordinate system with respect to the axes of B, which are 
denoted, for later use, as:

   X R z Y R z Z R zzx x zy y zz z≡ = ≡ = ≡ =′ ′ ′( ) ; ( ) ; ( ) .     (11.43)   

 The orientation of B with respect to S is described by the   2 2×  unitary matrix, which 
can be expanded in terms of the Pauli spin matrices   σ σ σ1 2 3, ,  and the 2    ×    2 identity 
matrix   σ 0 (not to be confused with   σ , the density matrix used above), as follows:

   Q
q iq q iq

q iq q iq
q i qi i

i

=
− − −
− +

⎛
⎝⎜

⎞
⎠⎟

= −
=
∑0 3 2 1

2 1 0 3
0 0

1 2 3

σ σ
, ,

,     (11.44)   

 characterized by unit determinant:

   q q q q0
2

1
2

2
2

3
2 1+ + + = .     (11.45)   

 The components of the quaternion corresponding to the transformation relating 
B to S are the real numbers  q i  .  Q  becomes time - dependent when there is motion 
of B with respect to S, described by the equation of motion:

   
d

dt
Q t W t Q t W t i w ti i

i

( ) ( ) ( ), ( ) ( ) ,= = − ∑where 
1

2
σ     (11.46)   

 where   ω( )t  is the instantaneous angular velocity of B.  Q ( t ), as given by Equation 
 11.46 , can be numerically integrated to generate the time series of  Q  , in the same 
way as achieved by Fedchenia, Westlund, and Cegrell  (1993)  in their rigorous 
treatment of isotropic rotational diffusion restricted to a conical region. 

 When considering anisotropic diffusion, one needs to work with the compo-
nents of   ω   with respect to B, denoted as   �w ′i , rather than with respect to S, as in 
the treatment of isotropic rotational diffusion described above. The equation of 
motion of  Q  becomes:

   
d

dt
Q t Q t W t W t i w ti i

i

( ) ( ) ( ), ( ) ( ) ,.= = − ∑� � �1

2
σ     (11.47)   

 It should be noted that, in Equation  11.47 , the components of the angular velocity 
of the rotating frame are with respect to the stationary frame, whereas in Equation 
 11.46  they are with respect to the body - fi xed frame. Integration of Equation  11.47  
yields:

   Q t t Q t e tW t( ) ( ) ,( )+ =Δ Δ �     (11.48)   

 which preserves the determinant of  Q , and in turn the normalization of the 
quaternion, as given by Equation  11.45 . Now, in close analogy to the evaluation of 
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Equation  11.38  using Equation  11.39 , one can exponentiate the matrix in Equation 
 11.48  calculating only the trigonometric functions:

   

exp cos sin

cos sin (

−
⎛

⎝
⎜

⎞

⎠
⎟ = −

=
− − +

∑ ∑i
t

i u

iu u

i
i

i

i i

i

z y

�ω σ θσ θ σ

θ θ

Δ
2

0

iiu

u iu iu
x

y x z

)sin

( )sin cos sin
.

θ
θ θ θ− +

⎛
⎝
⎜

⎞
⎠
⎟

    

(11.49)

   

 In Equation  11.49 ,   θ  and   u u u ux y z= ( , , ) denote, respectively, the magnitude and 
the direction of the vector   �w( )t tΔ /2. The propagation of the quaternion  Q  SB  describ-
ing the orientation of the coordinate system B with respect to the system S, is 
described by Equations  11.48  and  11.49 , provided that one knows the physics 
of the orientational dynamics to determine how   �w( )t  changes with time. This is 
described in the following subsection.  

  Consideration of Anisotropic  B rownian Diffusion in an External Potential     Here, one 
takes into account the rotational diffusion in the presence of a potential  U (  Ω  ) (cf. 
Equation  11.19 ). Hereafter, the tilde over   ω   will be dropped, and it will be assumed 
that all the vector and tensor components are taken with respect to the coordinate 
system B. The components of the instantaneous angular velocity   ω  ( t ) in B follow 
the equation of motion (Kalmykov,  2001  and Coffey, Kalmykov, and Waldron, 
 2004 ):

   w x( ) ( ( )) ( ),t u t t= − +D� Ω     (11.50)   

 in the limit of high friction, so that inertial terms are neglected. In Equation  11.50 , 
the fi rst term on the right - hand side corresponds to the systematic torque due to 
the potential   u U k TB( ) ( )Ω Ω≡ / , whereas the second term,   ξ  ( t ), is the random torque 
that leads to the orientational diffusion. The other symbols in Equation  11.50  are 

 D , the rotational diffusion tensor, which is diagonal in B, and   �= ∂
∂

∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟φ φ φx y z

, , , 

with   φi being the angle of rotation around the  i th axis of B. The components of 
the random torque satisfy the conditions (Kalmykov,  2001 ; Coffey, Kalmykov, and 
Waldron,  2004 ):

   E Eξ ξ ξ δ δi i j ii ijt t t D t t( ) , ( ), ( ) ( ),{ } = { } = −0 21 2 1 2     (11.51)   

 where  E  denotes the expectation value over the Gaussian probability density of   ξ  . 
Here,  D ii   are the components of  D  with respect to B. The conditions in Equation 
 11.51  are valid only when the components of   ξ   are expressed in the coordinate frame 
in which the diffusion tensor is diagonal, which is the only frame in which the 
components of the diffusion tensor, and therefore, the intensities of the random 
torque decouple. When the diffusion tensor is isotropic this is naturally true in 
any coordinate system, including the space - fi xed frame, so that it is possible, in 
this case, to exclusively express all the vector components with respect to S. 
However, for the general anisotropic case, one has to work with the components of 
the diffusion tensor with respect to B so that, as noted above, it is imperative to use 
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Equation  11.47  instead of Equation  11.46  for the equation of motion for the 
quaternion. 

 One can use the angular momentum operator  J  to describe the torque   −∇u( )Ω  
(Polimeno and Freed,  1993 ; Kalmykov,  2001  and Coffey, Kalmykov, and Waldron, 
 2004 ):

   −∇ = −u iJu( ) ( ),Ω Ω   

 which can be written in the component form as

   ω ξi ii i it iD J u t t( ) ( ( )) ( ),= − +Ω     (11.52)   

 where the partial differential operators corresponding to the components  J i   
expressed in B are (Hakansson, Persson, and Westlund,  2002 ):

   J i J e i
i

J J iJz
i

x y= − ∂
∂

= − ∂
∂

± ∂
∂

+ ∂
∂

⎡
⎣⎢

⎤
⎦⎥

= ±± ±γ
β

γ β β α
γ; cot

sin
;∓ .   

 In order to facilitate operating with  J i   on the potential, it is convenient to express 
the latter as an expansion over the eigenfunctions of  J i   (Polnaszek  et al. , 1973, 
Meirovitch, Nayeem, and Freed,  1984 ; Polimeno and Freed,  1993, 1995 ):

   u c Dj
m

m
j

j m

( ) ( ).
,

Ω Ω= −∑ 0   

 The Wigner functions:

   D e d enm
j in

nm
j im( )Ω = − −α γ   

 are the eigenfunctions of  J z  :

   J D mDz nm
j

nm
j( ) ( ).Ω Ω= −     (11.53)   

 They also have the property that

   J D j j m m Dnm
j

nm
j

± ±= − + − ±( ) ( ) ( ) ( ).Ω Ω1 1 1     (11.54)   

 With the use of Equations  11.53  and  11.54 , the problem of differentiation of the 
potential transforms to straightforward algebraic manipulation of the components 
of the quaternion. 

 Finally, three specifi c forms of the potential used by Sezer, Freed, and Roux 
 (2008a) , are listed below:

    i)     for the potential   u c D c Z( ) ( ) ( )Ω Ω= − = − −0
2

00
2

0
2 21

2
3 1 , which favors those 

orientations for which  z  -  and  z  ′  - axes are either parallel or antiparallel ( Z     =     ± 1):  

   

− = − + = −

− = − −

−

−

iJ u i c D D c YZ

iJ u c D D

x

y

3

2
3

3

2

0
2

01
2

0 1
2

0
2

0
2

01
2

0 1
2

[ ] ;

[ ] == − =3 00
2c XZ iJ uz;     (11.55)   

 (It is noted that the primed axes refer to those in the body - fi xed frame B.)  
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   ii)     for the potential   u c D D c X Y( ) [ ( ) ( )] ( )Ω Ω Ω= − + = − −−2
2

02
2

0 2
2

2
2 2 26

2
, which favors

  orientations in which the  z  - axis is parallel or antiparallel to   ′ = ±x X( )1  and dis-
favors orientations in which the  z  - axis is parallel or antiparallel to   ′ = ±y Y( )1 : 

 
   
− = − + = − − = − − = −− −iJ u ic D D c YZ iJ u c D D cx y2
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;
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  iii)     from (i) and (ii), one has for the general potential:  

   u c D c D D( ) [ ( ) ( )],Ω Ω Ω= − − − −0
2

00
2

2
2

02
2

0 2
2     (11.56)    

   − = − −( ) − = −( ) − =iJ u c c YZ iJ u c c XZ iJ u c XYx y z3 6 3 6 2 60
2

2
2

0
2

2
2

2
2; ; ,   

 where  X ,  Y , and  Z  are defi ned in Equation  11.43 .    

 Equation  11.52  can be numerically integrated by generating three random numbers 
 N i  ( t ) with Gaussian distribution of zero mean and unit standard deviation, taking 
into account the statistical properties of the random term in Equation  11.52 , as 
described by Equation  11.51 , so that

   ωi
i

ii ii
i

t t
iJ u t

D t t D t t
N t

( )
( ( ))

( ) ( )
( ),

Δ Ω Δ Δ
2 2 2

= − +     (11.58)   

 which is the necessary input to calculate propagation of the quaternion  Q  SB  using 
Equations  11.48  and  11.49 , which describe the orientation of the coordinate system 
B with respect to the system S.  

  Spherical Grid to Incorporate the Initial Conditions for Rotational Diffusion     These 
can be generated as random orientations of B with respect to S, weighted by the 
Boltzmann factor exp( –  u ( Ω )/ k B T ). Ponti ( 1999 ) has shown that systematically cov-
ering the surface of a sphere with a homogeneously distributed grid is much more 
effi cient than a random choice. To this end, it has been demonstrated convincingly 
that distributing the points along a spiral that twists from the north pole to the 
south pole provides the most effi cient grid with a high convergence rate (Ponti, 
 1999 ). Accordingly, the spherical polar coordinates of the points along the spiral 
are:   θ φ πi i i iarc s Narc s= =cos( ); sin( ), where   s i Ni ∈ − =( , ); , ,1 1 1 …… , parame-
terizes the spiral and  N  is the number of points on the spiral. It is further noted 
that since the potentials  u (  Ω  ) used here are proportional to the Wigner functions 
  D m

j
0 ( )Ω , as given by Equation  11.57 , which are independent of the Euler angle   α  , 

the initial conditions for the Euler angles are chosen as   α β θ γ φ= = =0, ,i i ; the 
corresponding quaternion is calculated by using Equation  11.41 .   

   11.5.4.3    Testing the Integrators: Generation of Trajectories for Typical Stochastic 
Models of Spin - Label Dynamics 
 Using the framework of rotational dynamics described above, one can generate 
trajectories for typical stochastic models of the spin - label dynamics, for example, 
Brownian rotational diffusion (BD), MOMD (Meirovitch, Nayeem, and Freed, 

(11.57)
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 1984 ), and SRLS (Polimeno and Freed,  1993, 1995 ). These are schematically rep-
resented as follows:

   

BD free an isotropic diffusion fixed

MOMD powder

: ( ) ( ) ;

:

L M N

L

→ → →
→ → DD

M N

L

→
→ →

→

restricted an isotropic diffusion

fixed

SRLS fre

( )

( ) ;

: ee isotropic diffusion restricted an isotropic

diffusion

→ →
→

D ( )

MM N( )fixed →

  

 Here,  M  and  D  refer to the body - fi xed frame (B) and the stationary frame (S), 
respectively, as defi ned above. In the MOMD and SRLS models, the molecular 
frame  M  can diffuse with respect to the director frame  D , which can itself be either 
randomly oriented in the MOMD model, or it can undergo free isotropic diffusion 
with respect to  L  in the SRLS model. In considering the diffusive motion of  D  
with respect to  L ,  D  plays the role of the body - fi xed frame B, whereas  L  plays the 
role of the stationary frame S. The intermediate director frame is skipped in the 
BD model, as there is no external ordering potential.  L  is identifi ed with S, and  M  
with B when simulating this model by using the formalism described in Section 
11.5.3.2. In a given model, the initial conditions for each of the diffusion parts are 
chosen from the points distributed on a spherical grid. 

  Broadening of Spectral Lines due to Additional Relaxation Mechanisms     To date, 
these have not been accounted for in the simulation, although they can be included 
phenomenologically in the form of Lorentzian and Gaussian relaxation times. To 
take into account Lorentzian broadening with relaxation time constant  T L  , one 
multiplies the magnetization   M t+( ) by   e t TL− / . On the other hand, one convolutes 
the spectral line with a Gaussian to take into account Gaussian broadening, that 
is multiply   M t+( ) by   e t TG− 2 28/ , where  T G   is the derivative peak - to - peak linewidth of 
the Gaussian, since convolution in the frequency domain is equivalent to multi-
plication in the time domain. Finally, since the trajectories are of some fi nite 
duration  T , the resultant appearance of high frequencies in the Fourier transform 
can be suppressed by multiplying by the Hamming window (Ernst, Bodenhausen, 
and Wokaun,  1987 ):

   h t t TT ( ) . . cos( ).= +0 54 0 46 π /   

 Thus, taking into account all these considerations, a derivative - mode absorption 
spectrum is calculated as

   
dM

d
dt te h t e e M ti t

T
t T t T

T

L G
�

+ − − −
+= ∫( )

Im ( ) ( ).
ω

ω
ω / /2 28

0

    (11.59)    

  Illustrative Examples ( BD  and  MOMD  Models)     Using  B  0     =    0.34   T, and the follow-
ing values for the nitroxide magnetic tensors:  g  N     =    diag(2.008   09, 2.005   85, 2.002   02) 
and  A  N     =    diag(6.2, 4.3, 36.9) G, the time domain spectra, as simulated by the 
trajectory - based approach described above for the BD model with the isotropic dif-
fusion are shown in Figure  11.13 , which also shows, for comparison, the spectra 
simulated by using the SLE - based approach developed by Freed and coworkers 
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     Figure 11.13     Spectra of isotropic free 
diffusion for various diffusion rates in units 
of 10 6    s  − 1  (indicated next to each spectrum), 
simulated by using the trajectory - based 
approach (dashed lines) and the SLE 

(continuous lines). The magnetic - tensor 
components are  g  N     =    diag(2.008   09, 2.005   85, 
2.002   02) and  A  N     =    diag(6.2, 4.3, 36.9); 
 B  0     =    0.34   T (Sezer, 2008a).  

1

3
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100

–40 –20 0

frequency (G)

20 40

over motional regimes from slow ( D     =    1    ×    10 6    s  − 1 ; correlation time  τ     =    167   ns) to 
fast ( D     =    100    ×    10 6    s  − 1 ; correlation time  τ     =    1.67   ns). [For relating  D  to   τ  , it is noted 
that the correlation time   τ   is inversely proportional to  D  (  τ      =    1/(6 D ).] There is excel-
lent agreement between the trajectory - based and SLE - based approaches over the 
whole motional regime. In Figure  11.14  is shown the effect of the anisotropy of the 
diffusion tensor for both the trajectory - based and SLE - based approaches, using the 
same values of the nitroxide magnetic tensors as those used for Figure  11.13  and, 
again, the agreement between the two is excellent. It should be noted from Figure 
 11.14 , that a fast rotational diffusion about the nitroxide  z  - axis ( D zz      >     D yy      >     D xx  ), as 
shown in the top spectrum in Figure  11.14 , does not mix the larger  A zz   component 
with the smaller components  A xx   and  A yy  , unlike that in the fast rotation about the 
 x  -  and  y  - axes as seen in the bottom two spectra of Figure  11.14 . In other words, the 
resulting spectrum is more slow - like in the former case, as compared to that for 
the latter two, for which the averaging of  A zz   is more effi cient. Figure  11.15  displays 
the effect of an ordering potential on the spectra, using the same values of the 
nitroxide magnetic tensors as those used for Figure  11.13 , for two cases:

    •      The upper spectrum in Figure  11.15  is simulated for the potential 

  u c D c Z( ) ( ) ( )Ω Ω= − = − −0
2

00
2

0
2 21

2
3 1 , which favors those orientations for which 
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     Figure 11.15     Comparison of time - domain 
(dashed) and SLE (continuous) spectra 
for two MOMD models with 
  c c0

2
2
2 2 0 0 0 2 0, ( . , ) ( , . )( ) = and , respectively. The 

nonzero coeffi cient is indicated next to the 
spectrum.  D     =    30    ×    10  − 6    s  − 1 . The magnetic 
tensors are given in the caption to Figure 
 11.12 ;  B  0     =    0.34   T (Sezer, 2008a).  

C20

C22

–40 –20 0

frequency (G)

20 40

the  z  -  and  z  ′  - axes are either parallel or antiparallel ( Z     =     ± 1), given by Equation 
 11.55  above with   c0

2 2 0= . .    

   •      The lower spectrum in Figure  11.15  is simulated for the potential 

  u c D D c X Y( ) [ ( ) ( )] ( )Ω Ω Ω= − + = − −−2
2

02
2

0 2
2

2
2 2 26

2
, which favors orientations in 

which the  z  - axis is parallel or antiparallel to   ′ = ±x X( )1  and disfavors orienta-

     Figure 11.14     Simulated time - domain 
(dashed) and frequency - domain (continuous) 
spectra of anisotropic - free diffusion. The 
components of the diffusion tensor, 
10    ×    10 6    s  − 1 , 30    ×    10 6    s  − 1 , and 100    ×    10 6    s  − 1 , 

were assigned in the order indicated in the 
plot. The magnetic tensors are given in the 
caption to Figure  11.12 ;  B  0     =    0.34   T (Sezer, 
2008a).  
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tions in which the  z  - axis is parallel or antiparallel to   ′ = ±y Y( )1 , given by Equa-
tion  11.56  above with   c2

2 2 0= . .    

 The value of  D     =    30    ×    10 6    s  − 1 , describing isotropic diffusion, was used for both the 
simulations. Again, excellent agreement was found between the trajectory - based 
and SLE - based approaches (see also Beth  et al .,  2008 ).  

  Discussion of Simulation Parameters (Figures  11.13 – 11.15 )     The details of these 
parameters, which are listed in Table  11.1 , are as follows. The duration of each 
trajectory is the product of  “ stp N  ”  and  Δ  t , which are, respectively, the number of 
simulation steps over which each stochastic trajectory lasted and the integration 
time step.  “ fre N  ”  is the number of spherical grid points used for free diffusion of 
 M  (BD) and the random distribution of  D  (MOMD) with respect to  L , whereas 
 “ rst N  ”  is the number of spherical grid points used for restricted diffusion of  M  
with respect to  D  (MOMD). In the case of BD, since this restricted diffusion is not 
present,  “ rst N  ”  indicates the number of independent trajectories initiated from 
each of the  “ fre N  ”  spherical grid points. The fi nal column of Table  11.1  lists the 
value of the inhomogeneous Gaussian broadening introduced in the spectra by 
hand. It should be noted that the integration time step  Δ  t  (see Table  11.1 ) used to 
simulate the spectra in Figures  11.13  and  11.14  is much smaller than all but one 
of the correlation times mentioned above (1.67   ns) for the correlation time scales 
(1.67   ns   to 167   ns) of the rotational diffusion. It should, then, be suffi cient to follow 
the dynamics, except for 1.67   ns for D    =    100    ×    10 6    s  − 1 . However, the excellent 
agreement of these results in all cases with those calculated using the SLE approach 
shows that, even in this case, the integration time step is suffi cient. In order to 
ensure adequate resolution of the gradient of the potential energy a smaller inte-
gration step was chosen for the two MOMD models, for simulations using MD 
and SLE procedures (see also DeSensi  et al .,  2008 ).   

 With regards to the times of computation, at least a 1000 - fold longer computer 
time was required when using stochastic trajectories than when using SLE. Con-
sequently, the use of trajectories is worthwhile only when the dynamics cannot be 
treated with the SLE approach, at which time the MD simulations should be used. 
Otherwise, when simulations of spectra based on BD, MOMD, and SRLS models 
are required, the SLE method should be the method of choice, on the basis of its 
greater effi ciency.  

  Combination of  MD  and Stochastic Trajectories     In order that the experimental 
spectra are realistically reproduced by simulations, it is necessary to introduce the 
effect of the rotational diffusive dynamics, in addition to the dynamics of the spin 

  Table 11.1    Parameters used in the simulation of spectra shown in Figures  11.13  – 11.15. 

   Model      B  0  (T)     stp N       Δ  t  (ns)     fre N      rst N        T GG
-1 ( )  

  BD    0.34    800    1.0    1600    800    1.0  
  MOMD    0.34    2000    0.4    3200    1600    1.0  
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labels present in the MD trajectories, to sample the slower global macromolecular 
dynamics, for example, the tumbling of a protein in solution. This is accomplished 
by allowing the coordinate system  M , which is attached to the macromolecule, to 
undergo isotropic or anisotropic rotational diffusion with respect to the laboratory -
 fi xed coordinate frame  L , as shown below:

   L M N→ → → →rotational diffusion MD trajectories     (11.60)   

 In this procedure, MD trajectories provide the dynamics of the coordinate frame 
 N  with respect to  M , while the use of time - domain formalism developed above 
generates the dynamics of  M  with respect to  L . Sezer, Freed, and Roux  (2008b)  
illustrate the methodology to combine MD with stochastic trajectories to a spin 
labeled, polyanaline  α  - helix in explicit solvent by specifi cally resolving some formal 
issues related to the application of such a stochastic/MD trajectory - based approach, 
in which stochastic trajectories were used to take into account the tumbling 
dynamics which are slow and poorly sampled in atomistic MD simulations. Three 
methodological prerequisites were resolved:

    •      An accurate and effi cient numerical scheme for propagating the quantum 
dynamics of the spins, achieved by working with the reduced density matrix 
in Hilbert space.  

   •      An accurate and effi cient numerical scheme for the treatment of rotational 
Brownian diffusion.  

   •      The general case of restricted anisotropic diffusion, treated by using quaternions 
instead of Euler angles to parameterize the relative orientation of two coordi-
nate systems, to which fi ts naturally the familiar restricting potential, written 
as a sum of a few spherical harmonics.    

 The time averaging of the magnetic tensors was also considered to bridge the gap 
between the fast time scale of the MD trajectories and the slow time scale of the 
quantum propagation. To this end, averaging time windows appropriate for the 
simulations of spectra at different magnetic fi elds were estimated. 

 It should be noted that, although MD and stochastic trajectories are used 
together, as proposed by Sezer, Freed, and Roux  (2008a) , the demands on the 
number and duration of the MD trajectories are largely unrealistic for routine MD 
simulations of solvated spin - labeled proteins. An alternative is to build stochastic, 
discrete - state Markov - chain models from the MD trajectories (Sezer  et al. , 2008c) 
and then use them to simulate the EPR spectra. This follows the scheme:

   L M N→ → → →rotational diffusion Markov chain .   

 For this model, the time - domain integrators and the time averaging arguments 
proposed here remain equally valid. 

 A comparison with, and a relevant review of, other reports on MD simulations 
is provided by Sezer, Freed, and Roux  (2008a) . For the developments in MD simu-
lations to spin - labeled proteins, which are beyond the scope of this chapter, the 
reader is referred (in addition to the above citations), to the publications by Sezer, 
Freed, and Roux  (2008a, 2008b, 2008c)  and Sezer  et al.  ( 2009 ).     
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   11.6 
Concluding Remarks 

 As compared with CW - EPR, pulsed EPR has proven itself to be a much more 
powerful technique for the study molecular dynamics in a large variety of chemi-
cal, physical, and biological systems. However, whereas NMR enables the study 
of residual effects of motion - dependent terms    –    as refl ected in the values of  T  1  and 
 T  2  in the spin Hamiltonian    –    that are completely averaged out by the molecular 
motion, dramatic lineshape variations are often found in CW - EPR spectra, which 
are particularly sensitive to the molecular motions. Moreover, these features are 
signifi cantly enhanced when a multifrequency approach is adopted. Further, by 
using 2 - D - ELDOR, molecular dynamics can be studied in much greater detail. 
Likewise, it is possible uniquely to resolve homogeneous from inhomogeneous 
broadening, and to clearly distinguish among cross - relaxation processes, in addi-
tion to determining  T  1  values. As is clear from the above discussions, it is desirable 
to extend 2 - D - ELDOR to higher frequencies in order to perform multifrequency 
studies that will provide even more detailed information on molecular motion than 
has hitherto been attained. To this end, Hofbauer  et al .  (2004)  have developed a 
coherent pulsed high - power spectrometer operating at 95   GHz. It is also important 
to develop spin labels with a more limited fl exibility and well - defi ned conforma-
tions, particularly with regards to the study of protein dynamics (Columbus and 
Hubbell,  2002 ). This is necessary in order to reduce the effects of the internal 
motions of the spin label ’ s tether, which interferes when identifying the more 
relevant features of molecular dynamics from the data acquired. In recent develop-
ments involving the study of molecular motion by EPR, molecular - dynamics simu-
lations using stochastic trajectories have been successfully applied to simulate the 
EPR spectra of nitroxide spin labels, an example being the analysis of the side -
 chain dynamics of spin - labeled proteins.  
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