
Wile
y-V

CH 

—
 fin

al 
—

   545

  12 
Distance Measurements: Continuous - Wave ( CW ) -  and Pulsed 
Dipolar  EPR   
  Sushil K.     Misra    and    Jack H.     Freed        

    12.1 
Introduction 

 Information on long - range distances between selected sites is a prerequisite to 
understanding the detailed structure of complex systems. In NMR utilizing 
a spin label, it is possible to measure distances in the range between 8    Å  to, at 
most, 25    Å . On the other hand, with EPR, distances in the range between about 
10 and 90    Å  can and have been measured. EPR spectroscopy may be the best 
practical technique for complex systems, since methods such as small - angle scat-
tering, X - ray scattering and small - angle neutron scattering have insuffi cient con-
trast whereas fl uorescence resonant energy transfer (FRET) lacks key virtues of 
EPR noted below. Distance measurements in EPR are based on exploitation of 
the  dipolar interaction  ( DI ), that depends on the distance between two paramag-
netic probes, and which may be identical or may differ from each other, and are 
located at different spatial positions in the sample. They can be introduced using 
site - directed mutagenesis (also known as  site - directed spin labeling ;  SDSL ), a 
technique which enables the investigation of, for example, proteins and other 
biomolecules. In fact, the signature of the DI can be clearly seen in CW - EPR 
spectra under favorable circ umstances for short distances. On the other hand, in 
pulsed EPR [hereafter referred to as  pulsed dipolar spectroscopy ;  PDS ), experi-
ments can be designed specifi cally to clearly distinguish the dipolar interaction. 
The two commonly used PDS techniques are: (i)  pulsed electron double resonance  
( PELDOR ; this term was originally coined by the Russians, who fi rst developed 
the technique), which is also referred to as  double electron - electron resonance  
( DEER ; this term was introduced later in the USA, and will be used hereafter in 
this chapter); and (ii)  double quantum coherence  ( DQC ) - EPR. 

 DEER requires an experimental arrangement which is relatively simple to imple-
ment and is currently available commercially. On the other hand, DQC requires 
instrumentation that can provide short, intense pulses and extensive  “ phase -
 cycling ” . The quantitative results so obtained can be exploited to obtain distances, 
their distributions, and orientational correlations. Neither the DEER (PELDOR) 
nor DQC acronyms indicate that these techniques deal exclusively with dipolar 
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couplings; hence the acronym PDS will be used collectively hereafter for these 
techniques. 

 It is relevant at this point to compare distance measurements by PDS with those 
by the other commonly used techniques, specifi cally X - ray, NMR, and fl uorescence 
resonance energy transmission (FRET). It should fi rst be noted that PDS is often 
helped by    –    and provides information supplementary to    –    the structural informa-
tion available from X - ray crytallography and NMR. One of the greatest virtues of 
using EPR is that one only requires trace amounts (in the case of proteins or 
biomolecules, from nanomoles to picomoles; Klug  et al. ,  2005 ; Bhatnagar  et al. , 
2010; Georgieva,  et al. , 2010) of the sample due to its EPR spin sensitivity. EPR is 
also amenable to study in diverse environments, such as dilute solutions, micelles, 
lipid vesicles, native membranes, supported lipid bilayers. Such measurements 
are frequently not possible with NMR or X - ray crystallography, where one requires, 
for example, larger quantities of samples, high - quality crystals (for x - rays), as well 
as high solubility (for NMR), and smaller molecules (NMR). FRET is also used for 
distance measurements, as it is much more sensitive per fl uorophore than EPR, 
and can operate at biological temperatures. That is, FRET can be applied to fl uid 
solutions at room temperature, whereas the PDS - EPR experiments are conducted 
with frozen solutions. The main advantages of PDS over FRET are:

    •      The molecular size of the probes is smaller, so that the original structure is 
less distorted. In PDS, there is often used a  methanethiosulfonate spin label  
( MTSSL ), which introduces only a small perturbation to the structure and 
function of the protein. Since the nitroxides, used in PDS, are smaller in size 
than most fl uorescent labels used in FRET, there is less uncertainty in their 
positions relative to the backbone of the protein.  

   •      Attaching two similar paramagnetic labels synthetically is less demanding than 
attaching two different donor and acceptor labels.  

   •      The EPR technique can also be applied to opaque materials.  

   •      The distances between the nitroxide spin - labels used in EPR is determined 
more accurately, as they are directly obtained from frequency measurements. 
This contrast to the distances between chromophores used in FRET, where 
there exist uncertainties in the parameter   κ   2  used for distance determination.  

   •      Also, the distance distributions are readily obtained in PDS - EPR.    

 This chapter is organized as follows. The theory for distance measurements in 
EPR using the dipolar interaction is provided in Section  12.2 , the CW - EPR methods 
used for distance determination are discussed in Section  12.3 , and pulsed dipolar 
techniques in general are detailed in Section  12.4 . The details of three -  four - pulse 
DEER techniques, and their merits and disadvantages as compared to CW - EPR 
and FRET, are described in Section  12.5 . The density matrix calculations of echo 
signals for three -  and four - pulse DEER sequences are given in detail in Appendices 
 12.I  and  12.II , respectively. The DQC technique is described in Section  12.6 , along 
with the density - matrix evolution algorithm used to calculate the DQC signal, while 
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sensitivity considerations and their multifrequency aspects are discussed in Section 
 12.7 . The subject of distance distributions, including Tikhonov regularization, is 
covered in Section  12.8 , and the pertinent literature is reviewed in Section  12.9 .  

   12.2 
The Dipolar Interaction and Distance Measurements 

 The general expression for a dipolar interaction between two magnetic moments 
is given later in this chapter (see also Chapter  10 .) For EPR, the relevant part of 
the dipolar interaction between two electrons, 1 and 2, treated as point dipoles, 
can be expressed in frequency units as follows (Borbat and Freed,  2007 ):

   H
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 In Equation  12.1 ,   γ  e   is the electronic gyromagnetic ratio;  r  is the distance between 
the two electrons;   θ   is the angle between the vector joining the two electrons and 
the external magnetic fi eld; and  S  1 ,  S  2  are the two electron spins, whose subscripts 
may be  x ,  y , or  z , indicating the components along the three axes, and the super-
scripts    +    and    −    indicating the raising and lowering operators, respectively: 
  S S iS ii ix iy

± = ± =; ,1 2. The fi rst term inside the square brackets is called the  secular  
term, whereas the second term is called the  pseudosecular  term. The  non - secular  
term is omitted for high fi elds and frozen samples. It is clear from Equation  12.1  
that, from a knowledge of the expectation value of  H dd  , one can estimate the dis-
tance,  r , between the spin probes. 

 As a consequence of Equation  12.1 , the CW - EPR line for each spin is split into 
two due to the dipolar interaction. The splitting of this doublet,   A r( , )θ , which can 
be expressed from Equation  12.1  as:

   A r d( , ) ( cos ),θ ω θ= −1 3 2     (12.2)   

 In Equation  12.2  the value of   ω  d   depends on whether the spins are  “ unlike ”  or 
 “ like ” . A( r ,   θ  ) also depends on the angle   θ  , varying over the range of values from 
 − 2  ω  d   ( θ     =    0 ° ) to   ω  d   (  θ      =    90 ° ). 

   12.2.1 
Unlike Spins 

 This is the case when   ω ω ωd << −1 2 , where   ω   1  and   ω   2  are the resonant frequencies 
of the two electron spins in the absence of dipolar coupling. Equation  12.2  is 
obtained when only the secular term in Equation  12.1  is taken into account, and 
ignoring the second term in square brackets (pseudosecular term). For this case:

   ω γd e r= 2 3�/ ,     (12.3)   

 It should be noted that, in the case of nitroxide spin labels, there usually exists 
the situation of  “ unlike ”  spins due to the different orientations of the magnetic, 
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 g , and  A  (hyperfi ne) tensors with respect to the external magnetic fi eld, of any two 
nitroxides. The  “ unlike ”  limit is valid for  r     ≥    20    Å .  

   12.2.2 
Like Spins 

 Here,   ω ω ωd >> −1 2 , and both the secular and pseudosecular terms in Equation 
 12.1  are taken into account, so that

   ω γd e= 3 2�/2r 3,     (12.4)    

   12.2.3 
Intermediate Case 

 Here,   ω ω ωd ≈ −1 2 , and one has to carry out a careful simulation of the spectrum 
taking into account both the secular and pseudosecular terms in Equation  12.1 , 
as well as using the full spin Hamiltonian. 

 Distance measurements in EPR are made by either using a CW method or 
pulsed techniques. These are described as follows.   

   12.3 
 CW EPR  Method to Measure Distances 

 In the past, nitroxide spin probes have been the most popular CW - EPR probes for 
distance determination with regards to their dipolar interaction, mainly because 
they are stable and easy to attach to systems (such as cysteine residues in proteins). 
Their powder spectra are governed by the inhomogeneous broadenings, which 
differ from site to site, due to the variation of nitrogen  hyperfi ne  ( hf ) -  and  g  -
 tensors largely from the cos  θ   angular variation in eq. 12.1, as well as to unresolved 
proton superhyperfi ne couplings. Current CW methods include techniques based 
on calculating the ratios of peak intensities (Kokorin  et al. ,  1972 ; Sun  et al. ,  1999 ), 
the relative intensity of half - fi eld transition (Eaton  et al. ,  1983 ), Fourier deconvolu-
tion of dipolar interactions (Rabenstein and Shin,  1995 ), and the computer simula-
tion of lineshapes (Hustedt  et al. ,  1993 ). All of these methods depend on the 
observation of reasonably signifi cant broadening of the lineshape due to electron –
 electron dipolar interaction, limited by inhomogeneous line broadening due to 
unresolved hyperfi ne couplings,  g  - anisotropy, and relaxation. For distances of up 
to 20    Å  between spin labels, the dipolar broadening is still measurable for CW -
 EPR. Since, the dipolar interaction between nitroxide spin labels produces a rela-
tively small broadening effect, as compared to that due to other interactions, it 
must be extracted from the CW - EPR powder spectra, either by a rigorous multi-
parameter fi t (Hustedt  et al. ,  1997 ), or by a spectral deconvolution (Rabenstein and 
Shin,  1995 ). For these procedures, one also needs spectra from a singly - labeled 
sample as a reference for the background broadening, although this will produce 
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complications that are compounded by incomplete spin - labeling (as discussed by 
Persson  et al. ,  2001 ). As the magnitude of the dipolar coupling increases    –    specifi -
cally for distances less than 15    Å , when it becomes comparable to other inhomo-
geneous spectral broadenings    –    it can be more easily deduced from CW - EPR 
spectra. As a consequence, CW - EPR is practical for shorter distances up to a 
maximum of about 15 – 20    Å , with the more reliable values being obtained for 
distances less than 15    Å  (Persson  et al. ,  2001 ); in particular, this applies to half - fi eld 
transitions (5 – 10    Å ), lineshape simulations (up to 15    Å ), and Fourier deconvolution 
(8 – 20    Å ). On the other hand, with PDS (see below) one can measure distances in 
the range of 10 to 90    Å  currently.  

   12.4 
Pulsed Dipolar  EPR  Spectroscopy ( PDS ) 

 For smaller dipolar interactions corresponding to longer distances, pulsed tech-
niques are utilized where the distance scale is limited by the rate constant (i.e., 
inverse of phase memory time, TM) for echo dephasing, which is much smaller 
than the inhomogeneously broadened continuous - wave linewidth. This allows for 
dipolar oscillations in the time domain corresponding to much lower frequencies, 
hence longer distances (cf. eq. 12.3) than can be measured by cw means. Currently, 
two PDS techniques are in use, namely DEER (that is, PELDOR) and DQC. Three -
 pulse DEER was developed originally as an improvement over spin - echoes to 
utilize the dipolar interaction to measure distances between spin probes, whereas 
the more recent, more improved techniques are four - pulse DEER and DQC. The 
spectroscopic details of these techniques are detailed in Chapter  4 , Section  4.4 , 
whereas the theoretical details of their principles of operation with regards to 
distance determination are described below. It should be noted here that in DEER 
one purposely excites only a part of the spectrum using pulses that are weaker and 
of relatively longer duration. This means that different parts of the CW - EPR spec-
trum, resonating at different frequencies   ω   A  and   ω   B , can be excited separately. In 
contrast, in the case of DQC, the pulses are intense and of short duration, so that 
the entire CW - EPR spectrum is excited under the action of the various pulses at 
the same frequency applied at different times. In PDS, a spin - echo is detected, in 
which the inhomogeneous spectral broadenings are canceled out due to refocus-
ing. The temporal evolution of this spin - echo is governed by TM, the phase relaxa-
tion time, which is a weaker effect than typical inhomogeneous broadenings. It is 
important to note here that the dipolar and exchange couplings are discriminated 
from all other interactions by employing the suitable pulsed sequences. In this 
manner, the signal caused by the presence of single - labeled molecules is obviated. 
Although, the direct signal from single - labeled molecules is fi ltered out in PDS, 
they can still contribute to the background  intermolecular  dipolar signal; however, 
the latter can be minimized by working at low concentrations. 

 Pulsed dipolar spectroscopy is now used routinely to measure distances greater 
than 15 – 20      (Banham  et al. ,  2006 ; Borbat  et al. ,  2006 ; Borbat  et al. ,  2004 ; Cai  et al. , 
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 2006 ; Jeschke,  2002 ; Park  et al. ,  2006 ), to distances as long as 60 to 90    Å  (Georgieva 
 et al. , 2008; Georgieva,  et al. , 2010; Bhatanagar,  et al.  2010), and is also quite effi -
cient down to 10    Å  (Fafarman  et al. ,  2007 ; Borbat and Freed, 2007), signifi cantly 
overlapping the range covered by CW - EPR. However, unlike CW - EPR, PDS is 
much less susceptible to ineffi cient labeling, and it can also readily yield distance 
distributions; its sensitivity is also very high, as the following discussion reveals. 

 The main goal of PDS is to solve structures of biomolecules by providing dis-
tance constraints. It has been exploited to accomplish the following: (i) single -
 distance measurements; ii) multiple - distance measurements; (iii) triangulation; 
(iv) oligomeric proteins; (v) protein complexes; (vi) embedding PDS constraints 
and rigid - body modeling; (vii) investigation of diffi cult labeling cases; and (viii) 
structural and conformational heterogeneity, protein folding (Borbat and Freed, 
2007).  

   12.5 
Double Electron – Electron Resonance ( DEER ) 

 DEER (also known as PELDOR), was developed in Russia during the 1980s by 
Milov and collaborators (Milov, Salikhov, and Shirov,  1981 ; Milov, Ponomarev, and 
Tsvetkov,  1984 ) with improvements introduced in 1993 (Larsen and Singel, 1993). 
Years later (Martin  et al. ,  1998 ; Narr, Godt, and Jeschke,  2002 ), a deadtime - free 
variant of the method was proposed    –    termed four - pulse DEER (Pannier  et al. , 
2000)    –    which enables commercial instrumentation, and with advances in site -
 directed spin labeling, resulted in a widespread application to structural biology. 

 In order to describe the DEER experiment, an isolated coupled pair of spins in a 
(disordered) solid must fi rst be considered. The DEER signal is a modulation of the 
echo amplitude of the observing spins,  S  1 , resonating at the frequency,   ω   1 , by 
another set of spins,  S  2 , called  “ pumping ”  spins, resonating at the frequency,   ω   2 . 
When excited by respective microwave pulses, the spins  S  1  experience the dipolar 
fi eld generated by the spins  S  2 ; the echo of spins  S  1  will then be modulated in a 
manner that is a function of the time at which spins  S  2  are excited. The resulting 
DEER signal can be expressed as a product of two parts: (i) decay due to the inter-
molecular interactions of the unpaired spins; and (ii) the periodic oscillations gen-
erated by the intramolecular dipolar interactions of the paired spins, expressed as

   I t I t I tra er( ) ( ) ( )int int= ×     (12.5)   

 The modulation of the echo arises from the observing spins  S  1  experiencing a local 
magnetic fi eld arising from the dipolar interactions with the nearby spins  S  2 . Since 
the direction of this fi eld at  S  1  is determined by the spin state of the coupled spin, 
 S  2 , changing the latter selectively affects the contribution of the dipolar fi eld to the 
total magnetic fi eld at  S  1 . 

 Distance measurements between two spins involve excitations of both  S  1  and  S  2  
spins. The expected spectrum of the spin pair consists of a pair of doublets, cen-
tered at   ω   1  and   ω   2 , each with equal splitting due to the dipolar interaction, as shown 
in Figure  12.1 .   
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 We write eqs. 12.2 and 12.3 for dipolar splitting,   ω   12 , between two  “ unlike ”  spins 
 S  1  and  S  2  at distance  r  is given by:

   A( , )r θ ≡ = −( )ω μ θ12

2
1 2

3
23 1Bg g

r�
cos ,     (12.6)  

where   μ  B   is the Bohr magneton,  g  1  and  g  2  are the  g  - factors for spins 1 and 2, as 
shown in Figure  12.1 a. For the samples randomly distributed with respect to the 
fi eld, the integration of   ω   12  over the angle   θ   on the unit sphere produces a 
symmetric Pake pattern, in which the singularities (  θ      =    0 ° ) are separated by 

  2
2

1 2

3

μBg g

r�
, as shown in Figure  12.1 b. 

 Distance measurements between two spins involve excitations of both  S  1  and  S  2  
spins. The expected spectrum of the spin pair consists of a pair of doublets, cen-
tered at   ω   1  and   ω   2 , each with equal splitting,   ω  ee  , due to the dipolar interaction, as 
shown in Figure  12.2 .   

 The pulse exciting the  S  1  spins is called the  “ observer ”  pulse, and that exciting 
the  S  2  spins is called the  “ pump ”  pulse. The pulses   ω   1  and   ω   2  must be suffi ciently 

     Figure 12.1     (a) The dependence of the dipolar spectrum on the angle   θ   between the 
magnetic fi eld direction and the spin – spin vector; (b) Simulated Pake pattern for an isotropic 
sample. The   θ   scale refers to one line of the dipolar doublet.  Adapted from Bhatnagar  (2005) .   
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     Figure 12.2     EPR line spectrum of a pair of coupled electron spins consisting of two doublets. 
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small that the excite the two levels of the doublet of the respective spin,  S  1  or  S  2 . 
In a DEER sequence, one monitors the observer pulse when a pump pulse is 
applied at a variable time in between the   π  /2 and   π   observer pulses. For the selec-
tive excitation of  S  1  and  S  1  spins, it is necessary that  | ω   1     –      ω   2 | be suffi ciently large 
and the pulses weak enough to avoid overlap. In most cases, two pulses at different 
frequencies can be applied to avoid overlap if the total width of the EPR spectrum 
is more than 50   MHz (Jeschke,  2002 ). In the case of nitroxides, a difference of 
60   MHz in the observer and pump frequencies is suffi cient to avoid overlap of 
excitation ranges (Jeschke, Pannier, and Spiess,  2000 ); an example of this is shown 
in Figure  12.3 .   

   12.5.1 
Orientation - Selection Considerations in  DEER  

 The Pake pattern in the frequency domain for an isotropic sample is shown in 
Figure  12.3 b. In practice, when the pulses are not suffi ciently intense and narrow 
to excite the whole spectrum, this is not obtained, and only parts of the nitroxide 
spectrum will be excited, leading to  “ orientation selection ”  of the probe. The most 
commonly used probe, the nitroxide radical, exists in many different orientations 
in a disordered sample. When a pulse is applied, not all the orientations are equally 

     Figure 12.3     Excitation profi les due to pump and observer pulses in a nitroxide spectrum. 
 Adapted from Pannier  et al.   (2000) .   
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excited, so that, only a part of the spectrum corresponding to the  S  1  and  S  2  
spins is excited. These selected orientations for  S  1  and  S  2  spins may be correlated 
with each other by a certain set of angles between the vector connecting the 
electron pairs and the static fi eld direction. Thus, the angle   θ   in Equation  12.1  
does not necessarily represent an isotropic distribution (Jeschke, Pannier, and 
Spiess,  2000 ). The effect of orientation selection on the signal is signifi cant if the 
excitation bandwidth is much smaller than the anisotropy of the  g  or hyperfi ne 
tensor. In such cases, the orientation selection may suppress the   θ      =    0 feature 
from the Pake pattern, as the observer and pump frequencies are clearly distinct 
from each other.   

   12.5.2 
Three - Pulse  DEER  

 The three - pulse DEER sequence, which was originally developed by Milov, 
Salikhov, and Shirov  (1981) , consists of a two - pulse Hahn echo sequence   π  /2 –   τ    ′  –   π   
at the  “ observer ”  frequency, as shown in the upper part of Figure  12.4 . The 
observer frequency is kept fi xed, while an additional   π   pulse at the  “ pump ”  fre-
quency is applied after a delay,   τ  , which is variable, subsequent to the observer 
frequency pulse at the time  t     =    0 (as shown in the lower part of Figure  12.4 ). The 
signal is obtained by recording the Hahn echo amplitude at the observer frequency 
as a function of   τ  .   

 The three - pulse DEER sequence is:

   X X X t1 2 12 2( ) ( ) ( ) ( ) ( )π τ π τ τ π τ/ /− − − ′ − − − − ′   

     Figure 12.4     A schematic drawing of the three - pulse DEER sequence, consisting of a refocused 
echo sequence at the observer frequency   ν   1  and of a   π   pulse at the pump frequency   ν   2 . 
( Adapted from Larsen and Singel  (1993) .   

t = 0 t = 2t¢t = t¢

t = t
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 In Appendix  12.I  are given the details of the calculation of a three - pulse DEER 
signal using a density - matrix approach The following three - pulse echo amplitude, 
given by the expectation value of   S1

+ , is calculated in Appendix  12.I :

   < ′ > = −+S iI1 0 122( ) cos( ).τ ω τ     (12.7)   

 Equation  12.7  contains the dipolar interaction between two spins,   ω   12 . The cosine 
Fourier transformation of this modulation will give rise to a Pake pattern when 
the exchange coupling is ignored. The details of the Pake pattern can be exploited 
to estimate the distance between two spins by extracting the values of   ν  ee      =      ω  ee  /2  π   
for   θ      =    90 °  from the Pake pattern. Here   ω  ee      =      ω  d   (3   cos 2   θ      –    1)     +      J , where  J  is the 
exchange interaction between the two spins (which will be neglected here), and 
  ω   d  is defi ned by Equation  12.2 . The distance is given by the formula (Larsen and 
Singel,  1993 ):

   r nmee= ( . )53 041 1 3MHz/ /ν   

 The derivation of the echo amplitude given by Equation  12.6  is based on the 
assumption of an isolated pair of spins. In reality, a sample is characterized by a 
statistical distribution of spins. As a consequence, its observed spectrum is the 
superposition of the various spectra associated with all the constituents of the 
sample. The DEER spectrum is affected by both the remote (intermolecular) and 
near (intra - molecular) - pair dipolar interactions. The contribution due to the 
near pairs typically exhibits oscillatory behavior with time. On the other hand, the 
interactions due to remote pairs are governed by broadly distributed dipolar cou-
plings that have the effect of a damping of the time - dependent signal. The damping 
and oscillatory components of the signal are clearly seen in Figure  12.5 , which 

     Figure 12.5     Time domain data (spin - echo envelope) of a 2   mM, frozen toluene solution of a 
biradical at 77   K from a three - pulse DEER sequence.  Adapted from Larsen and Singel  (1993) .   
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shows an observed three - pulse DEER spectrum. Finally, a three - pulse DEER signal 
is expressed by the following expression (Klauder and Anderson,  1962 ; Borbat and 
Freed,  2007 ):

   

V t V e u t

u t t d

kCF t
d

d d

B( ) [ { ( )}];

( ) cos[ ( cos ) ] (

)= − −

= −

−
0

2

1 1

1 3

λ ω

ω ω θ ccos )}]θ
π

0

2/

∫
    (12.8)  

where,  C  is the concentration of sample;  F B   is the fraction of spins  S  2  excited by 
the pump pulse;   λ   is the modulation - depth parameter that depends on the fraction 
of  S  1  spins excited by the observer pulse, and   k g gB= 8 9 32 2

1 2π μ /( )� .   
 According to Equation  12.8  for  V ( t ), it is seen that in order to avoid overdamping 

of the DEER signal, one should use a small bulk concentration,  C .  

   12.5.3 
Four - Pulse  DEER  

 This was developed by Pannier  et al.   (2000) . In the three - pulse case there are dead-
time effects, as well as pulse overlap issues. Thus, it is not possible to measure 
signals from spin pairs, which have such a distance distribution that they decay 
completely during the microwave pulses of the order of few tens of nanoseconds. 
Also, in practice, the signal is distorted for times less than the dead time, which 
is typically in the range from 30 to 100   ns. It is possible to eliminate these dead 
time issues and achieve  “ dead - time free ”  signals by using an additional pulse. This 
is accomplished in the four - pulse DEER sequence, as shown in Figure  12.6 . This 
four - pulse sequence can be expressed schematically by the following scheme: 
 X  1 (  π / 2)    -     -     -     -      τ   1     -     -     -     -     X  I (  π  )    -     -     -     -     t     -     -     -     -     X  2 (  π / 2)    -     -     -     -    (  τ   1     +      τ   2     −     t )    -     -     -     -     X  I (  π  )    -     -     -     -    ( t ′      −      τ   2 ). 
The echo signal detected is the expectation value    <     I    +  ( t )  > . The effect of the pulses 
is described as follows. When the observing spins  S  1 , are oriented by the   π  /2 pulse 
along the  y  - axis following the fi rst microwave pulse of frequency   ω   1 , which tips 

     Figure 12.6     Four - pulse DEER sequence, 
which produces a refocused echo sequence 
for the observer spins. A   π   pulse at the 
pump frequency   ν   2  is applied at time  t  after 
the application of the fi rst   π   pulse to 
observer spins. The second   π   pulse at the 

observer frequency is applied after the time 
  τ   2  subsequent to the formation of the fi rst 
echo of observer spins. The time  t  is varied, 
whereas   τ   1  and   τ   2  are fi xed.  Adapted from 
Bhatnagar ( 2005 ) and Pannier  et al.   (2000) .   
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these spins into the  xy -  plane, they precess with the angular rate of   ω   1 . Spins  S  1  at 
different sites experience slightly different angular rates due to the presence of 
fi eld inhomogeneities and different resonance fi elds, which dephase the spins  S  1  
from each other. For example, the dipolar fi eld due to nearby spins  S  2  adds or 
subtracts its angular rate by  ±  ½   ω   12 , depending on the spin state of spins  S  2 . A spin 
echo is created when a   π   - pulse is applied to spins  S  1 , which reverses the dephasing 
and refocuses spin  S  1  along the  x  - axis. This echo obtained by application of   π  /2 –   π   
pulse sequence, which is called a  “ Hahn echo ” , plays a key role in most pulsed 
EPR experiments. After the echo, spins  S  1  continue to precess in the  xy -  plane, and 
the subsequent   π   pulse again refocuses, leading to the  “ refocussed echo, ”  but with 
a smaller amplitude as the phase coherence continues to be lost due to the spin 
relaxation. The dipolar contribution is now reversed in its superimposition on the 
total fi eld experienced by spins  S  1 , by applying a   π   pulse to spins  S  2 , which is 
known as a  “ pumping ”  or  “ ELDOR ”  pulse (as it is the second frequency to excite 
spins  S  2 ). It reverses the direction of  S  2  spins, which, in turn, reverses the dipolar 
contribution experienced by the  S  1  spins from  +  ½   ω   12  to  −  ½   ω   12  and  vice versa .  S  1  
spins accrue a phase lag due to the change of the dipolar contribution to the angular 
rate of precession of spins  A  in between the two   π   - pulses; these are then no longer 
refocused along the  x  - axis and this results in a decrease in the intensity of the 
echo. The accrued phase lag refl ects the strength of the dipolar interactions,   ω   12  
(as given above in Equation  12.6 ), as well as the time at which the pumping pulse 
is applied, which determines how long spins  S  1  experience the dipolar fi eld  +  ½   ω   12  
versus  −  ½   ω   12 . The total accrued phase difference is   ω   12 (  τ      –     t ), where   τ   is the interval 
between the   π  /2 and   π   pulses and  t  is the timing of the pumping pulse with respect 
to the initial echo, which is 2  τ   after the fi rst   π / 2 pulse. The DEER signal is the 
modulation of the echo intensity as a function of the time of application of the 
pumping pulse between the   π   pulses. Finally, the echo intensity oscillates as

   I t I tintra( ) cos( { }),= −0 12 1ω τ     (12.9)  

where  I  0  is the echo in the absence of the dipolar interactions.   
 The density - matrix treatment of a four - pulse DEER sequence is given in Appen-

dix  12.II , where the following result is calculated for the echo signal for an isolated 
pair of spins:

   < + > = − = −+I iI a t iI t( ) cos( [ ]) cos( [ ])2 21 2 0 1 0 1τ τ τ ω τd     (12.10)   

 The four - pulse DEER signal consists of a damping component when averaged over 
a real sample, taking into account statistical distributions of the various pairs of 
spins, similar to that considered for the three - pulse DEER sequence. To be used in 
Equation  12.5 , for a homogeneous distribution of spins, such as in a glass solution 
(Milov, Salikhov, and Shirov,  1981 ; Milov, Ponomarev, and Tsvetkov,  1984 ), one has:

   I t kCF tBinter( ) exp( ),= − −τ1     (12.11)  

where  C  is the concentration of spins  S  1  that interact with each other via intermo-
lecular interactions,  F B   is the fraction of spins  B  excited by the pumping microwave 
with frequency,   ν  p  , and  k  is given by:
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g gB A B= 8

9 3

2 2π μ
�

.   

 It is also superimposed by an oscillatory part, as shown in Figure  12.7 , similar to 
that found in a three - pulse sequence. However, the refocussed echo amplitude is 
smaller in the four - pulse sequence as compared to that due to a three - pulse 
sequence, since here an additional pulse has been introduced, so a longer time 
evolution is required for the refocussed echo. On the other hand, since the values 
of ( t     –      τ   1 ) are smaller here as compared to that due to a three - pulse sequence, they 
lead to enhanced modulation depths.   

 The four - pulse DEER signals, as obtained from six oligonucleotides, are shown 
in Figures  12.8 a and  b  (Schiemann  et al. ,  2004 ). These reveal that time dependen-
cies of fi ve doubly labeled oligonucleotides DNA1 – DNA5 show oscillations except 
for DNA 6, which is singly labeled, missing the second spin for dipolar interaction. 
The echo decay observed for all DNA results from intramolecular spin – spin cou-
pling. The Fourier transform of the DEER signal due to DNA1 in the frequency 
domain, as obtained after subtraction of echo decay, is shown in Figure  12.9 ; here, 
the Pake pattern is clearly visible, allowing the distances to be calculated in the 
same way as in a three - pulse DEER experiment.    

   12.5.4 
Merits and Limitations of  DEER  as Compared to  CW - EPR  and  FRET  

 These are as follows:

    •      The DEER method has the advantage that the characteristic oscillations in the 
signal due to the dipolar interaction are obtained only from doubly labeled 
protein; there is no contribution from singly labeled protein. Further, the rate 

     Figure 12.7     Experimental time domain signal obtained from four - pulse DEER experiment. 
 Adapted from Bhatnagar  (2005) .   
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 558  12 Distance Measurements: Continuous-Wave (CW)- and Pulsed Dipolar EPR

at which the oscillation is damped provides a direct indication of the widths of 
distance distribution, which can only be obtained from CW lineshapes by 
either simulation or deconvolution.  

   •      Distance measurements by DEER are limited on the upper side by the  T  2  
relaxation time, whereas the lower limit of ca. 15    –    20    Å  is determined by the 
failure of the weaker DEER pulses to irradiate both parts of the Pake doublet, 
whereas DQC does not have this limitation, see Figure  12.10 .  

   •      One can measure larger distances, up to 80    Å  (see Figure  12.11 , from Georgieva 
 et al. , 2010), with DEER, than are possible with CW - EPR.  

     Figure 12.8     (a) DEER time traces of DNAs 1 – 6; (b) DEER time traces of DNAs 1 – 5 after 
subtraction of the echo decay.  Adapted from Schiemann  et al.   (2004) .   
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     Figure 12.9     Fourier - transformed spectrum for DNA 1.  Adapted from Schiemann  et al.   (2004) .   
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   •      A four - pulse DEER sequence is especially suitable when there exist broad distri-
butions of small and intermediate distances. Furthermore, no comparison with 
the spectra due to monoradicals is required in DEER, unlike that in CW - EPR.  

   •      As mentioned above, in DEER, the difference |  ω   1     –      ω   2 | needs to be signifi cant 
in order to accomplish the required selective excitation. This restricts the use 
of those probes which satisfy the condition for DEER.  

   •      Unlike FRET, orientation - dependence in DEER is well defi ned. In contrast, 
with FRET one can measure distances at the single - molecule scale, whereas at 
least 10 pmol of sample is required for DEER distance measurements.      

   12.6 
Six - Pulse  DQC  

 This technique for distance measurements was developed at Cornell University 
by Freed and coworkers (Freed,  2000 ; Borbat  et al. ,  2001 ; Borbat, Mchaourab, and 
Freed,  2002 , Borbat and Freed,  1999 ; Borbat and Freed,  2000 ). It is superior in a 
number of ways to DEER, but requires more intense microwave pulses. These 
include greater sensitivity especially for low concentration samples since (nearly) 
all the spins are excited; absence of orientational effects in its standard 1D version; 
fi ltering of single quantum signals and other noise by the double quantum 
fi lter; and the ability to obtain good results for distances as short as 10    Å . (See 

     Figure 12.10     The challenges of short 
distances. DQC and DEER were applied to a 
rigid 12.2    Å  nitroxide biradical. Detection 
pulses in DEER were 16/32/32ns, the 
pumping pulse was 18ns (B 1  ∼ 10G). This is 
found to be insuffi cient to properly excite the 
dipolar spectrum. DQC using 6.2ns π-pulse 

(B 1  ∼ 30G) develops the  ∼ 30MHz oscillations 
very cleanly. The longer pulses of DEER lead 
to a spread in the refocusing point of 
different spin packets, and the weaker B 1 , 
both smear out the high - frequency dipolar 
oscillations. (From Borbat and Freed, 2007).    
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Figure  12.11 , from Borbat and Freed, 2007.) The double quantum coherence 
phenomenon has been extensively used in NMR (Ernst, Bodenhausen and 
Wokaun, 1987). We show in  Figure  12.12  the six pulse sequence used in DQC -
 ESR. It transforms the initial density matrix under the successive action of six 
pulses, and six subsequent free - evolutions. In the ideal limit of perfect hard pulses, 
one may readily derive a simple expression for DQC - ESR by the product operator 
method analogous to those given in Appendix II.1 and II.2 for DEER (Borbat and 
Freed, 1999; 2000).  It yields a cosine expression for the signal similar to those of 
Equations  12.7  and  12.10  for DEER (cf. Figure  12.12  caption). The following dis-
cussion is mostly taken from the recent publication on rigorous six - pulse DQC 
simulations by Misra, Borbat, and Freed  (2009) .   

 When a sample containing bilabeled proteins is subjected to a suffi ciently strong 
microwave pulse, the nitroxide EPR spectrum is (almost) uniformly excited, and 
any orientational selection is (largely) suppressed; that is, it does not modify the 

     Figure 12.11     (a) The experimental time -
 domain data and distance distribution for 
70% deuterated A30P alpha - synuclein ( α S) 
mutant spin - labeled at positions 24 and 72 
and reconstituted in micellar SDS-d25 using 
deuterated NMR buffer. (b) The experimental 
time-domain data (green) for 70% deuterated 
WT  α S spin - labeled at positions 24 and 83 and 

reconstituted into bicelles. The fi t (red) is 
based on distance distribution (c) produced 
by Maximum Entropy Method (MEM). Protein 
deuteration allowed recording dipolar signal 
on the time scale as long as 14  μ s. (Distribu-
tion centered at 4.6   nm in C due to protein in 
solution unassociated with bicelles.) (From 
Georgieva  et al. , 2010) .   
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echo amplitude (except for the effect of pseudosecular dipolar terms, which is 
essential for short distances). Also, in high  B  1  - fi elds, the effect of dipolar coupling 
during the pulses becomes relatively weak. Therefore, for not very short distances 
and in suffi ciently strong rf excitation fi elds ( B  1 s), the information on orientations 
of the magnetic tensors of the spin - label moieties, is virtually excluded from the 
time - domain dipolar evolution of the echo amplitude. However, as shown by 
Borbat and Freed (2000) and Misra, Borbat, and Freed  (2009) , it is still retained in 
the spin - echo evolution, and can be retrieved by recording the 2 - D time - domain 
data as a function of the spin - echo time ( t  echo ) and the dipolar evolution time ( t  dip ). 
This can then be converted into a  two - dimensional Fourier transform  ( 2 - D - FT ) 
spectrum which, after making a  “ shear ”  transformation (Lee, Budil, and Freed, 
 1994 ), separates the dipolar dimension from the spectral dimension. Rigorous 
computations of 1 - D and 2 - D signals were carried out by Misra, Borbat, and Freed 
 (2009) , some of which are presented here. Effi cient but approximate analytical 
expressions to this end were developed for 1 - D signals by Borbat and Freed  (2000)  
(see Appendix  12.V ), by omitting the dipolar coupling during the pulses and 
assuming an ideal  double - quantum  ( DQ ) fi lter (cf. Figure  12.10 , pulses 3, 4, and 

     Figure 12.12     (a) The six - pulse DQC 
sequence; (b) Here, the coherence pathways 
correspond with the pulses shown in (a), in 
that a transition from one  p  state to another 
 p  state is generated by a pulse; the horizontal 
lines show coherence orders during the 
evolutions in the absence of a pulse. As for 
the timing between the various pulses the 
following is noted. The time interval 
 t  1     =     t  2     =     t p   is increased in equal steps,  Δ  t p  , 
typically ranging from 1 to 10   ns, over a 
period of  t m      =     t p +  t  5  (200 – 4000   ns in this case). 
The time  t  3     =     t  4     =     t DQ   is kept fi xed, typically at 
20   ns;  t  5     =     t  6  is stepped by  –  Δ  t p   to maintain a 
constant  t m  ; this starts from the initial time 
 t m  . The echo signal is recorded in a window 
t  w      ∼    80 – 160   ns, centered at a time delay 
2 t m      +    2 t DQ   after the fi rst pulse    –    that is, at 

about  t  6     =     t m   after the sixth pulse. Note that 
the width of the echo sampling window 
limits the minimal values of  t  6  and  t p   by 
about  t w  /2 and their maximum values to 
( t m      −     t w  /2). The dipolar evolution is recorded 
as a symmetric signal with respect to 
 t dip      ≡     t m      –    2 t p   over the range of  ±  t m   in steps of 
2 Δ  t p  .  t dip      =    0 when the pulse separations are 
 t  1     =     t  2     =     t  5 . In practice,  t p   starts with  t p   0 . 
( ∼ 400   ns in this case), so that the last pulse 
and the echo window do not overlap. A 
simple analysis shows that the 1D signal 
goes as: cos    ω  d  t m      –    cos    ω  d  t dip  . The signal in the 
2 - D DQC experiment is recorded (or 
computed) over    ±    ( t m      −     t p   0 ), with  t p   0  always 
greater than  t w  /2.  Adapted from Misra, 
Borbat, and Freed  (2009) .   
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5). Whereas, such expressions are quite useful for practical purposes and are 
computationally very effi cient, they do not always supplant the rigorous calcula-
tions, especially in the case of short distances, for example, less than 15.0    Å . 
Numerical simulations of 1 - D spectra were fi rst carried out rigorously using these 
new codes in order to test the nature and extent of deviations from the exact 
results, and to establish the scope of applicability. The pulse propagators are cal-
culated, using accurate numerical diagonalizations of the Hamiltonians involved. 
Although the computational approach is necessarily time - consuming, it does 
provide useful insights into the features of DQC spectroscopy. 

   12.6.1 
Theoretical Background and Computation of Six - Pulse  DQC  Signal 

 The six - pulse DQC sequence is shown in Figure  12.10 , indicating the pulse pattern 
and the relevant coherence pathways (Borbat and Freed,  1999 ; Borbat and Freed, 
 2000 ). The computational method for 1 - D and 2 - D - DQC spectra is outlined as 
follows. 

 The initial density matrix operator in thermal equilibrium for the two nitroxides 
is determined by the static spin - Hamiltonian (  Ĥ):

   (̂ )
exp( ˆ )

[exp( ˆ )]
ˆ ˆ ,ρ 0 0

0
1 2= −

−
→ +H kT

H kT
S Sz z

/

Tr /
 

where the  z  - axis is chosen to be aligned along the direction of the external mag-
netic fi eld, and the subscripts number the two electron spins. The arrow points to 
the relevant portion of S ̂  (0) assuming a high - temperature approximation. The time 
evolution of the spin density matrix,   ρ  ( t ), is governed by the Liouville – von Neumann 
equation:

   
d

dt

i
H t t t

ˆ ˆ̂( ) (̂ ) ˆ̂( (̂ ) (̂ )).
ρ ρ ρ ρ= − − −

�
Γ 0  

where   ˆ̂ [ ˆ, ]H Hρ ρ≡ ,   -h   is Plank ’ s constant divided by 2  π  ,   ̂̂Γ  is the relaxation 
operator,  i  2     =     – 1. Neglecting the relaxation, the density matrix evolves under the 
action of   Ĥ, as:

   
d

dt

i
H t t

ρ ρ= −
�

[ ( ), ( )],ˆ  

the solution of which, after a period of time  Δ  t , yields the density matrix,   ρ  ( t ):

   ρ ρ ρ( ) ( ) ( , ) ( )t t e t e U H t t
iH t iH t

+ = ≡
−

Δ Δ
Δ Δˆ ˆ

ˆ ˆ� �     (12.12)   

 Numerical computation using Equation  12.12  of the DQC EPR signal is described 
below. 

 The un - normalized relevant part of the initial density matrix for the two coupled 
nitroxides, with electron spins  S k      =    1/2, in thermal equilibrium at high tempera-
tures is:

   ρ( )0 1 2  S   Sz z→ +     (12.13)   
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 (The normalization will be performed at the end of the calculation).The action of 
the six - pulse DQC sequence is illustrated as follows:

   

R Q t  R Q  t R Q t  Rp p DQ1 1 2 2 3 3 4
2 2

π π π π⎛
⎝⎜

⎞
⎠⎟

→ → → → ⎛
⎝⎜

⎞
⎠⎟

→ →( ) ( ) ( ) ( ) ( ) →→ →

⎛
⎝⎜

⎞
⎠⎟

→ − → → − +

Q t

R Q t t R Q t t t

DQ

m p m p echo

4

5 5 6 6
2

( )

( ) ( ) ( ),
π π

 

   

(12.14)

  

  Table 12.IV.1    Coherence pathways and respective matrix elements for two coupled spins. 

   Coherence order,  p      Corresponding matrix elements ( i ,  k ) 
in the electronic subspace of   ρ    

   + 2    (1,4)  
   + 1    (1,2), (1,3), (2,4), (3,4)  
  0    (1,1), (2,2), (2,3), (3,2), (3,3), (4,4)  
   − 1    (2,1), (3,1), (4,2), (4,3)  
   − 2    (4,1)  

where   Rk  ( k     =    1, 2,  …  6) are the six pulse propagators, and   Q kk( , , , )= 1 2 6…  are 
free - evolution propagators. Now, the  k th pulse ,  applied at the time  t  and acting 
during the period of time,   τ  k  , in the frame rotating with the angular frequency of 
the circular component of microwave magnetic fi eld resonant with Larmor fre-
quency of the nitroxide electron spin, transforms the density matrix,   ρ  ( t ), accord-
ing to:

   ρ ρ τ ρτ τ( ) ( ) ( ) ( ) ,t R t e t ek k
iH iHk ki k ki− → + = −
� �

 

with  R k   being the  k th pulse propagator due to the effective Hamiltonian  Ĥ k   acting 
during the period of time   τ  k  . The action of a   π   - pulse changes the sign of a coher-
ence order,  p  (defi ned in Table  12.IV.1  of Appendix  12.IV ), and the   π  /2 pulse 
generates other coherence orders so that   p p→ ± 1 (Gemperle  et al. ,  1990 ). In order 
to follow the coherence pathways of interest, the density matrix is then projected 
onto the coherence pathways  p   k  , which are chosen after the pulse according to 
Figure  12.10 , as follows:

   ′ + = +ρ τ ρ τ( ) ( ) ( ),t P tk k kp     (12.15)  

where the idempotent operator   P k( )p  projects the density matrix on the coherence 
pathways  p   k   chosen after the  k th pulse. As shown in Figure  12.10 , the successive 
coherence pathways of interest are [(1,  − 1); ( − 1, 1); (2,  − 2); ( − 2, 2); (1); ( − 1)], that 
are chosen after the actions of the six pulses, with two branching points that lead 
to a total of four distinct pathways. The subsequent free evolution during the time 
 t k   transforms   ′ +ρ τ( )t k  as   ′ + ⎯ →⎯⎯ + +ρ τ ρ τ( ) ( )( )t t tk

Q t
k k

k  according to:

   ρ τ ρ τ( ) ( )t t e t ek k
iHt

k
iHtk k+ + = ′ +−

� �
    (12.16)     
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 In Equation  12.16 ,  Ĥ  is the spin - Hamiltonian in the absence of a pulse referred 
to as  Ĥ  

0  below. The density matrix   ρ τ( )t tk k+ +  is next used in place of   ρ  ( t ) in 
Equation  12.15  for the calculation of the density matrix under the action of the 
( k       +      1) - pulse. The steps defi ned by Equations  12.15  and  12.16  are then repeated 
to successively transform the density matrix to calculate the fi nal density matrix, 
which becomes a function of several arguments,   ρ ρ η λ λf echot= ( , , , , , , )t t p 1 2 . These 
arguments are defi ned as follows:   t = ( , , )τ τ1 6…  are the pulse durations;   t = ( , , )t t1 6…  
are the subsequent free evolution periods;   p p p= ( , , )1 6…  are the relevant coher-
ence orders during the evolution periods;  t k  ,  t echo   are time variables used to record 
the dipolar evolution and to produce the spin echo envelope. The remaining argu-
ments are the Euler angles   η      =    (  χ  ,   θ  ,   φ  ), which defi ne the orientation of the vector 
 r  connecting the magnetic dipoles associated with the electron spins in the labora-
tory frame (the angle   χ   was chosen to be zero as the medium is isotropic). In 
the dipolar (molecular) frame, whose  z  - axis is coincident with  r , the Euler 
angles   λ α β γk k k k= ( , , ) defi ne the principal axis of the nitroxide magnetic tensors 
(Figure  12.13 ) with   α   1  chosen to be 0. Finally, the complex echo signal is given by:

   F Tr S f+ += −2 [ ].�ρ  

where   �ρ f  is the normalized density matrix.   
 The various propagators responsible for the evolution of the density matrix, 

depend on the exact form determined by  Ĥ  0  in the absence of a pulse, or by 
 Ĥ  0     +     Ĥ p   in the presence of a pulse. Appropriate pulse time intervals   τ  k   are chosen 
to achieve nominal fl ip angles of   π  /2 (  k      =     1, 3, 5) and   π   ( k      =     2, 4, 6), respectively. 
The various Hamiltonians are:

   ˆ ˆ ˆ ˆH H H H0 01 02 12= + +     (12.17)  

with

   ˆ ;H S I B Sk kz k n kz kz k k0 0 0= ⋅ − + ⋅g B A Iγ     (12.18)  

where  k     =    1, 2 denotes nitroxides 1 and 2, and  H  12  describes their coupling

   ˆ ˆ ˆ ( cos )( ) ( ).H H H
D

S S JD J z12
2 2 2

1 2
2

3 1
1

3

1

2
2= + = − − + − ⋅θ S S     (12.19)   

 Here,  J  is the electron exchange constant and  D  is the dipolar coupling 
constant:

   D
r
e= 3

2

2

3

γ �
,     (12.20)   

 which is equivalent to   ω  d   in eq. 12.4. The dipolar constant  d     =    2 D /3 will most often 
be used throughout the text. In Equation  12.18 ,  I  1,2  are the nuclear spins of the 
nitrogen ( 14 N or  15 N) nuclei on the two nitroxides. 

 The interaction of a nitroxide with the radiation fi eld due to the applied micro-
wave pulse  k  in the reference frame rotating with the carrier frequency   ω  rf  , usually 
set at or near the Larmor frequency, is expressed as:
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   ˆ ( );H
B

e S e Spk
e k i ik k= +−

+ −
γ ϕ ϕ1

2
    (12.21)  

where  B  1   k   is the amplitude of the circular magnetic component. The phases,   φ  k  , 
can be set to zero for all the pulses for purposes of the present calculations and 
consequently   ̂H B Spk e k x= γ 1 . The amplitudes,  B  1   k  , are assumed to be equal here, 
but they do not have to be equal for different  k  - values.  Ĥ  0   k  , as given in Appendix 
 12.III , describing the spin Hamiltonian for the two nitroxides, becomes in the 
laboratory frame as

   ˆ *H C S G I A S I B S I B S Ik k kz k kz k kz kz k kz k k kz k0 = + + + ++ −   

 The time - domain DQC signal is calculated for a chosen set of   λ  k   and   η , using 
appropriate variations of the time intervals following the various pulses (as given 

     Figure 12.13     The set of Euler angles   λ  k      =    (  α  k  , 
  β  k  ,   γ  k  ), ( k     =    1, 2), which defi ne the orienta-
tions of the  hf  and  g  - tensor tensor principal 
axes for nitroxides 1 and 2 in the dipolar 
(molecular) frame of reference. In this frame, 
the  z  - axis is chosen to coincide with the 
vector  r , connecting the magnetic dipoles of 

the nitroxides. The orientation of the dipolar 
frame in the laboratory frame (with z - axis 
parallel to the external magnetic fi eld  B  0 ) is 
defi ned by the Euler angles   η       =     (0,   θ  ,   φ  ). 
 Adapted from Misra, Borbat, and Freed 
 (2009) .   
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in the caption of Figure  12.12  for typical values used for the simulation). The 
calculations were carried out in the product space   S S I I1 2 1 2⊗ ⊗ ⊗  with the dimen-
sion   N S S I I= + + + +( )( )( )( )2 1 2 1 2 1 2 11 2 1 2 . Accordingly,  Ĥ  0  and  Ĥ  are represented 
by order  N   ×   N  matrices  H  0  and  H ; that is, with the size of 36  ×  36 for the 
two coupled ( 14 N) nitroxides, ( S  1,2     =    1/2,  I  1,2     =    1). The procedure to calculate 
  ρ θ ϕf dip echot t( , , , ) is outlined in Appendix  12.IV . 

 Finally, the complex echo signal is given by:

   F t t Tr S t t Trdip echo f dip echo N+ += −( , , , ) [ ( , , , )] [ ].θ φ ρ θ ϕ2 / 1  

where  1   N   is the unit matrix in the product space. For a powder sample, the echo 
signal is the average of the signals over the orientations of the molecule in the 
laboratory frame:

   S t t d F t t P ddip echo dip echo( , ) ( , , , ) sin .= +∫∫ ϕ θ ϕ θ θ
ππ

Ω
00

2

    (12.22)   

 In Equation  12.22 ,  P   Ω   is the angular distribution of molecular axes in the labora-
tory frame ( P   Ω      =    1/4  π   for an isotropic distribution). In performing powder averag-
ing in isotropic medium, the integration limits to be used are [0,   π  ] in axial angles 
(  φ  ) and [0,   π  /2] in polar angles (  θ  ).  

   12.6.2 
Illustrative Examples 

 The reader is referred to the publication by Misra, Borbat, and Freed  (2009)  for a 
detailed description of the illustrative examples based on the simulation procedure 
described here. Four of these examples are included in this chapter, as shown in 
Figures  12.14 – 12.17 , the captions of which provide detailed descriptions.    

   12.6.3 
Conclusions and Future Prospects of Six - Pulse  DQC  Echo Signal Simulation 

 The main features and conclusions from the DQC simulations presented here are 
as follows:

    •      The simulations for cases of short distances (10 – 15    Å ) are rigorously performed 
utilizing the full spin Hamiltonian during the pulse.  

   •      The results show that the application of a very strong  B  1  fi eld leads to clean 
Pake doublets in one dimension, that enables one to determine the dipolar 
(and exchange) couplings with the effects of correlations with the nitroxide 
magnetic tensors largely suppressed, in most cases. Then, in 2 - D format, one 
may examine the  “ fi ngerprint ”  and make distinctions among different orienta-
tions of the principal - axis systems of the magnetic tensors of the nitroxides 
when correlations are present.  

   •      It is clearly demonstrated from the simulations, that the concept of increased 
correlation sensitivity in 2 - D FT spectra is indeed valid.  
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   •      It is also shown that increased DQC signal strengths are obtained by perform-
ing experiments with stronger pulses.  

   •      The criterion for using the approximate analytical approach versus rigorous 
1 - D simulations at conventional frequencies (up to Q - band) has been estab-
lished, as discussed in Appendix  12.V .  

   •      For all practical purposes, rigorous DQC simulations should be utilized for the 
2 - D domain, strong coupling cases, and the millimeter - wave range. Simula-

     Figure 12.14     (a) Time - domain 1 - D DQC 
signals and their Fourier transforms for  14 N 
nitroxides with their magnetic tensor axes 
orientations distributed isotropically in the 
molecular frame (i.e., referred to as 
uncorrelated case). (Top)    –    A computation 
result based on analytical approximation (cf. 
Equations  12.V.1 – 12.V.3  in Appendix  12.V ) 
and (bottom) that computed rigorously. 
 B  0     =    6200   G,  B  1     =    30   G, and dipolar coupling 

( d ) is 15   MHz (15.1    Å ). This fi gure shows the 
2 - D time - domain data in dipolar and echo 
times and its 2 - D FT. A small peak at 3 d /2 
and a weak shoulder extending up to 3 d  are 
manifestations of the pseudosecular terms in 
 H  12 , as given by Equation  12.19 . The 
difference between the two cases is quite 
small, being mostly caused by using 
simplifi ed amplitude factors.  Adapted from 
Misra, Borbat, and Freed  (2009) .   
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tions based on analytic approaches are two to three orders of magnitude 
computationally more effi cient and virtually linearly scalable in multiprocessor -
 systems. This makes it possible to apply them to more complex cases that 
include averaging over multiple parameters, data fi tting, or to multispin 
systems.  

   •      The pseudosecular terms exhibit their effects clearly in 1 - D and 2 - D dipolar 
data. The pseudosecular part of dipolar coupling is responsible for the spectral 

     Figure 12.15     Time domain 2 - D DQC signal 
shown as 3 - D stack plot and contour plot. 
The simulations were carried out rigorously 
for  B  0     =    6200   G,  B  1     =    60   G,  d     =    25   MHz and 
uncorrelated  14 N nitroxides. The tilt of the 
spin - echo refocusing line is clearly visible; 
this is due to the fact that the spin - echo 

envelope is recorded over the time period 
where only one point corresponds to the 
dipolar interaction refocusing. A shift by  Δ  t  
in the spin - echo time corresponds to a shift 
by  Δ  t /2 in the position of the dipolar 
coupling refocusing point.  Adapted from 
Misra, Borbat, and Freed  (2009) .   
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peaks with 3 d /2 splitting when two spins resonate at suffi ciently close frequen-
cies. This depends differently on orientational correlations than that for the 
secular part, leading to a richer 2 - D spectrum.  

   •      The 1 - D spectrum does not show orientational correlations in most cases. On 
the other hand, the 2 - D spectrum does exhibit patterns that are distinct from 
those obtained in the absence of correlation.  

     Figure 12.16     2 - D DQC (fi lled) magnitude 
contour plots obtained by 2 - D FT with 
respect to  t  dip  and  t  echo . Top row:  14 N 
uncorrelated (a) and correlated (b) case. 
Bottom row:  15 N uncorrelated (c) and 
correlated (d) cases.  B  0     =    6200   G,  d     =    2   MHz. 
 B  1  was set to infi nity (i.e., perfect pulses), 
pseudosecular terms were neglected. In 
(b, d) angles beta were (90 ° , 90 ° ); the other 
angles were set to zero. Note the similarity of 
the 1 - D dipolar spectra obtained by 
integration along the EPR frequency. These 

all are classic Pake doublets, but in the 2 - D 
representation the differences are striking. 
For the uncorrelated cases, the dipolar 
spectrum is uniform for different slices along 
the EPR frequency axis, whereas for the 
correlated case they show a distinct 
 “ fi ngerprint ”  of this type of correlation. Since 
pseudosecular terms are neglected, the 
results are just applicable to long distances, 
such as the present case.  Adapted from 
Misra, Borbat, and Freed  (2009) .   
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   •      The electron spins are treated here in the point dipole approximation ignoring 
spin - density delocalization. However, for distances less than about 10     , one 
should take into account spin - density delocalization, which is signifi cant for 
example, on tyrosyl or fl avin radicals, leading to a rhombic dipolar tensor.  

   •      Relaxation effects have not been considered here. Phase relaxation can be 
introduced phenomenologically, as described by Saxena and Freed  (1997)  and 
Borbat and Freed  (2000, 2007a) , but suffi ciently fast spin - lattice relaxation does 
require treatment with full rigor in Liouville space. However, there exist simpli-
fi ed versions that can be used in Hilbert space (see, for example, Lee, Patyal, 
and Freed,  1993 ).      

   12.7 
Sensitivity Considerations: Multifrequency Aspects 

 The main criterion for sensitivity of PDS (Borbat and Freed,  2000 ) is based on the 
ability to measure reliably a distance in a reasonable period of time. An acceptable 
 signal - to - noise ratio  ( SNR ) to this end is nominally taken as a  S  acc  of 10, which 

     Figure 12.17     2 - D DQC (fi lled) magnitude 
contour plots computed for  15 N nitroxides 
using  B  0     =    12   500,  B  1     =    60   G,  d     =    25   MHz 
with a Gaussian distribution in  d  
(FWHM    =    5   MHz). Panel (a) represents an 
uncorrelated case, whereas in (b) the angles 
beta were (90 ° , 90 ° ) and alphas and gammas 
were set to zero. 4    ×    10 4  Monte Carlo trials 
on a random set in {cos     θ  ,   φ  ,  d } were used to 
generate the data for (a); 180  ×  180 mesh in 
{cos     θ  ,   φ  } was used to generate (b). The 1 - D 
dipolar spectra on the right - hand sides of (a, 
b) are nearly completely smeared, and may 

be suited only to estimate  d  and its variance. 
The 2 - D spectra, however, are quite different. 
The 2 - D spectrum in (b) exhibits a distinct 
fi ngerprint of orientational correlation, but 
the 2 - D spectrum for the uncorrelated case 
in (a) is similar to that in Figure  12.5 , in that 
it tends to streak parallel to EPR frequency 
axis, as would be expected for such a case, 
where any point in the EPR spectrum 
corresponds to all possible orientations. 
 Adapted from Misra, Borbat, and Freed 
 (2009) .   
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should be attained in an acceptable time of experiment nominally taken as 8   h of 
signal averaging. However, a  S  acc  of 10 is a bare minimum, and one usually 
requires a SNR of at least 50 (Chiang, Borbat, and Freed,  2005a ). An experimental 
calibration in the spirit of Borbat and Freed  (2000)  was made based on a measure-
ment of the spin - echo amplitude using a two - pulse  primary echo  ( PE ), which 
provides the SNR,  S  1  (PE), for a single shot. The ratio of the echo amplitudes 
relevant for DQC versus DEER was ca. 6.5, and the ratio of the SNRs of the single -
 shot signals at the condition of optimal signal reception was  S  1   ≈  0.42    μ M  − 1  (DEER) 
and  S  1   ≈  1.25    μ M  − 1  (DQC) (for more details, see Borbat and Freed,  2007 ). Accord-
ingly, the estimates of the dipolar signals for the two techniques are summarized 
as follows. The  S  1  value for DQC, based on a 3/6/3/6/3/6   ns pulse sequence, is 
greater by a factor of 3.6 than that for a four - pulse DEER with 16/32/32   ns pulses 
in the detection mode and a 32   ns pump pulse, based on the experimental observa-
tions at Cornell. The SNR of the raw data of the full PDS experiment, using the 
sensitivity analysis given by Borbat and Freed  (2000) , was estimated to be

   SNR / /= − −⎛
⎝⎜

⎞
⎠⎟

2
2

21
2

1
1 2S x C K f T ft n

t

T
kxCGtc

m

η ( , )( ) expexp
max

max ,,     (12.23)  

where,  t  max  is the duration of the acquisition of experimental data;  f  is the frequency 
of the pulse sequence repetition;  n  is the number of data points in the record (more 
details are given by Borbat and Freed,  2000 ), indicating that Equation  12.23  gives 
a conservative estimate);  C  is the concentration of doubly labeled protein ( μ M); 
and   η  c   is the ratio of the sample volume to that used in the calibration. As for the 
exponential in Equation  12.23 , the fi rst term accounts for the phase relaxation, 
and the second for instantaneous diffusion;  G  is method specifi c, which is 0.14 
for DEER and ca. 0.52 in DQC;  x  is the spin - labeling effi ciency, which modifi es 
the fraction of both spins that need to be fl ipped in PDS, exhibiting its strong 
effect on the outcome of an experiment (assumed to be 1 for complete labeling); 
 K (  f ,  T  1 )    =    1    −    exp( − 1/ fT  1 ) represents the effect of incomplete spin - lattice relaxation 
for a given relaxation time,  T  1 , and the repetition rate,  f . The following regimes, 
supported by experiment, are worthy of note in this context as discussed by Borbat 
and Freed  (2000, 2007) .

   Short distances, low concentrations:     Using Equation  12.23  and the various param-
eters listed by Borbat and Freed  (2000, 2007)  for a short distance of 20    Å  
( T  dip     ≡      ν  d    − 1     =    154   ns), just 4   min of signal averaging of the DQC signal provides 
a SNR of 10 for a  C  of 1    μ M, whereas DEER will require nearly 60   min to achieve 
this result. Finally, a high SNR of 100 could be attained for DQC in 6.5   h for 
the same amount of protein.  

  Long distances:     Using the various parameters listed by Borbat and Freed  (2000, 
2007)  for this case, a SNR of 10 is achieved in 8   h for a  C  of 2.1    μ M for DQC, 
whereas for DEER one would need 104   h.  R  max  is found to be 59    Å  by using one 
period of  T  dip , whereas for half of the period,  R  max  is 75    Å . For larger distances, 
one has a smaller SNR.  
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  Distances in the optimal PDS range:     50    Å  is considered to be an upper limit for 
the  “ optimal PDS ”  distance range. Then,  T  dip  is 2.4    μ s, for which a  t  max  of 2.4    μ s 
is suffi cient to provide the distance reasonably accurately for a structure con-
straint. For the challenging case of  T m      =    1.5    μ s, a good SNR of 50 is achieved in 
16   min by DQC, whereas one requires nearly 3.5   h to achieve the same result 
by DEER. Shorter distances of 20 – 45    Å  are measured faster, or else yield a better 
SNR, or better resolution. The spin sensitivity is closely related to the concentra-
tion sensitivity, and increases rapidly with an increase in the working frequency 
due to the small volume of the resonator used at higher frequency. DQC is better 
suited to handle smaller amounts.    

   12.7.1 
Frequency Dependence of Sensitivity of  PDS  

 The single - shot SNR of the dipolar signal,  S  1 , in Equation  12.23  in the absence of 
relaxation with a view to estimate its frequency dependence is now considered. 
This is determined by the SNR of the relevant echo signal, which depends on the 
fraction of the participating  A  spins giving rise to the echo, further modifi ed by a 
factor (of less than 1) which depends on the fraction of the  B  spins fl ipped by the 
pump pulse. (In DQC, the  B  spins are the same as the  A  spins.) A maximum SNR 
is achieved when nearly all spins are excited, the resonator  Q  matches the band-
width of the echo and that of the excitation pulses, and the signal reception is 
optimized, for example, by matched fi ltering. As shown by Mims  (1965) , the 
single - shot SNR of the part of the echo modifi ed by dipolar coupling,  S  1 , is

   S CV GH Q V F fs c N1 0
1 2= β ω ω( ) ,/ /Δ     (12.24)  

where   β   0  is a constant,   ω      =    2  π f , with  f  being the working frequency;  C  is the spin 
concentration in the sample;  V c   is the resonator effective volume;  V s      =     V c  η   is the 
sample volume, with   η   being the fi lling factor of the resonator;  G  and  H  are the 
spectral excitations of spins  A  and  B , respectively;  Q  is the loaded  Q  - value of the 
resonator;  F N   is the system noise fi gure; and  Δ  f  is the receiver bandwidth. A dis-
cussion of the typical values of the parameters required in DQC and DEER is given 
by Borbat and Freed  (2000, 2007) . Taking all these into account, the SNR that can 
be achieved for the integrated dipolar signal, turns out to be

   S CV B KK Kc s1
2 1 2 1

2 1
1 2∝ −ω η/ / .     (12.25)   

 The frequency dependence of  V c   is given by   Vc = −αω 3, with   α   depending on the 
resonator design, so that the concentration dependence of SNR is

   S C C B KK Ks1
1 2 1 2 1

2 1
1 2( ) .∝ −α ω η/ / /     (12.26)   

 On the other hand, the dependence of the absolute sensitivity on the number of 
spins ( N ) is

   S N N B KK Ks1
1 2 7 2 1

2 1
1 2( ) .∝ − −α ω/ / /     (12.27)   

 At very high frequencies, for which   Bs
− ∝1 ω , the concentration and spin - number 

dependencies become
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   S C C KK K1
1 2 1 2

2 1
1 2( ) ;∝ −α ω η/ / /     (12.28)  

   S N N KK K1
1 2 5 2

2 1
1 2( ) .∝ −α ω/ / /     (12.29)   

 Equations  12.28  and  12.29  imply that   S C1
1 2( ) ∝ −ω /  and   S N1

5 2( ) ∝ ω / , which means 
that the concentration sensitivity is not signifi cantly benefi ted by going to higher 
frequencies, for example, in the millimeter range; however, the absolute sensitivity 
should be improved. More detailed considerations are required for designing of 
resonators with a larger value of   α  . 

 Recently, Ghimire  et al.   (2009)  have found that substantial increase in DEER 
sensitivity can be obtained by collecting DEER data at Q - band (34   GHz) on a 
Bruker spectrometer, in comparison with that obtained at X - band (9   GHz) on a 
Bruker spectrometer. Specifi cally, in their experiment a 169 - fold decrease in data 
collection time was associated with a huge boost in sensitivity by a factor of 13. 
They do not fully address instrumental factors responsible for this, nor do they 
note that the 17   GHz home - made spectrometer of Freed and co - workers has been 
delivering comparable high sensitivity for a number of years (Borbat and Freed, 
2007).   

   12.8 
Distance Distributions:  T ikhonov Regularization 

 In the past, various methods have been proposed to determine the distance dis-
tributions of paramagnetic centers in solids (see, for example, Chiang, Borbat, and 
Freed,  2005a, 2005b ; Bowman  et al. ,  2004 ; and Jeschke  et al. ,  2004 ). The Tikhonov 
regularization method (Tikhonov and Arsenin,  1997 ) has now become routine for 
extracting distance distributions from the data from both DEER and DQC. It is 
described as follows. 

 The time - domain dipolar signal for uniform spin distributions in the sample 
can be generally expressed as  V  intra  A  inter       +     B  inter , wherein  B  inter  originates from singly 
labeled molecules and free label or pairs where one of the spins does not partici-
pate. After removing the  A  and  B  terms as much as possible, the remainder is a 
reasonably accurate representation of  V  intra , which is then subjected to inverse 
reconstruction by Tikhonov regularization or related methods. One represents the 
ideal - case problem by a Fredholm integral equation of the fi rst kind

   V t V P r K r t drintra( ) ( ) ( , ) ,=
∞

∫0

0

    (12.30)  

where the kernel  K ( r ,  t ) for an isotropic sample, using Equations  12.2  and  12.3 , is 
given by

   K r t t x dxd( , ) cos[ ( )] .= −∫ ω 1 3 2

0

1

    (12.31)   

 The distance distribution,  P ( r ), is obtained by inversion of the signal  V  intra , given 
by Equation  12.30 . This can be achieved by using standard numerical methods, 
such as  singular value decomposition  ( SVD ), which in this case is an ill - posed 
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problem, requiring regularization methods to arrive at a stable solution for  P ( r ). 
The actual form of the kernel  K ( r ,  t ) may differ from the ideal form given by Equa-
tion  12.31 , since the data are discrete and available only over a limited time interval 
in the practical implementation. 

 The full distribution in distance,  P ( r ), can be recovered by Tikhonov regulariza-
tion (Chiang, Borbat, and Freed,  2005a ; Chiang, Borbat, and Freed,  2005b ; Jeschke 
 et al. ,  2004 ). This is accomplished by seeking an optimum  P ( r ), which tries to 
minimize the residual form of the fi t to the data, and at the same time trying to 
maximize the stability of  P ( r ) by reducing its oscillations. The parameter   λ  , known 
as the regularization parameter, determines the relative importance of the two. It 
is optimized by the L - curve method (Hansen,  1992 ; Chiang  et al. , 2005a), which 
is computationally very effi cient and the most reliable available to date. This regu-
larization removes the contributions of the small singular values,   σ   i  in the SVD 
that are corrupted by the noise by introducing the fi lter function:

   f i
i

i

≡
+

σ
σ λ

2

2 2
,     (12.32)  

which fi lters out those contributions for which   σ λi i
2 2<< . One may then use the 

 maximum - entropy method  ( MEM ) to refi ne  P ( r ) further, though this computation-
ally more time - consuming (Chiang, Borbat, and Freed, 2005b). One is able to 
simultaneously fi t and remove the effects of  A  inter  and/or  B  inter , while optimizing 
the  P ( r ) from raw experimental data (Chiang, Borbat, and Freed,  2005a, 2005b ) by 
using the latest versions of MEM and Tikhonov regularization. In this manner, 
distance distributions are recovered faithfully from the test data, simulated using 
the ideal kernel of Equation  12.31 , even in the presence of signifi cant noise, for 
example a SNR of 10 (Chiang, Borbat, and Freed,  2005a, 2005b ; Bowman  et al. , 
 2004 ; Jeschke  et al. ,  2004 ). In practice, real data deviate from this ideal picture, 
and there appears increased uncertainty, which requires a signifi cantly higher 
SNR. 

 Recently, Jeschke  (2009)  has discussed the possibility of overcoming the ill -
 posed problem of determining distances from DEER data by implementing con-
straints, such as Tikhonov regularization (Tikhonov,  1955 ; Jeschke  et al. ,  2004 ; 
Chiang, Borbat, and Freed,  2005b ). This hides the infl uence of noise and of other 
distortions in noise data, and may result in reasonably looking distributions which 
are actually devoid of any information. Jeschke discusses criteria when DEER data 
are reliable, as well as a Monte Carlo approach to the validation of distance distri-
butions. Such an approach is achieved by using the software DeerAnalysis2008 
(Jeschke  et al. ,  2006 ;  http://www.epr.ethz.ch/software/index ).  

   12.9 
Additional Technical Aspects of  DEER  and  DQC  

 Some noteworthy points are summarized as follows (for more details, see Borbat 
and Freed,  2007, 2007b ):
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    •      In the modern approach to PDS, one preferably uses a  loop – gap resonator s 
( LGR ) or dielectronic resonators (DR) to achieve a higher sensitivity, and also 
a much smaller sample size when required.  

   •      In three - pulse DEER, use of a single amplifi er could lead to the problem of not 
having insuffi cient power at X - band but was not a problem at Ku - band.  

   •      Since the pulses in four - pulse DEER are not required to be close (unlike 
those in three - pulse DEER), the signifi cant dead - time effects inherent in 
three - pulse DEER are avoided in four - pulse DEER, thereby achieving greater 
sensitivity.  

   •      Although DEER can be used, in principle, without phase cycling or even with 
incoherent pulses, it is recommended to use spectrometers with high instru-
ment stability, such as are commercially available.  

   •      Suppression of the baseline (background signal) is a key virtue of DQC, 
and is achieved by extensive phase - cycling, in particular by the use of a 
double - quantum fi lter. This diminishes any unwanted modulation of the 
signal due to low - frequency noise and drifts in phase or gain, as well as 
nuclear  electron spin echo envelope modulation  ( ESEEM ) effects, arising 
out of modulation of the large background from the single - order coherence 
signals.  

   •      ESEEM effects: nuclear spin effects are minimized in three - pulse DEER, since 
the excitation and detections regions are well separated. However, ESEEM 
effects cannot be neglected in a typical four - pulse DEER experiment with a 
single power amplifi er at X - band. The standard suppression techniques are 
very successful in both DQC and DEER. In addition, the proton ESEEM is 
virtually eliminated by increasing the frequency from 9   GHz to 17   GHz, but 
not the deuterium ESEEM in DQC.  

   •      Orientation selection in DEER and DQC: As discussed by Larsen and Singel 
 (1993)  and by Maryasov, Tsvetkov, and Rapp  (1998) , orientation selection in 
DEER occurs due to the anisotropy of the nitroxide magnetic tensors, and their 
orientations relative to the inter - spin vector, which arises out of use of selective 
pulses. On the other hand, DQC is much less sensitive to orientational selectiv-
ity due to use of hard (intense) pulses. If required, however, orientational 
correlations can be revealed in considerable detail in a 2 - D model, as illustrated 
recently by Misra, Borbat, and Freed  (2009) . In any case, the fl exibility of side -
 chain labels, such as MTSSL, decreases the correlation effects considerably, 
whereas at high fi eld it can be exploited to obtain some additional information 
on orientation of nitroxide side chains, and endogenous radical centers 
(Denysenkov  et al. ,  2006 ; Polyhach  et al. ,  2007 ).     
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   12.10 
Concluding Remarks 

 It has been demonstrated by at Cornell (Borbat  et al. , 2006; Park  et al. , 2006; Borbat 
 et al. , 2007; Upadhyay  et al. , 2008; Georgieva  et al. , 2008; Georgieva  et al. , 2010; 
Bhatnagar  et al. , 2010) as well as in other labs that PDS is clearly capable of being 
applied to extensive protein mapping. Future developments will enable EPR dis-
tance restraints, combined with modeling, nitroxide side - chain geometry simula-
tion, and structure prediction to be applied to identify the detailed 3 - D structures 
of large proteins, and of their complexes. Additional technical improvements are 
expected in PDS; in particular, DQC has not yet achieved optimum performance, 
and it is expected that both DQC and DEER will be further developed at a higher 
frequency. It is hoped that, in the near future, PDS    –    both as DEER and DQC    –    will 
become a standard technique for structural determinations, based on the realiza-
tion that the technique has many virtues.  
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  Appendix 12. I  
 Density - Matrix Derivation of Echo Signal for Three - Pulse  DEER  

 Here, calculations are described for a coupled pair of isolated spins in a disordered 
solid. These calculations are carried out in Hilbert space, wherein the spins are 
assumed to be quantized along the external magnetic fi eld,  B , directed along the  Z  
axis. Relaxation effects are neglected in the present consideration (Bhatnagar,  2005 ). 

 The spin Hamiltonian for coupled nitroxides is expressed in frequency units as:

   H S S aS Sz z z z/� = + +ω ω01 1 02 2 1 2     (12.I.1)   

 In Equation  12.I.1 ,   ω   01     =      γ   I  B  0  is the resonance frequency of the isolated  S  1  spins; 
  ω   02     =      γ   2  B  0  is the resonance frequency of the isolated  S  2  spins;  a  is the dipolar 
coupling frequency expressed by Equation  12.2  ignoring the pseudosecular term 
in Equation  12.1 ;  B  0  is the external magnetic fi eld; and   γ   1 ,   γ   2  are the gyromagnetic 
ratios for  S  1  and  S  2  spins, respectively. The following considerations are made in 
the rotating frame, in which the  S  1  spins are off - resonance by   ΔB01 and the  S  2  
spins by   ΔB02. The corresponding chemical shifts are:   Δ Δω γ ω01 1 01 01= −B  and 
  Δ Δω γ ω02 2 02 02= −B . 

 The pulse sequence in three - pulse DEER is:  X  I (  π  /2)    -     -     -     -      τ      -     -     -     -     X S  (  π / 2)    -     -     -     -    
(  τ  ′      −      τ  )    -     -     -     -     X  I (  π  )    -     -     -     -    ( t     −      τ  ′  ). In other words, at the time  t     =    0  −  , a   π  /2 pulse,  X  1 (  π  /2), 
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is applied on  S  1  spins about the  X  axis. Thereafter, at time   τ  , a   π  /2,  X  2 (  π  /2), pulse 
is applied on S 2  spins about the  X  - axis, followed by the application of a   π   - pulse on 
 S  1  spins about the  X  axis,  X  1 (  π  ), after a time delay of (  τ   ′  –      τ  ). The subsequent time 
evolution of the density matrix for  t     >      τ   ′  produces an echo for  S  1  spins at  t     =    2  τ   ′ , 
which is the signal of interest here. 

 The echo signal for  S  1  spins at any time is given by the expectation value of the 
transverse magnetization, proportional to   < > =+ +S t Tr S t1 1( ) { ( )}ρ , where  Tr  stands 
for trace. The initial value of the density matrix, considering the Zeeman terms 
only, ignoring the dipolar and exchange terms, is:

   ρ ω ω( ) exp( ) { ( ) } ,0 1 01 1 02 2
− = − ≈ − +H k T Z S S k T ZB z z B/ / / /� �     (12.I.2)  

where   Z E k Ti B

i

= −∑1/ /exp( ), the sum being over the four energy states of the two 

coupled nitroxides with spin  ½  each;  T  is the temperature; and  k   B   is the Boltzmann 
constant. 

 The   π  /2 pulse, applied on  S  1  spins about the  X  - axis at  t     =    0  −  , transforms the 
density matrix to:

   

ρ π ρ π
π ω ω

( ) ( ) ( ) ( )

( )( ){ (

0 2 0 2

2 1 1

1 1
1

1 01 1 02 2

+ − −=
= − +

X X

X Z S Sz

/ /

/ / � � zz Bk T X) } ( )/ /1
1 2− π     (12.I.3)  

where   X e
i S x

1
22

1
( )π

π

/ = . The  X  1 (  π  /2) pulse rotates the  S  1  magnetization from the 

Z axis to  Y  axis, and has no effect on  S  2  spins:   e S e S
i S

z

i S

y
x x

π π
2

1
2

1
1 1−

= . 
 Now, since only the echo signal from  S  1  spins is detected, the constant term and 

the term in  S  2   z   in the initial value of the density matrix does not contribute to it, 
so they are hereafter ignored in the density matrix. Thus, considering only the 
term with  S  1   y  , one has

   ρ ω( ) ( )0 01 1
+ = −� S Zk Ty B/     (12.I.4)   

 The evolution of the density matrix under the effect of the static Hamiltonian,

   H S S aS Ss z z z z= + −Δ Δω ω1 1 2 2 1 2     (12.I.5)  

over the time interval   τ   is now considered for 0    <     t     <      τ  :

   ρ ρω ω ω ω( ) ( )( ) (t e ei S S aS S t i S S aSz z z z z z z= + − + − + −Δ Δ Δ Δ1 1 2 2 1 2 1 1 2 2 10 SS tz2 )     (12.I.6)   

 After the application of a   π   - pulse about the  X  - axis on  S  2  spins at  t      =       τ   −  −   , one obtains 
from Equations  12.I.4  and  12.I.5  the resulting density matrix:

   
ρ τ π ρ τ π

ω π ω ω

( ) ( ) ( ) ( )

( ) ( ) (

+ − −

+ −

=
= −

X X

Zk T X eB
i S Sz z

2 2
1

01 2
1 1 2 2� / Δ Δ aaS S

y
i S S aS Sz z z z z zS e X1 2 1 1 2 2 1 2

1 2
1) ( ) ( )τ ω ω τ π− + − −Δ Δ  

   (12.I.7)   

 Inserting the unit operator   ( ( ) ( ))X X2
1

2
− π π  in Equation  12.I.7  before and after S 1   y  , 

and writing it as a product of three terms, one obtains:

   ρ τ ω( ) ( ) ,+ = −� oI BZk T A B C/ * *  
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where 1yA X e X B X S Xi S S aS Sz z z z= =+ − −

2 2
1

2 2
1 1 2 2 1 2( ) ( ); ( )( )π π πω ω τΔ Δ −−

− + − −

=1
2

2
11 1 2 2 1 2

( ); ( )

( ).( )

π π
πω ω τ

and C X

e Xi S S aS Sz z z zΔ Δ
 

 Now, since the  S  1  and  S  2  operators commute, the  B  - term simply reduces to  S  1   y  . 
As for the terms  A  and  C , the  X  2 (  π  ) pulse will simply reverse the signs of the 
exponentials of the terms   ei S zΔω2 2  and   e iaS Sz z− 1 2 , while leaving   ei S zΔω1 1  unchanged, 
since the pulse is selective to  S  2  spins only, so that   A ei S S aS Sz z z z= − +( )Δ Δω ω τ1 1 2 2 1 2  and 
  C e i S S aS Sz z z z= − − +( )Δ Δω ω τ1 1 2 2 1 2 . One, therefore, obtains for the density matrix after the 
application of the  X  2 (  π  ) pulse at  t      =       τ   −  −   

   ρ τ ω ω ω τ ω ω( ) ( ) (+ − + − −= −( )� /Zk T e S eB
i S S aS S

y
i Sz z z z zΔ Δ Δ Δ1 1 2 2 1 2 1 1

1
22 2 1 2S aS Sz z z+ )τ     (12.I.8)   

 Since the operators  S  1  and  S  2  commute, the above expression can be simplifi ed by 
putting the terms containing only the  S  2   z   operators in the exponentials on the left 
and right sides of  S  1   y   equal to zero. Then, one obtains

   ρ τ ω ω τ ω( ) ( ) (+ + − += −( )� 01 1
1 1 1 2 1 1 1 2/Zk T e S eB

i S aS S
y

i S aS Sz z z z z zΔ Δ ))τ     (12.I.9)   

 Now, the system evolves during the time (  τ   ′  –      τ  ) before a   π   - pulse is applied to  S   1   
spins, that is for   τ      <     t     <      τ    ′ , during which the density matrix evolves under the 
action of the static Hamiltonian H s :

   ρ ρ τω ω τ ω ω( ) ( )( )( ) (t e ei S S aS S t i S Sz z z z z z= + − − + − + −Δ Δ Δ Δ1 1 2 2 1 2 1 1 2 2 aaS S tz z1 2 )( )−τ     (12.I.10)   

 Using the expression for   ρ  (  τ    +  ) from Equation  12.I.9 , one obtains for the density 
matrix at  t      =       τ    ′   −  ,

   ρ τ ω ω τ τ τ ω( ) ( ) ( )′ = −− ′ − ′− −� 01
2

1
1 1 1 2 1 1/Zk T e e S eB

i S iaS S
y

i Sz z z zΔ Δ ′′ − ′−τ τ τe iΔωeiaS Sz z1 2 2( ) 
   (12.I.11)   

 In simplifying Equation  12.I.11  it is noted that, after substituting the expression 
for   ρ  (  τ   +   ) from Equation  12.I.9 , the terms involving   ei S zΔω τ τ2 2 2( )′−  on the left of  S 1  y   
and   e i S z− ′−Δω τ τ2 2 2( ) on the right side cancel out, since  S  1   y   and  S  2   z   commute with each 
other. 

 Now, at  t     =      τ   ′   −  , the application of a   π   - pulse to  S   1   spins about the  X  - axis trans-
forms it according to:

   
ρ τ π ρ τ π π ω ω τ( ) ( ) ( ) ( ) ( )( )′ = ′ = −+ − − ′ −X X X Zk T e eB

i S iaSz
1 1

1
1 01

1 1� / Δ 11 2

1 1 1 2

2

1
2

1
1

z z

z z z

S

y
i S iaS SS e e X

( )

( ) ( )

′−

− ′ ′− −

τ τ

ω τ τ τ πΔ     
(12.I.12)   

 Now, by inserting the unity operator [  = −X X1 1
1( ) ( )π π ] twice on the right - hand side 

of the above equation, and using the same procedure as that used to derive Equa-
tion  12.I.8  for   ρ  (  τ   +   ), one obtains

   ρ τ ω( ) ( ) ,′ = −+ � 01/ * * whereZk T A B CB  

   
A X e e X e ei S iaS S i S iaSz z z z= =′ − ′− − − ′

1
2

1
11 1 1 2 1 1 1( ) ( )( )π πω τ τ τ ω τΔ Δ zz zS

y yB X S X S

2 2

1 1 1
1

1

( );

( ) ( ) ;

′−

−= = −

τ τ

π π and
 

   C X e e X e ei S iaS S i S iaSz z z z= =− ′ ′− − ′ −
1

2
1

11 1 1 2 1 1 1( ) ( )( )π πω τ τ τ ω τΔ Δ zz zS2 2( )′−τ τ   

 In simplifying  B  to the second term on the right in the above equation, the fact 
that a rotation by 180 °  about the  X  - axis will orient the magnetization of  S  1  spins 
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along the negative  Y  axis has been taken into account. Further, as for simplifi ca-
tions of the terms  A  and  C , the selective  X  1    π   - pulse for  S  1  spins will reverse the 
orientations of  S  1  spins. This will result in reversals of the signs of the exponents 
of   ei S zΔω τ1 1 ′  and   e iaS Sz z− ′−1 2 2( )τ τ  in the  A  term, and those of   e i S z− ′Δω τ1 1  and   eiaS Sz z1 2 2( )′−τ τ  
in the  C  term. Finally,

   ρ τ ω ω τ τ τ ω τ( ) ( ) ( )′ =+ − ′ ′− ′� 01
2

1
1 1 1 2 1 1/Zk T e e S eB

i S iaS S
y

i Sz z z zΔ Δ ee iaS Sz z− ′−1 2 2( )τ τ     (12.I.13)   

 Now, the system evolves under the action of the static Hamiltonian for time  t     >      τ    ′ , 
during which

   ρ ρ τω ω τ ω ω( ) ( )( )( ) (t e ei S S aS S t i S Sz z z z z= ′+ − − ′ + − +Δ Δ Δ Δ1 1 2 2 1 2 1 1 2 2zz z zaS S t− − ′1 2 )( )τ     (12.I.14)   

 By substituting Equation  12.I.13  for   ρ  (  τ   ′    +   ) in Equation  12.I.14 , and simplifying, 
one obtains

   ρ ω ω τ τ τ( ) ( ) ( ) ( )t Zk T e e S eB
i S t iaS S t

y
iz z z= − ′ − + − ′ −� 01

2 2 2
1

1 1 1 2/ Δ Δωω τ τ τ1 1 1 22 2 2S t iaS S tz z ze( ) ( )− ′ + − ′  
   (12.I.15)   

 At the time  t     =    2  τ    ′ , when the echo is formed, the exponentials involving  Δ   ω   1  sim-
plify to unity, leaving only the terms with  S  1   z S  2   z  . Then the density matrix becomes

   ρ τ ω τ τ( ) ( )2 01
2

1
21 2 1 2′ = −� /Zk T e S eB

iaS S
y

iaS Sz z z z     (12.I.16)   

 The echo amplitude at the time  t     =    2  τ   ′  will then be

   < ′ > = ′ =+ + + −S Tr S Zk T Tr S e S eB
iaS S

y
z z

1 1 01 1
2

12 2 1 2( ) { ( )} ( ) {τ ρ τ ω τ� / iiaS Sz z1 2 2τ }  
   (12.I.17)   

 The term in the curly brackets in Equation  12.I.17  depends on the spin – spin 
coupling only, since the effects of the chemical shifts and fi eld inhomogeneities 
have been canceled out due to refocusing, and do not affect the magnetization 
(echo) at  t      =     2  τ    ′ . 

 For a system consisting of two spin  –  ½ ,  S  1  and  S  2 , the operator for the magneti-
zation of spins  S  1  is proportional to   S1 21+ , where   S S iSx y1 1 1

+ = +  and   12 is the unit 
operator in the space of  S  2 . In order to evaluate the trace in Equation  12.I.17 , using 
the direct - product space of spins  S  1  and  S  2 , one obtains

   

Tr S e S e

M M S

iaS S
y

iaS S

M M

z z z z
1 2

2
1 2

2

1 2 1 2

1 1

1

1 2 1 2

1 2

+ −

+

( ){ }
= ( )∑

τ τ( )

ee S e M M

M S M e

iaS S
y

iaS S

M

i

z z z z1 2 1 2

2

2
1 2

2
1 2

2 1 2 2

1

1 2 1 1 2

τ τ( ) −

+ −= −∑ / / aaM iaM

ia ia

M
i

S M e

e e i a

2 21 2
2

1 1 2

2

2 1 2 2
τ τ

τ τ τ

−

= + =

− −

−

/ /

i
( ) cos( )

;     

(12.I.18)   

 In Equation  12.I.18   M  1  ( =     ± 1/2) and  M  2  ( =     ± 1/2) are the electronic spin magnetic 
quantum numbers for spins  S  1  and  S  2 , respectively. The third line in Equation 
 12.I.18  is obtained from the preceding line by: (i) introducing the unity operators 

  ′ ′ ′ ′ =
′ ′
∑ M M M M

M M

1 2 1 2

1 2

1 ,   ′′ ′′ ′′ ′′ =
′′ ′′
∑ M M M M

M M

1 2 1 2

1 2

1, and   ′′′ ′′′ ′′′ ′′′ =
′′′ ′′′
∑ M M M M

M M

1 2 1 2

1 2

1 after 
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M M S Mz2 2 2 21 2 1 2 1 2 1 2= = − = − = − =/ / / /

the operator   S1
+ , before and after the operator   S y1 , respectively; and (ii) taking 

into account the nonzero matrix elements of the operators in the  S  1  space, speci-
fi cally   M S M M S M1 1 1 1 1 11 2 1 2 1 2 1 2 1= = − = = − = =+ −/ / / /  and   M S z2 21 2= /

, and (iii)   S S S iy1 1 1 2= −+ −( ) ./  

 Finally, one obtains from Equation  12.I.17 

   < ′ > = =S i a Zk T iI aB1
+( ) [ cos( ) ] cos( ),2 01 0τ ω τ τ� /     (12.I.19)  

   where /I Zk TB0 01= �ω .   
 Equation  12.I.19  shows that the imaginary part of the echo amplitude of three -

 pulse DEER at  t     =    2  τ   ′  is modulated by the factor cos( a τ  ).  

  Appendix 12. II  
 Density - Matrix Derivation of the Echo Signal for Four - Pulse  DEER  

 Schematically, the Four - pulse sequence can be written in the following form:

   X X t X t X tSI I I/( ) ( ) ( ) ( ) ( ) ( ).π τ π π τ τ π τ τ2 21 1 2 1 2− − − − − + − − − ′ − −   

 In order to fi nd out the form of the detected signal, as mentioned before, one 
needs to calculate    <   S1 1 22 2+ +( )τ τ  > . A procedure similar to that used with three -
 pulse sequence in Appendix  12.I  will be followed here (Bhatnagar,  2005 ). Accord-
ingly, the initial density matrix, in the high - temperature approximation, is

   ρ ω ω( ) { ( ) }0 1 01 1 02 2
− ≈ − −� �S S k T Zz z B/ /     (12.II.1)  

and

   ρ ω( ) ( )0 01 1
+ ≈ −� S Zk Ty B/     (12.II.2)   

 Now, the system evolves under the action of the static Hamiltonian, given by 
Equation  12.I.5  for a time   τ   1  after which a  S  1  - selective   π   pulse is applied about the 
 X  axis. For 0    <     t  ′     <      τ   1 ,

   ρ ρω ω ω ω( ) ( )( ) (′ = + − ′ + − + −t e ei S S aS S t i S S aSz z z z z zΔ Δ Δ Δ1 1 2 2 1 2 1 1 2 20 11 2z zS t) ′     (12.II.3)   

 After a   π   pulse is applied on S 1  spins at   t = −τ1 , one obtains

   
ρ τ π ρ τ π

ω π ω ω

( ) ( ) ( ) ( )

( ) ( ) (

1 1 1
1

01 1
1 1 2 2

+ − −

+ −

=
−

X X

Zk T X eB
i S Sz z� / Δ Δ aaS S

y
i S S aS Sz z z z z zS e X1 2 1 1 1 2 2 1 2 1

1 1
1) ( ) ( )τ ω ω τ π− + − −Δ Δ  

   (12.II.4)   

 Inserting the unit operator   ( ( ) ( ))X X1
1

1
− π π  in Equation  12.II.4  before and after  S  1   y  , 

and writing it as a product of three terms, following the same procedure as that 
used in Appendix  12.I  after Equation  12.I.7 , one obtains:

   ρ τ ω ω ω τ ω( ) ( )( ) (
1 01 1

1 1 2 2 1 2 1+ − − −= −( ) −� /Zk T e S eB
i S S aS S

y
iz z z zΔ Δ Δ 11 1 2 2 1 2 1S S aS Sz z z z− −Δω τ)  

   (12.II.5)   

 Now, the system evolves for time  t , after which a   π   pulse is applied on  S  2  spins. 
During this time,   τ   1     <     t ′      <      τ   1      +      t , one obtains:
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   ρ ρω ω τ ω ω( ) ( )( )( ) (′ = + − ′− + − +t e ei S S aS S t i Sz z z z zΔ Δ Δ Δ1 1 2 2 1 2 1 1 1 2
1τ SS aS S tz z z2 1 2 1− ′−)( )τ     (12.II.6)   

 Substituting now  t  ′       =       τ   1      +      t , one obtains from Equation  12.II.6 

   ρ τ ω ω τ ω( ) ( )( )( ) (
1 01 1

1 1 1 2 1 1+ = −( ) −− − − −t Zk T e S eB
i S aS S t

y
iz z z� / Δ Δ SS aS S tz z z1 1 2 1− −)( )τ     (12.II.7)   

 In writing the above expression, the terms with   Δω2 2S z  have been canceled out 
since  S  2   z   commutes with  S  1   y  . 

 Now a   π   pulse is applied to  S  2  spins, which transforms the density matrix to

   
ρ τ π ρ τ π

ω π ω

( ) ( ) ( ) ( )

( ) (

1 2 1 2
1

01 2
1 1

+ = +
= −( )

+ − −

−

t X t X

Zk T X eB
i S az� / Δ SS S t

y
i S aS S tz z z z zS e X1 2 1 1 1 1 2 1

1 2
1)( ) ( )( )( ) ( )− − − − −−τ ω τ πΔ  

   (12.II.8)   

 Inserting now the unit operator   ( ( ) ( ))X X2
1

2
− π π  in Equation  12.II.8  before and after 

 S  1   y  , and writing it as a product of three terms, following the same procedure as 
that used in Appendix  12.I  after Equation  12.9 , one obtains:

   ρ τ ω ω τ ω( ) ( )( )( ) (
1 01 1

1 1 1 2 1 1+ = −( ) −+ + − −t Zk T e S eB
i S aS S t

y
iz z z� / Δ Δ SS aS S tz z z1 1 2 1+ −)( )τ     (12.II.9)   

 Subsequent to this, the system evolves under the action of static Hamiltonian 
during the period (  τ   1     +      τ   2      –    t ). Then, one can express for   τ   1      +      t     <     t ′      <    2  τ   1     +      τ   2 :

   ρ ρ τω ω τ ω( ) ( )( )( ) (′ = ++ − ′− − + −t e t ei S S aS S t t i Sz z z z zΔ Δ Δ1 1 2 2 1 2 1 1 1
1

++ − ′− −Δω τ2 2 1 2 1S aS S t tz z z )( )  
   (12.II.10)   

 From Equation  12.II.10  at  t  ′     =    2  τ   1     +      τ   2 , one obtains

   ρ τ τ ρ τω ω τ τ( ) ( )( )( ) (2 1 2 1
1 1 2 2 1 2 2 1+ = +− + − + − + −e t ei S S aS S t iz z z zΔ Δ Δωω ω τ τ1 1 2 2 1 2 2 1S S aS S tz z z z+ − + −Δ )( )  

   (12.II.11)   

 Substituting now   ρ  (  τ   1     +     t   +  ) from Equation  12.II.9 , one obtains

   ρ τ τ ω ω τ τ τ( ) (( )2 1 2 01
2 2

1
1 1 2 1 2 1 2+ = −( ) −− − −� /Zk T e e SB

i S iaS S t
y

z z zΔ )) ( )e ei S iaS S tz z z− − − −Δω τ τ τ1 1 2 1 2 1 22 2  
   (12.II.12)   

 An  S  1  - selective   π   pulse is now applied at  t  ′     =    2  τ   1     +      τ   2 , which yields:

   ρ τ τ π ρ τ τ π( ) ( ) ( ) ( )2 21 2 1 1 2 1
1+ = ++ −X X     (12.II.13)   

 Inserting now the unit operator   ( ( ) ( ))X X1
1

1
− π π  in Equation  12.II.9  before and after 

 S  1   y  , and writing it as a product of three terms, following the same procedure as 
that used in Appendix  12.I  after Equation  12.I.7 , one obtains:

   ρ τ τ ω τ τ τ ω τ( ) ( )2 1 2
2 2

1
1 1 2 1 2 1 2 1 1 2+ =+ − − − −e e S e ei S iaS S t

y
i S iz z z zΔ Δ aaS S tz z1 2 1 22 2( )− −τ τ     (12.II.14)   

 The system now evolves under the action of the static Hamiltonian. One obtains 
for the density matrix for the time  t  ′     >    2  τ   1     +      τ   2 :

   ρ ρ τ τω ω τ τ( ) ( )( ) (′ = +( )+ − ′− − + −t e ei S S iaS S t iz z z zΔ Δ Δ1 1 2 2 1 2 1 22
1 22 ωω ω τ τ1 1 2 2 1 2 1 22S S iaS S tz z z z+ − ′− −Δ )( )  

   (12.II.15)   

 After calculating the density matrix at  t ′       =     2  τ   1     +    2  τ   2  and substituting the value of 
  ρ τ τ( )2 1 2+ +  from Equation  12.II.14 , one obtains the following expression:
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   ρ τ τ ω τ( ) ( ) (2 21 2 01
2 2

1
2 21 2 1 1 2+ = −( ) − − −� /Zk T e S eB

iaS S t
y

iaS S tz z z z ττ1 )     (12.II.16)   

 In order to calculate    <   S1
+(2  τ   1     +    2  τ   2 )  > , the echo due to the four - pulse sequence, one 

proceeds in the same way as that for a three - pulse DEER sequence, obtaining

   < + > = − − = − −+S iI a t iI tee1 1 2 0 1 0 12 2( ) cos( [ ] cos[ ( )],τ τ τ ω τ     (12.II.17)  

where   I Zk TB0 01= �ω /( ).   

  Appendix 12. III  
 Spin  H amiltonian for Coupled Nitroxides Used in Six - Pulse  DQC  Calculation 

 One can express the Zeeman and hyperfi ne part of the nitroxide spin Hamiltonian, 
 H  0 , in the  irreducible spherical tensor operator  ( ISTO ) representation (Freed,  1976 ; 
Schneider and Freed,  1989a,b ; Misra,  2007 ) as follows:

   H F A
k k

k

L M L M

L M

0 = ∑ μ μ
μ

,
, *

,
,

, ,

,� �  

where  L  is the tensor rank (0 or 2);  M      =      –  L ,  …   L ;  k      =     1, 2 numbers the nitroxides; 
and  l  denotes the reference frame where the tensors are defi ned, that is, magnetic 
frame ( g k  ), molecular (dipolar) frame ( d ), or laboratory frame ( l ).   A

k

L M
μ ,

,
�  are the 

spin operators with   μ  k   referring to the kind of magnetic interaction, electron 
Zeeman ( g ), nuclear Zeeman ( N ), or hyperfi ne ( A ), and they are usually defi ned 
in the laboratory frame,   F

j

L M
μ ,

,
�  is proportional to the ISTO of the magnetic interac-

tion and is most conveniently defi ned in the  g -  frame. The transformation of 
  F

k kg
L M
μ ,

,  to the laboratory frame yields the  H  0 . In the high - fi eld limit, where the non-
secular terms (  S S I S I S Iz± ± ± ± ±, , , ∓ ) can be omitted, the ISTO form of the  g  - tensor 
reduces to:

   F g g g A B Sg g
B

xx
k

yy
k

zz
k

g kzk k k,
, ( ) ( ) ( )

,
,, ;0 0 0 0

0
1

3

1

3
= − + +( ) = −μ

� �  

   F g g g Ag g
B

zz
k

xx
k

yy
k

gk k k,
, ( ) ( ) ( )

,
,,2 0 2 02

3

1

2

2= − − +( )⎡
⎣⎢

⎤
⎦⎥

= −μ
� � 33

0B Skz;  

   F g g Ag g
B

xx
k

yy
k

gk k k,
, ( ) ( )

,
,, .2 2 2 21

2
0± ±= −( ) =μ

� �   

 Similarly, the relevant components of the hyperfi ne tensor are:

   F A A A A S IA g
B

xx
k

yy
k

zz
k

A kz kzk k k,
, ( ) ( ) ( )

,
,, ;0 0 0 01

3

1

3
= − + +( ) = −μ

� �  

   F A A A AA g
B

zz
k

xx
k

yy
k

Ak k k,
, ( ) ( ) ( )

,
,,2 0 2 02

3

1

2

2= − − +( )⎡
⎣⎢

⎤
⎦⎥

= −μ
� � 33

S Ikz kz;  

   F A S IA g A kz kk k k,
,

,
,, ;2 1 2 10

1

2
± ±

±= =� ∓  
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   F A A AA g
B

xx
k

yy
k

Ak k k,
, ( ) ( )

,
,, .2 2 2 21

2
0± ±= −( ) =μ

� �   

 In addition, when considered, the nuclear Zeeman term is given by   ∑
k

N l N lF A
k k,
,

,
,0 0 0 0  

with

   F
g

A B IN l
n n

N l kzk k,
,

,
,; .0 0 0 0

03
1

3
= = −μ

�
  

 The nuclear quadrupole term for  14 N nitroxide is neglected here. The second - rank 
tensors   F g

M
kμ ,

,2  are transformed in two steps: fi rst, from the  k th nitroxide  g  - tensor 
axes to the dipolar frame, with its  z  - axis coincident with the vector  r  connecting 
magnetic dipoles, and then to the laboratory frame. The transformations from 
the dipolar frame to  g  - frame are defi ned by the Euler angles   λ α β γk k k k≡ ( , , ) as 
shown in Figure  12.11  and the transformation from the laboratory frame to the 
dipolar frame, which is defi ned by   η θ φ≡ ( , , )0 . The transformed tensors are thus 
written as:

   F D D F
k k kl

L M
m m
L

m m
L

k g
L M

m m

μ μη λ,
,

, , ,
,

,

( ) ( ) .* = ′ ′ ′′
′ ′′
∑   

 The Hamiltonian in the laboratory frame becomes:

   H S C A I B I B I G Ikz k k kz k k k k k kz

k

0 = + + + ++ −∑[ ( ) ].*
 

where the coeffi cients  C k  ,  A k  ,  G k  , and  B k   are expressed as follows:

   C D K A D Kk m k g m k

m

k m k A m k

m

k k= =′ ′
′

′ ′
′

∑ ∑0
2

0
2

, , , ,( ) ( ), ( ) ( );η λ η λ  

   2 1
2

0B D K G Bk m k A m k

m

k nkk= =′ ′
′

∑ , ,( ) ( ), ,η λ γ  

with

   K D D F D Fk k km k m k m k g m kμ μ μλ λ λ λ, , , ,
,

, ,( ) [ ( ) ( )] ( )′ ′ ′ − ′= + +2
2

2
2 2 2

0
2

gg
2 0,  

includes the transformations   Dm m k′ ′′( ),
2 λ  from the dipolar frame to the  k th magnetic 

frame. The explicit expressions for  C k  ,  A k  , and  B k   are unnecessary, since all the 
transformations were carried out numerically. They are listed by Saxena and Freed 
 (1997) . It is noted that the terms  C k  ,  A k  , and  B k   contain all anisotropies in the  g  
and  hf  tensors as well as the Euler angles needed for their transformation from 
the respective principal - axes system to the laboratory frame. It is also noted that 
 C k  ,  G k  , and  A k   are real, whereas  B k   is complex. Finally, it is noted that in carrying 
out the computations for  B  0  well up to Q band (35   GHz), the nuclear Zeeman 
term can be safely omitted and the  H  0  in real form can be obtained to a high 
accuracy based on the useful approximation described by Libertini and Griffi th 
 (1970) .  
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  Appendix 12. IV  
 Algorithm to Calculate Six - Pulse  DQC  Signal 

 The details of how to calculate the fi nal density matrix,   ρ  f  , from which the DQC 
echo signal can be calculated as given by Equations  12.IV.3 – 12.IV.4  below, are 
given in this Appendix. Basically, this requires a series of transformations of the 
density matrix by a propagator, pulse or free evolution, and choosing the matrix 
elements of the density matrix after the application of a pulse on a coherence 
pathway. Here, the direct - product representation for   S S I I1 2 1 2⊗ ⊗ ⊗  will be used 
to express the matrix elements of the various operators as follows. To this end, the 
following details are required:

   i)     Matrix representation and notation:     For each electron, with spin  S     =    1/2, the 
matrix dimension is 2, whereas for each nucleus, with spin  I , it is (2 I     +    1), 
so that for the electron – nuclear spin coupled system of the nitroxide pair the 
size of the product space is  N   ×   N  with  N      =     4(2 I  1     +    1)(2 I  2     +    1), which becomes 
36  ×  36 for  14 N ( I     =    1) nitroxides. The Zeeman basis with the basis vectors 
  k m m M M≡ 1 2 1 2, ; ,  is employed here, where the   k  - values are the eigenvec-
tors of the  z  - components of the electron and nuclear spin operators: 
  S m m mz =  and   I M M Mz = . The basis states in the product space are 
described by lower - case Roman letters. Greek letters are used to describe the 
eigenvectors of  H :   H α ω αα= . The diagonalization of the Hamiltonian, 
 H , is accomplished by the unitary transformation  V   †   HV      =      E , where  E  is a 
diagonal matrix of eigenvalues of  H , and  V   †   is the Hermitian adjoint of  V . 
The eigenvectors of  H  are the columns of  V :   α α αk kk V= ≡ . In the com-
putations the matrices  E  and  V  are the outputs of the matrix diagonalization 
subroutine, such as JACOBI (Press  et al. ,  1992 ), used here. (A better version 
of the JACOBI subroutine than that given by Press  et al. ,  1992  can be found 
on the Netlib website  http://netlib.org  or else is available from the authors.)  

  ii)     Initial density matrix in product space:     Using the expression for   ρ  (0) as given 
by Equation  12.13 , the initial density matrix is expressed as

   r( ) ( ) ,0 1 2 1 2 1 2= ⊗ + ⊗ ⊗ ⊗S Sz z I I1 1 1 1     (12.IV.1)  

where   1I1 and   1I2 are 3  ×  3 unit matrices in the respective nuclear - spin spaces 
for  14 N nitroxides. A diagonal matrix of order 4  ×  4 on the right - hand side 
of Equation  12.IV.1  represents  S z      ≡     S  1   z      +    S 2   z   in the product space   S S1 2⊗  for 
the two nitroxide electron spins, that is   ( ) ( , , , )s sz z⊗ + ⊗ = −1 12 1 2 1 0 0 1/ diag , 
where  1  1  and  1  2  are 2  ×  2 unit matrices in the spin spaces for electrons 1 
and 2, respectively.  

  iii)     Transformation of the density matrix by a propagator.     The transformed 
density matrix,   ′ρ , under the action of a propagator is expressed as:

   ′ = −ρ ρe eiHt iHt/ /� �.     (12.IV.2)      

 The following propagators are required: (i) pulse propagators, due to a   π  /2, or a   π   
pulse; and (ii) free - evolution operators in the absence of a pulse. Figure  12.10  
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shows the effects of the various propagators, calculated using Equation  12.IV.3  
below, employing the appropriate Hamiltonians and their durations. As an illus-
tration, the procedure for a given density matrix,   ρ  , and the Hamiltonian,  H , acting 
during the time period,  t , is described here, which can be specialized for the 
various propagators by appropriate substitutions, with appropriate times  t k   ( t  1,2   =  
t p  ;  t  3,4   =  t DQ ; t  5   =  t m  −  t p  ;  t  6      =      t  5      +      t  echo ) and Equations  12.17 – 12.21 , which describe the 
Hamiltonians used in the analysis of the six - pulse DQC sequence. 

 The matrix elements of   ρ   ′  in Equation  12.IV.2  can be expressed as 
  ′ = =− − −ρ ρ ρα

ω
α β

ω
β

α β
jk

iH t
mn

iH t
j

i t
m mn n

i t
ke e V e V V e Vjm nk * * , since   e V e ViH t

k
i t

m
km− −= α

ω
α

α * . The 
required summations are carried out over the repeating indexes, or explicitly

   ′ = −∑ρ ρ α β α β
ω

α β

αβ
jk mn m n j k

i t

m n

V V V V e* *

, , ,

    (12.IV.3)  

with   ω ω ωαβ α β≡ − . Equation  12.IV.3  can be written using a short - hand notation 
as   ′ =ρ ρL . In this notation,  L  is an operator, which is  Q  for a free evolution period 
or  R  for the action of a pulse. Coherence pathway selection implies retaining only 
those elements of   ρ   ′ , which belong to the pathways of interest, with the subsequent 
summation conducted over all pathways that contribute to the echo of interest. In 
computations this is accomplished by retaining only those matrix elements that 
correspond to the selected pathway, setting the rest to zero. This may be expressed 
as the application of a projection operator  P  (which, in reality, does not need to be 
constructed). The fi nal density matrix after application of  N  pulses and subsequent 
evolution periods is then calculated as

   ρ ρf N Nt N

k

( ) ( , , ) ( )
{ }

= ∑ Q P R Q P Rp p

p

… 1 11 0     (12.IV.4)   

 The product is computed for the full set of coherence pathways { p   k  } that contribute 
to the echo and the sum is then taken to be fi nally used in computing of    Tr[ ]ρ f S+

   iv)     Coherence pathway selection:     Subsequent to the action of a pulse propaga-
tor, of the matrix elements as calculated in (iii) above, all but those in the 
electronic product subspace of the density matrix   ρ   that correspond to selected 
coherence order  p  should be set to zero. The correspondence of   ρ  ik   to  p  is 
compiled in Table  12.IV.1  pertinent to the coherence pathways depicted 
in Figure  12.10  illustrating the coherence pathways of the six - pulse DQC 
sequence. This selection of coherence pathways is achieved experimentally 
through phase cycling (Borbat and Freed,  2000 ), or in computations is based 
on Table  12.IV.1 .     

  Appendix 12. V  
 Approximate Analytic Expressions for 1 -  D   DQC  Signal 

 For completeness, the equation given by Borbat and Freed  (2000) , used for making 
the comparison with 1 - D DQC signals produced in rigorous computations, is 
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included here. The echo amplitude,  V , is a function of  t dip      =    2 t p      −     t m  , and is 
given by

   V t K K F t F t tdip p m p( ) ( ) ( ) ( ) ( ).= −ω ω1 2     (12.V.1)   

 The time variables are defi ned in accordance with Figure  12.10 , and the notations 
are defi ned in the text.  F ( t ) is expressed as:

   F t p q Rt At q Rt At( ) ( cos )cos sin sin .= + −2 2     (12.V.2)   

 In Equation  12.V.2 ,   q b R= /  and   p q2 21= − ;  A     =     d (1 – 3   cos 2   θ  ) and  b      =      −  A /2, where 
 A  and  b  represent the secular and pseudosecular parts of the dipolar coupling; 
 R  2     =     Δ   ω   2 +   b  2 , where  Δ   ω       =       ω   1     −      ω   2  is the difference between the Larmor frequencies 
  ω   1  and   ω   2  of the nitroxide ’ s electron spins in the frame of reference rotating with 
the frequency   ω  rf   of the excitation pulses, set to coincide are expressed in the 
simplest form as

   K k

rf

k rf
k rf( ) sin ( ) ,ω

ω
ω ω

π ω ω=
+

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

2
1
2

2 2
1
2

3

2
1

Δ
Δ /     (12.V.3)  

where   ω   1rf     =      γ  e B  1  for   π   pulses, which are all taken to be equal to each other, 
although in general they need not be. 

 The powder averaging is carried out essentially in the same way as in the 
rigorous computations, with   ω  k   determined for each set of ( M  1 ,  M  2 ), since   ω  k  =  ω  k   
(  λ  k  ,   η  ). This was determined using an approximation given by Libertini and 
Griffi th  (1970) .  
 
  
 
 
 
 
 
 
 
   
 
 
 
 
 

  
   
 




