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1. Introduction

Protein dynamics by NMR has been reviewed extensively in re-
cent years [1–10]. These surveys show decisively that information
on structure should be complemented by information on motion
both to properly characterize the protein, and to understand its
function. The time scale accessible by NMR extends from
picoseconds to days, with different methods accessing different parts
of this time axis. Here we focus on heteronuclear NMR spin relaxa-
tion used to study ps to ns protein dynamics. The slow limit of this
time regime is determined by the global tumbling of the protein,
with the rates for internal motion of the probe being typically faster.

Based on experience gained over nearly a decade we came to
the conclusion that the traditional method of NMR spin relaxation
analysis in proteins and nucleic acids, called ‘‘model-free” (MF)
[11–13], does not extract adequately and fully the information
inherent in the experimental data largely because it is oversimpli-
fied. We have developed an approach that overcomes many of the
MF deficiencies. This method, called the slowly relaxing local struc-
ture (SRLS) [14–20], may be regarded as a generalization of MF.
SRLS predates the MF approach, and even provided derivations of
the exact equivalents of the MF equations [15,21].

The primary issue is how to address the great complexity of
protein dynamics, including global and restricted local motions.
The typical probe for backbone motion in proteins is the 15N–1H
bond, with 15N relaxation observed [1–10]. The typical probe for
side-chain motion is the uniformly 13C-labeled, fractionally
deuterated, 13CDH2 methyl group, with deuterium relaxation
observed [6,22–24]. A given probe might move independently of
the protein or be coupled to it dynamically. Any general theoretical
approach should account for the relationship between the global
and local motions, for the local ordering, and for the relevant mag-
netic interactions. The respective tensorial properties should be
realistically chosen within the scope of the data sensitivity. Thus,
the model should include the appropriate parameter combinations.
All of these features and capabilities are inherent to SRLS. Correla-
tions along the protein backbone might well be important [3,25–
27], but the local factors mentioned above must first be accounted
for. That the latter are important was shown in theoretical studies
[16,17], and confirmed experimentally [18–20]. Effects from statis-
tical inter-dependence of the various motions we have referred to
as ‘‘mode-coupling”.

NMR spin relaxation in liquids pertains to the Redfield limit
where only relaxation parameters can be measured [28,29]. The
number of experimental data points is limited; one acquires typically
three data points (15N T1, T2, and 15N–{1H} NOE) for amide 15N and
two (2H T1 and T2) for methyl 2H at each magnetic field. Hence, it is
not practical to treat explicitly the complex local motions coupled
to the global motion and to account explicitly for correlations along
the protein backbone. However, the latter can affect the analysis
implicitly via the values of the parameters determined [20].

As currently implemented to treat NMR spin relaxation in pro-
teins and nucleic acid fragments, SRLS is a stochastic two-body
coupled-rotator diffusive approach [16–20]. It can be generalized
to three (or more) bodies that are coupled, as well as the inclusion
of inertial effects in these motions [16], as opposed to the purely
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diffusive limit currently utilized for convenience. In this limit a
Smoluchowski equation is solved to obtain the time correlation
functions whose Fourier transforms are the spectral densities that
underlie the expressions for the experimentally measured relaxa-
tion parameters.

The two rotators represent the protein and the spin-bearing
probe, with their rotational degrees of freedom ‘‘coupled” by a lo-
cal potential exerted by the immediate protein surroundings at the
site of the motion of the probe. All the tensors that are needed (e.g.,
ordering tensor, magnetic tensors) are featured, including their
general properties. Diffusion within two (or more) wells, with less
frequent jumps between the wells, can also be modeled within this
approach [17]. When the rate of the global motion is much slower
than the rate of the local motion, then ‘‘mode-coupling” is repre-
sented in a Born–Oppenheimer (B.-O.) type approximation also im-
plicit in the simpler MF approach [15,16]. In this limit one recovers
a key part of the (complex) theories of rigid-body motion in the
presence of a space-fixed potential of mean force (POMF) [14,30–
33]. That experimental data from probes reorienting in the
presence of restricting potentials require this complexity for
proper analysis is amply documented in the literature [32,33].

Within the scope of this picture, we consider SRLS to be a
realistic general approach that also allows for refinements. The
analysis is typically carried out with data fitting [19,20,34,35].
Over-fitting and force-fitting are discernable provided the criteria
for result acceptance include appropriate statistics and physical
viability of the best-fit parameters. It has been found that the
parameter combinations that match the data sensitivity for 15N
amide and 2H methyl relaxation can be determined with SRLS [20].

The philosophy underlying MF is different. According to it, the
experimental data are scarce, and the great complexity of protein
dynamics cannot be possibly captured by a tractable stochastic
model. Therefore, only simple approaches are justified, and good
statistics suffice for result acceptance.

The simplest approximation to the actual (normalized) time cor-
relation function, C(t), is an initial exponential descent from unity to
a plateau value followed by a slower exponential decay, with rate
constant 1/sm, to zero at long times due to the global tumbling; that
is, sm is the correlation time for overall rotational reorientation. The
initial descent is taken to be given by a single decay constant, 1/se.
This (bi-exponential) form of C(t) assumes implicitly only the sim-
plest geometrical description. It is valid when the protein is ‘‘fro-
zen”, i.e., sm =1, and within a good approximation when
se� sm, and only two correlation times are sufficient [11]. As noted
above, a stochastic derivation leading to a very similar expression,
but also including the tensorial properties of the magnetic and
ordering tensors, was provided earlier [15].

Stochastic approaches have shown that actual time correlation
functions associated with restricted motions in liquids are given
by sums of weighted exponents [14,30–33]. It is often possible to
least-squares fit such functions to the bi-exponential MF function
with good statistics. This constitutes parameterization of the mea-
surable time correlation function in terms of se and the plateau va-
lue, which by itself is appropriate. However, one wishes to gain
insight into the physical nature of the protein dynamics. For that,
it is necessary to determine the conditions under which the MF
parameters may be viewed as physical parameters.

These conditions cannot be specified within the scope of MF, gi-
ven its ‘‘model-free” characteristic. They can be specified using
SRLS, which is general in nature and yields MF in simple limits.
The parameter se will represent an effective local motional correla-
tion time, and the plateau value will represent the square of an ax-

ial order parameter, S2
0

� �2
, under the following conditions. (1) The

time-scale separation between the reorientation of the probe and
the reorientation of the protein is large. (2) The local ordering is
either weak or strong. (3) All the second-rank tensors are as simple
as possible. (4) The eigenfunctions of the local motional diffusion
operator take on a simple form, despite the presence of a local po-
tential. Based on previous work on restricted motions in liquids
[14,30–33] these conditions are not likely to be fulfilled, as con-
firmed recently [19,20,34,35]. If a given time correlation function,
or the spectral density obtained from it by Fourier-Laplace trans-
formation, are used outside of their validity range, the best-fit
parameters will be physically vague.

The ‘‘model-free” point-of-view has been extended further. The
plateau of the MF time correlation function was defined mathe-
matically as the square of a ‘‘generalized” order parameter, S2. As
shown below, this is an artificial order parameter. Nevertheless
its expression is used to calculate order parameters from molecular
dynamics (MD) trajectories [36] using a formula valid in simple
limits [37]. Furthermore, S2 is designated as an amplitude of mo-
tion, and conformational entropy has been calculated from it [6].

For methyl dynamics the situation is more challenging because
a single local motion – rotation about the C–CH3 axis within the
scope of the tetrahedral carbon geometry featuring the angle
110.5� (which corresponds to taking rCH = 1.115 Å in analyzing
cross-correlates HC–HH relaxation [24]) – does not lead to good
statistics in fitting the experimental data [38]. MF addressed this
problem by introducing a second local motion – axial fluctuations
of the C–CH3 axis – though factorization of S2 into the product
0:1� S2

axis, and assuming that one may assign se to both motions
[11,12,36]. The factor P2(cos(110.5�))2 = 0.1 is taken to represent
the squared order parameter associated with the motion about the
C–CH3 axis; S2

axis is taken to be the squared order parameter for
the motion of the C–CH3 axis. The two local motions are assumed
to be decoupled from one another and from the global motion.

The typical probe is the deuterium nucleus in the 13CDH2

methyl group [22]. The MF spectral density described above can
represent either motion about C–13CDH2 as described above, or ax-
ial fluctuations of C–13CDH2. It cannot represent simultaneously
both motions if one wishes to sustain a physical scenario.

The issues brought up above will be addressed in detail in this
review. It will be shown that analogous, but physically distinct,
SRLS and MF analyses often yield substantially different results,
indicating that the oversimplifications inherent in MF have unfa-
vorable practical implications. Within a broader perspective, we
illustrate the disadvantages of applying parameterization instead
of setting forth models, using mathematical instead of physical
parameter definitions, and not abiding by the assumptions under-
lying the various equations used. We offer the concepts that under-
lie SRLS as an alternative to the model-free point-of-view, and we
describe and illustrate how SRLS can be implemented in a practical
fashion. We also indicate how improvements to the current SRLS
approach can be introduced.
2. Perspectives of protein dynamics by NMR

2.1. The slowly relaxing local structure (SRLS) approach

Relaxation rates of nuclear spins in biological macromolecules,
particularly proteins, are a rich source of information on kinetic,
structural, geometric and thermodynamic properties [1–10,22–
24]. The spin-bearing moieties are engaged in both the global tum-
bling of the protein and at least one local motion. The latter is re-
stricted by the local structure, i.e., the immediate (mobile) protein
surroundings. This is a complex two-body (protein and probe) sce-
nario [16–20].

To extract properly the information inherent in the experimental
data a reasonable but tractable dynamic model, which matches data
sensitivity, is required. The problem will be simplified significantly if
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it is appropriate to assume that (1) the global and local motions oc-
cur on very different time scales, (2) the properties of the second-
rank tensors involved are very simple, and (3) the local ordering is
weak. This scenario was treated in early work by Freed within the
scope of an SRLS model wherein the probe reorients (diffusively)
rapidly in a ‘‘cage” which experiences slow motion [15]. The cage
(probe) can be considered to represent the protein (spin-bearing
moiety); the cage motion can be associated with the motion of the
protein that of course provides spatial restrictions at the site of the
motion of the probe.

For weak axial local ordering, probe diffusion approximated as
isotropic and cage motion taken isotropic, C(t) comprises three
terms [15]. They represent effects of the slow large-body motion,
the reorientation of the probe with respect to the (ordering) POMF,
and a negative cross-term between these two processes, which
represents their statistical inter-dependence from the point-of-
view of the probe. By analogy with treating, in quantum
mechanics, the motion of a low mass particle relative to a heavy
particle, this was also called a Born–Oppenheimer (B.-O.) approxi-
mation [15] (see also Ref. [39]). The Fourier transform of C(t) (the
derivation of which is outlined in Section 3.2.1.) is given by:

jðxÞ ¼ S2
0

� �2
sm= 1þx2s2

m

� �
� ð1� S2

0

� �2
Þs=ð1þx2s2Þ; ð1Þ

where S2
0 is the axial order parameter defined in terms of a Legendre

polynomial of rank 2, sm = 1/(6RC) is the correlation time for slow
cage reorientation, and s = 1/(6RL) is the correlation time for fast
‘‘probe” reorientation, with s� sm. The parameters RC and RL de-
note the rate constants for global and local diffusion, respectively.
For local ordering/local diffusion and magnetic frames taken the
same, j(x) given by Eq. (1) is the measurable spectral density,
J(x), in terms of which the experimental relaxation parameters
are defined.

Note that the form of C(t), hence of J(x), is simple not only
because of the large time-scale separation aspect, but also because
the symmetry-related and geometry-related properties of the
second-rank tensors involved are simple. Finally, the eigenfunc-
tions of the diffusion operator of the probe in the presence of a
local ordering potential are the same as the eigenfunctions of the
‘‘bare” diffusion operator describing a freely diffusing axial probe.
These eigenfunctions are the generalized spherical harmonics
(Wigner functions). In general the local potential alters the basis
set of the ‘‘bare” diffusion operator [14,30–33]. In the limit of very
weak potentials and large time-scale separation [15] this basis set
may be preserved.

In the limit in which a spherical particle reorients rapidly in the
presence of a strong axial potential the eigenfunctions of the diffu-
sion operator become again simple to express [14,31]. Then the
correlation time is sren � 2s=c2

0, with the dimensionless coefficient,
c2

0, denoting the strength of the axial local potential as compared to
kBT; sren represents a ‘‘renormalized” correlation time [14]. In the
limit of large time-scale separation and strong axial local potential
the full SRLS solution features a dominant local motional correla-
tion time which agrees with sren [20,40], and has eigenfunctions gi-
ven in Ref. [14]. We have shown that in this limit Eq. (1) with s
replaced by sren is a good approximation to the SRLS spectral den-
sity [20].

The MF spectral density [11] is the same as J(x) given by the B.-O.
limit SRLS time correlation function in Eq. (1) with S2 representing

S2
0

� �2
, and se representing s for small S2 and sren for large S2 (on a

0–1 scale). As pointed out above, actual applications do not abide by
the limiting conditions underlying Eq. (1). More general versions of
SRLS are required to treat them properly from a physical point of view.

The full SRLS theory, where all the restrictions mentioned above
have been eliminated, was developed by Polimeno and Freed by
solving a two-body coupled-rotator Smoluchowski equation [16].
In this development the effect of the coupling/ordering potential
on the eigenfunctions of the uncoupled diffusion operators, and
statistical inter-dependence, or mode-coupling, between the global
and local motions, are accounted for rigorously (in the overdamped
diffusion limit). The time scales of the global and local motions
may be arbitrary. The global diffusion, the local diffusion, the local
ordering and the magnetic tensors are allowed their full
asymmetry and they may be oriented arbitrarily. The magnitude
of the local potential is not limited. In the limit of large time-scale
separation and strong potentials, and in the limit where s is prac-
tically the same as sm, inertial aspects of the probe motion become
important, and a full Fokker–Planck–Kramers treatment is
advisable. This was also developed in Ref. [16]; efforts geared
toward the efficient application of this approach to NMR spin
relaxation in proteins are underway.

One may envision an NMR, ESR, fluorescence-related, etc., probe
embedded in surroundings that represent a protein or DNA frag-
ment. SRLS is applicable to all of these scenarios. It thus constitutes
a general theoretical/computational tool for analyzing bio-macro-
molecular dynamics. Clearly, it is not practical to use it in its most
general form in a given calculation. The parameter combination
appropriate for analyzing given experimental data is determined
by requiring both good correspondence between theory and
experiment, and physical relevance of the results. In the context
of ESR the SRLS approach was applied over the years to various sys-
tems (e.g., see Refs. [41,42]), including bio-macromolecules [18,43–
45]. The analyses carried out exceed the scope of the MF limit.

We first applied the full SRLS theory to NMR spin relaxation in
proteins in 2001 [19]. Further developments, and many applica-
tions, are described in Refs. [20,34,35,40,46–50]. In this review
article, we present typical results and suggest further develop-
ments in modeling.
2.2. Model-free

The MF spectral density is given by [11]:

JðxÞ ¼ S2sm=ð1þ s2
mx2Þ þ ð1� S2Þsje=ð1þ sj2e x2Þ; ð2Þ

where 1=sje ¼ 1=sm þ 1=se, and 1=sje � 1=se by virtue of sm� se.
This spectral density is based on the premise that the global motion
of the protein and the local motion of the probe are statistically
independent. By virtue of this assumption the total time correlation
function, C(t), is factored into the product CC(t) � CL(t), with CC(t)
(CL(t)) denoting the time correlation function for global (local) mo-
tion. The derivation of Eq. (2) is outlined in Section 3.2.3. Here we
only point out the meaning of the various MF parameters in com-
parison with their physical SRLS counterparts.

Eq. (2) is ‘‘model-free” since no physical model was used to de-
rive it. For simple motional and ordering properties its form is valid
rigorously for a ‘‘frozen” protein with sm =1, and approximately
for sm� se [11]. Restricted local motions are in principle multi-
exponential [30–33]. In practice there exist limiting conditions un-
der which these motions may be represented by a single decay
constant. For wobble-in-a-cone in a square-well potential this
approximation is valid for a semi-cone angle smaller than 50�
[51]. For wobble-in-a-cone in a cosine squared potential the
threshold is 15� [20]. For diffusive local motion in a strong axial po-
tential the dimensionless coefficient c2

0 must be larger than 10 and
the time-scale separation larger than 100 for a single correlation
time given by 2s=c2

0 to be valid [20].
The MF parameter se is defined on the basis of the theory of mo-

ments as the area of the exact time correlation function for internal
motion divided by (1 � S2). No limits are imposed on the value of
this quantity.
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The MF parameter S2 represents CL(1). In Ref. [52] it was shown
that CL(1) is equal to the square of the axial physical order

parameter S2
0

� �2
¼ hP2ðcos hÞi2. This agrees with CL(t) defined

(implicitly) in Ref. [11] as the (axial) time correlation function of
P2(cosh). The time-dependent variable, h, is the angle between
the axial ‘‘interaction” (i.e., magnetic) frame and an axial protein-
fixed frame. By using the magnetic frame in defining CL(t) [11] it
is assumed implicitly that the local ordering and magnetic frames
are the same. This is certainly not obvious.

In Ref. [11] CL (1) is redefined as S2 ¼
P

m¼0;�1;�2hj Y2mðh;/Þ j i2,
where Y2m are the spherical harmonics of Brink and Satchler [53].
This quantity is denoted as the square of a ‘‘generalized” order
parameter. The azimuthal angle / is not defined, nor is it clear
how does CL(1) � S2 [11] relate to the original definition of

CLð1Þ � S2
0

� �2
¼ hP2ðcos hÞi2 / hY2;0ðhÞi2 [52].

As mentioned above, when order parameters are derived from
molecular dynamics (MD) trajectories, one typically calculates S in-
stead of S2

0 [36]. The expressions for these two types of order
parameters are clearly different. Moreover, S is calculated using a
simple formula based on the results of normal mode analysis,
which is valid for local motions in the extreme motional narrowing
limit and for strong axial local ordering [37]. Yet, this formula is
being used more generally, e.g., even in the presence of ns local
motions; in some cases it is considered ‘‘exact” [54]. The mathe-
matical expression for S has also been used to calculate order
parameters of various models for internal motion in proteins
[6,8].

The parameter S2 is considered as a measure of the amplitude of
the local motion. This interpretation, appropriate in the limit of
strong axial local ordering and local motion in the extreme mo-
tional narrowing limit [18], prompted the utilization of S2 to calcu-
late conformational entropy [6,8,55–58]. The physical meaning of
the latter quantity is thus problematic outside the limit where
S2 ! S2

0

� �2
¼ hP2ðcos hi2; h is small, and se ? 0.

The extended MF (EMF) spectral density was developed for
cases where small experimental 15N–{1H} NOE values were
encountered [13]; such data could not be fitted with the MF spec-
tral density, cf. Ref. [11]. Besides a fast local motional term with
correlation time sf the EMF spectral density also comprises a slow
local motional term with correlation time ss, which helps to repro-
duce the small NOE values. In principle, all three dynamic modes,
represented by sm, sf and ss, are assumed to be decoupled from
one another. In practice, ss often occurs on the same time scale
as sm. The basic MF premise of statistical independence may well
be in conflict with ss being on the order of sm, because this
similarity implies mode-coupling in the limit of overdamped
diffusive motions [16], as illustrated, e.g., in Ref. [20].

Lin and Freed [21] provided an extension of the B.-O. SRLS spec-
tral density developed in Ref. [15] for weak rhombic local ordering
and axial local diffusion – see Eq. (B6) of Ref. [21]. For a 90� tilt be-
tween the axial magnetic frame and the main local ordering axis
the measurable spectral density of this description is, within a
good approximation, mathematically the same as the EMF spectral
density. Note, however, that the spectral densities developed in
Ref. [21] include general properties of the magnetic and ordering
tensors, rendering them physically different from the EMF spectral
density. That is, the effective correlation times, sf and ss,
considered in MF to represent two independent decoupled local
motions are in this SRLS spectral density the parallel and
perpendicular components of the axial local diffusion tensor. The
MF order parameters Sf and Ss, associated in MF with independent
local motions, can be expressed as functions of S2

0 and S2
2, which de-

fine a rhombic local ordering tensor [21]. Since Eq. (B6) of Ref. [21]
is a B.-O. limit spectral density, the EMF formula should not be
used when ss and sm occur on the same time scale.
As mentioned above, for methyl dynamics the MF spectral den-
sity given by Eq. (2) has been re-interpreted to represent two local
motions. One is described by Woessner’s model [59] applied to
rotation about the C–CH3 axis, and the other consists of local axial
fluctuations of the C–CH3 axis [11]. P2(cos110.5�)2 = 0.1 is taken to
represent [11,12,36) the squared order parameter of Woessner’s
model [59]. Yet, this model has implicitly an order parameter of
1 [59]; its P2(cos110.5�) is actually associated with a frame trans-
formation (see below). S2

axis is associated with restricted fluctua-
tions of the C–CH3 axis. Yet, in Woessner’s model the motion of
this axis is given by s? ¼ 1=ð6RL

?Þ, which represents the isotropic
global tumbling. Thus, se = s\ = sm. The local motion is given in
Woessner’s model by sk ¼ 1=ð6RL

kÞ. Thus, se = sk. Clearly, this sce-
nario is not physically sound. The model developed in Ref. [60]
treats methyl dynamics within the scope of two separate motions
(about the C–CH3 bond and of the C–CH3 bond), although
P2(cos110.5�)2 = 0.1 is also considered to be an order parameter.

With S2
axis designated as the amplitude of axial C–CH3 fluctuations

one expects correspondence between its value and various structural
properties. Such correspondence could in general not be established
[61,62] (with a few exceptions [63]). Inconsistencies associated with
S2

axis have been reported in the literature (see, for example, Ref. [64]).
It is indicated in Ref. [11] that S2 and se may be interpreted within

the scope of various models for restricted motions in proteins. There
are numerous examples indicating that experimental data from
probes engaged in motions restricted by a potential of mean torque
require accounting for general tensorial properties (e.g., non-
spherical local diffusion tensor, rhombic ordering tensor, and their
respective principal axes frames tilted from the magnetic tensor
frames) for proper analysis [14,30–33]. Probes reorienting inside
proteins experience such restricted motions. Thus, even in the
mode-decoupling limit Eq. (2) is too simple to treat adequately pro-
tein dynamics.

There is compelling evidence within the scope of NMR spin
relaxation in proteins for motion about the Ca

i�1 � Ca
i axis, which

is tilted from the N–H bond direction [20,46–50,65,66], and thus
represents non-trivial geometry, and for asymmetric motions
[20,34,35,46,48–50,67–71]. The current MD-based picture envi-
sions short-range correlations between dihedral-angles dominat-
ing protein dynamics, with information propagating through the
protein in a diffusion-like manner via local interaction networks
[72]. This picture implies rhombic ordering at N–H sites, in agree-
ment with motion about the Ca

i�1 � Ca
i axis.

The scenario described above can be handled with SRLS; it is
outside the scope of MF, which has no provision for tilted and/or
rhombic tensors. Therefore S2 and se cannot be interpreted in
terms of realistic models for restricted motions in proteins.

The overview presented above has been demonstrated quanti-
tatively by comparing formally analogous SRLS and MF parame-
ters. The application of SRLS and MF in parallel to a large number
of data sets has shown that MF is frequently a force-fitting to the
experimental data [19,20,34,35,46–50]. Namely, the statistical cri-
teria are fulfilled but the best-fit parameters are inappropriate for
physical interpretation, having absorbed unaccounted for factors.
In most cases the differences between analogous SRLS and MF
analyses were found to be quantitative in nature; in some cases
substantial qualitative differences were detected [20].
3. Theories

3.1. Local motion without the global motion

3.1.1. General relaxation limit theory
Nordio and Busolin [30], and Freed and co-workers [31], treated

diffusive rotational reorientation of an axial probe in a uniaxial
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liquid crystal. These developments can be viewed as treatments of
restricted local motion in proteins with the global motion frozen
(alternatively, they apply to the overall motion of a rigid biomacro-
molecule, such as a protein, embedded within a membrane). They
are general in allowing for an arbitrary tilt between the local
ordering/local diffusion and magnetic frames, and for magnetic
tensors of arbitrary symmetry and orientation. Szabo also treated
(within the scope of analytical approximations) local motion with
an axial ordering frame tilted from an axial interaction frame with-
in the scope of fluorescence depolarization [52,73]. Polnaszek and
Freed [14] extended the development of Ref. [31] by allowing for
rhombic local molecular ordering.

In the theories developed in Refs. [30] and [31] one solves the
rotational diffusion equation for the probability density P(X, t)
for the orientation of the probe:

@PðX; tÞ=@t ¼ �CXPðX; tÞ;
where � CX ¼ Rr2

XPðX; tÞ � ðR=kBTÞðsin bÞ�1
@=@b½sin bTPðX; tÞ	:

ð3Þ

Eq. (3) is appropriately referred to as a Smoluchowski equation.
Here CX is the Smoluchowski operator, R is the isotropic rotational
Laplacian coefficient,r2

X is the rotational Laplacian operator in the
Euler angles X ? a, b, c, and T is the restoring torque. The latter is
equal to �@U/@b in the case of an axial restoring potential, e.g.,
U ffi 3=2c2

0 cos2b (c2
0 is in units of kBT). One diagonalizes the opera-

tor CX, typically using the normalized forms of the Wigner rotation
matrix elements, DL

KMðXÞ, as a convenient basis set, to obtain the
eigenfunctions and eigenvalues of CX. Then the time correlation
functions of these normalized DL

KMðXÞ (as well as their cross-corre-
lation functions with DL0

K 0M0 ðXÞ where L
0
– L, K

0
– K, and/or M

0
– M)

may be expressed in terms of these eigenfunctions and eigen-
values. Their Fourier-Laplace transforms yield the spectral densi-
ties from which the magnetic resonance relaxation parameters,
such as T1, T2 and heteronuclear NOE, are calculated.

These time correlation functions are, in general, found to be a
sum of exponential decays, where the decay constants are the
respective eigenvalues, and the weighting factor of each decaying
exponential gives the relative importance of that eigenfunction in
the time correlation function. The general expressions for rhombic
R tensor and rhombic potential U(X), that replace the respective
quantities in the CX of Eq. (3), are given in Ref. [14]. Again, the time
correlation functions for the DL

KMðXÞ are found to be sums of expo-
nential decays determined by the eigenfunctions and eigenvalues
of the more general diffusion operator, CX.

3.1.2. Specific models for internal mobility
Kinosita et al. [51] developed a stochastic model for wobble-in-

a-cone in the presence of a square-well potential for a fluorescent
probe embedded in a practically static membrane. The absorption
(or emission) fluorescence dipole was taken collinear with the axial
wobbling probe, the symmetry axis of which represents the local
ordering/local diffusion axis. When the latter is collinear with the
axial interaction axis, i.e., the ‘‘diffusion tilt” is zero, one has
CðtÞ ¼ CL

K¼0ðtÞ. The equilibrium probability density is given by
Peq(h) = (2psinh)�1d(h � hmax), with hmax denoting the cone semi-
angle. The function CL

K¼0ðtÞ is given by:

CL
K¼0ðtÞ ¼

X
i¼1;1

Ai expð�Dwt=riÞ: ð4Þ

The parameters 1/ri are the eigenvalues of the Smoluchowski
operator that describes the wobbling motion of an axial probe in
a square-well potential. The parameters Ai are the corresponding
weighting factors, and Dw = 1/(6s\) is the wobbling rate constant.
Dw/r1? 0, which implies exp(�tDw/r1) ? 1, represents the rate
constant associated with the practically static membrane.
It was shown that an effective decay constant, Dw/hri, where
hri ¼

P
iAiri, with the summation running over the local motional

terms, is valid for hmax 6 50�. When this condition is fulfilled, one
has:

CL
K¼0ðtÞ ¼ A1 þ ð1� A1Þ expð�Dwt=hriÞ; ð5Þ

i.e., the function CL
K¼0ðtÞ decays with rate constant Dw/hri to a pla-

teau value A1. The latter was shown to be given by:

A1 ¼ ½1=2 cos hmaxð1þ cos hmaxÞ	2: ð6Þ

Wang and Pecora [74] treated wobble-in-a-cone for a rhombic
equilibrium probability density of probe orientations. For biaxial
(rhombic) local ordering, a solution yielding analytical time corre-
lation functions, CL

KðtÞ, does not exist, even when the global motion
is frozen. However, a numerical solution, given in terms of associ-
ated Legendre polynomials of non-integer degree, was obtained.

London and Avitabile [38] found that experimental 13C relaxa-
tion data from methionine methyl groups in dihydrofolate reduc-
tase cannot be reproduced with free diffusion or symmetric
jumps about the S–13CH3 axis (Woessner’s model [59]) combined
with axial fluctuations of the S–13CH3 axis. The experimental data
could only be reproduced when the motion of the S–13CH3 axis was
allowed to be asymmetric. Thus, the sensitivity of the experimental
data to rhombic ordering at methyl sites in proteins was detected
already in early solution work with a model-based approach. Par-
tially averaged rhombic 2H powder patterns from polycrystalline
samples were also observed in early work [75]. A recent solid-state
NMR study has shown with an elaborate analysis that the local
ordering at the methyl sites of a given leucine residue of the
chicken villin headpiece subdomain protein (HP36) is rhombic [76].

Wittebort and Szabo [77] developed spectral densities for a gen-
eral jump model and illustrated it for the concerted motions of a
lysine side chain.

The 3D Gaussian Axial Fluctuations (3D GAF) model [78] pro-
vides an analytical description of anisotropic peptide-bond plane
motion in terms of 3D harmonic local reorientational fluctuations
that is consistent with molecular dynamics simulations. In its appli-
cation to 15N and 13C

0
spin relaxation for the relatively rigid protein

ubiquitin, 3D GAF reproduced the experimental data of 76% of the
peptide-bond planes studied [65]. The local fluctuations were found
to be anisotropic, with the largest amplitude associated with mo-
tion about the Ca

i�1 � Ca
i axis. Thus, 3D GAF has proven that appro-

priate analysis of 15N relaxation data from well-structured parts
of the protein requires allowing for a ‘‘diffusion tilt” and anisotropic
local restrictions. Experimental data from flexible regions of the
protein backbone could not be reproduced with 3D GAF [65].

Internal motions in proteins have been treated by Wallach [79],
Woessner [59,80], Daragan and Mayo [67], LeMaster [81], Korzh-
nev et al. [82], Atkinson and Kieffer [83], and others.

3.2. Local motion decoupled from the global motion

3.2.1. The slowly relaxing local structure: an early version
We provide here a simple version of the derivation first pre-

sented in Ref. [15] that led to an expression now commonly re-
ferred to as the model-free spectral density. That derivation was
based upon straightforward stochastic considerations. It considers
the reorientation of a local (spin) probe that is coupled to a slower
reorienting object as a joint stationary Markov process. The local
motion is restricted in its range of reorientation by the ‘‘local struc-
ture” around it; these restrictions are represented by a restoring
potential. In the case of a spin-bearing entity on a protein, the over-
all tumbling of the protein is the slowly reorienting object, to
which the spin-bearing entity is attached, and engaged in local dif-
fusive motion relative to the slower moving frame of the protein.
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We can describe the time-dependent Euler angles representing
the orientation of the protein relative to a static lab frame by N,
and the Euler angles representing the probe orientation relative
to the static lab frame by X. Then the joint probability density,
P(X, N, t), in the Euler angles X and N becomes a composite (or
multi-dimensional) Markov process, obeying the diffusion
equation:

@PðX;N; tÞ=@t ¼ �ðCX þ CNÞPðX;N; tÞ; ð7Þ

where CX is the rotational diffusion operator in X for the local
probe motion. Because of the restoring potential, CX will depend
on the orientation of the protein, i.e., CX = CX(N), while CN is the
rotational diffusion operator associated with the protein tumbling.
It is not necessary at this stage even to specify its exact form,
although we give examples below.

Now we introduce the assumption that N relaxes much more
slowly than X. This assumption for the diffusion Eq. (7) above is
analogous to the Born–Oppenheimer approximation in quantum
mechanics. In fact, since diffusion equations such as (7) are
mathematically similar to (but clearly physically very different
from) quantum mechanical equations (i.e., the Schrödinger
equation), we can employ similar methods of solution [84,85]. This
B.-O. approximation can be written as:

PðX;N; tÞ ffi PNðX; tÞf ðN; tÞ: ð8Þ

Here, f(N, t) is the probability density for the overall (protein)
tumbling, which we take as independent of the local probe dynam-
ics, so it obeys the simple rotational diffusion equation:

@f ðN; tÞ=@t ¼ �CNf ðN; tÞ; ð9Þ

(where we usually let CN ¼ �RCr2
N, which is the standard rotational

diffusion operator acting on the Euler angles N; in Section 3.3. these
angles are denoted XLC), whereas the much faster motion of the
probe obeys the diffusion equation:

@PNðX; tÞ=@t ¼ �CXðNÞPNðX; tÞ; ð10Þ

where PN(X, t) is the probability density function in X for a fixed
value of N. An explicit form for the diffusion operator CX(N) (not
required in the derivation below) is �rX � RL � rX [1 + U(X, N)/kBT].
Here RL is the rotational diffusion tensor for the local motion, and
U(X, N) is the potential restricting the local motion in X relative
to the slowly relaxing orientation of the large body specified by
N. Note that Eq. (3) is a special case of Eq. (10) for isotropic RL

and an axial potential.
Eqs. (9) and (10), being diffusion equations, have respective

eigenfunctions and eigenvalues, as already noted in Section 3.1.1.
The general solution to these equations may then be written as
eigenfunction expansions. That is:

f ðN; tÞ ¼
X

q

dq j mqðNÞ > expð�eqtÞ; ð11Þ

and

PNðX; tÞ ¼
X

m

cm j umðX;NÞÞ > expð�EmtÞ; ð12Þ

written in eigen-ket notation, with eq and Em the respective eigen-
values.1 Then from Eqs. (8), (11) and (12) we obtain the overall
solution:

PðX;N; tÞ ffi
X
m;q

am;q j umðX;NÞ >j mqðNÞ > exp½�ðEm þ eqÞt	: ð13Þ
1 In the equivalent of the B.-O. approximation one should replace CN by
[CN + Em(N)], leading to eigenfunctions jmm, q(N)> in Eq. (11), but we are assuming
that the overall slow motion is unaffected by the local probe motion.
The expansion coefficients am, q are determined by an appropri-
ate set of initial conditions. The conditional probability density,
P(X0, N0jX, N, t) arises from letting X = X0 and N = N0 at t = 0, cor-
responding to Dirac delta functions:

PðX;N; t ¼ 0Þ ¼ dðX�X0ÞdðN� N0Þ: ð14Þ

Then by Eq. (8) we have:

PðX0;N0 j X;N; tÞ ffi PNðX0 j X; tÞf ðN0 j N; tÞ: ð15Þ

Also, we have for stationary Markov processes the general
relation:

PðX0;N0;X;N; tÞ ¼ PeqðX0;N0ÞPðX0;N0 j X;N; tÞ; ð16Þ

for the joint probability density in N0, N, X0 and X.
For spin relaxation, one is interested in the correlation function

of the Wigner rotation matrix elements (cf. Section 3.2.1):

C�KM;K 0M0 ðtÞ ¼ hD2�
KMðX0ÞD2

K 0M0 ðXÞi: ð17Þ

We will only consider here K
0
= K, M

0
= M and isotropic fluids, for

which hD2
KMðXÞi ¼ 0; the general case is given in Ref. [15], including

anisotropic fluids (e.g., membranes, liquid crystals). Also, for conve-
nience of presentation in the following we will drop the 2 super-
script and the K and M subscripts. Thus we have:

hD�ðX0ÞDðXÞi ¼
Z

dN0

Z
dX0D�ðX0ÞPeqðX0;N0Þ

�
Z

dN
Z

dXDðXÞPðX0;N0 j X;N; tÞ

ffi
Z

dN0f ðN0Þ
Z

dX0Peq;NðXÞD�ðX0Þ

�
Z

dNf ðN0 j N; tÞ
Z

dXPNðX0 j X; tÞDðXÞ; ð18Þ

where the approximate equality results from the B.-O. approxima-
tion. Eq. (17) can now be rearranged into the sum of three terms
by straightforward application of the general properties of
stationary Markov processes [15] to yield:

CðtÞ ¼ Cð1ÞðtÞ þ Cð2ÞðtÞ þ Cð3ÞðtÞ: ð19Þ

Here we have (somewhat simplified for present purposes):

Cð1ÞðtÞ ¼
Z

dX0D�ðX0Þ
Z

dN0feqðN0ÞPeq;N0ðX0Þ

�
Z

dXDðXÞ
Z

dNfeqðNÞPNðX0 j X; tÞ ð20aÞ

Cð2ÞðtÞ ¼
Z

dN0feqðN0Þ
Z

dNf ðN0 j N; tÞ

�
Z

dXD�ðX0ÞPeq;N0ðX0Þ
Z

dXDðXÞPeq;NðXÞ ð20bÞ

Cð3ÞðtÞ ¼
Z

dN0feqðN0Þ
Z

dNf ðN0 j N; tÞ

�
Z

dX0D�ðX0ÞPeq;N0ðX0Þ

�
Z

dXDðXÞ½PNðX0 j X; tÞ � PNeqðX0 j X; tÞ	: ð20cÞ

Now consider C(1)(t) given by Eq. (20a) in more detail. First, note
that for isotropic systems feq(N) = 1/(8 p2) independent of N. Then
we have:Z

dN0feqðN0ÞPeq;N0ðX0Þ ¼ PeqðX0Þ ¼ 1=ð8p2Þ; ð21aÞ
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andZ
dNfeqðNÞPNðX0 j X; tÞ ¼ PeqðX0 j X; tÞ: ð21bÞ

Then

Cð1ÞðtÞ ffi
Z

dX0PeqðX0ÞD�ðX0Þ
Z

dXDðXÞPeqðX0 j X; tÞ: ð22Þ

Eq. (22) is readily seen to be just the standard correlation func-
tion associated with the faster probe motion, independent of the
overall tumbling. For a simple exponential decay we get
h[D(X)]2iexp(�t/s) = (1/5)exp(�t/s) for a second-rank D2

KMðXÞ.
Thus, the effect of the overall tumbling must come from C(2)(t)
and C(3)(t).

Now consider C(2)(t) for which the integral:Z
dXDðXÞPeq;NðXÞ � SðNÞ; ð23Þ

refers to the restricted average of D(X) over X for a specific value of
protein orientation, N. This is the definition of the order parameter
for the probe, S, relative to N. Thus we may write:

Cð2ÞðtÞ ¼
Z

dN0feqðN0ÞSðN0Þ
Z

dNf ðN0 j N; tÞSðNÞ: ð24Þ

In the limit of low ordering, S(N) = S‘ D(N) [15], where S‘ is the local
order parameter of the probe, so Eq. (24) becomes:

Cð2ÞðtÞ ffi S2
‘

Z
dN0feqðN0ÞDðN0Þ

Z
dNf ðN0 j N; tÞDðNÞ; ð25Þ

which is just S2
‘ times the standard correlation function for the slow

overall motion, so that for a simple exponential decay we get
S2
‘ ð1=5Þ expð�t=smÞ; sm � s.

More generally, with feq(N0) = 1/(8p2) for an isotropic medium,
and letting f(N0jN, t) / d (N � N0)exp(�t/sm), we get:

Cð2ÞðtÞ ¼ hS�ðN0ÞS0ðN0Þi expð�t=smÞ: ð26Þ

Given the definition of S(N0) as the value of S(N) at t = 0, it is reason-
able to identify its average over feq(N0) to yield:

Cð2ÞðtÞ 
 ð1=5ÞS2
‘ expð�t=smÞ: ð27Þ

We now consider C(3)(t), which involves the combined time depen-
dences on N and X, and thus has the property of being a cross-
term. It arises because of the statistical dependence of X(t) on N,
i.e., the orientation of the probe is coupled to that of the protein.
As a result, its evaluation is somewhat more complex than C(1)(t)
or C(2)(t). Here we will again let f(N0jN, t)/ d (N� N0)exp(�t/sm),
and [PN(X0jX,t)� PNeq(X0jX,t)] = �Peq,N(X) exp(�t/s), which can
be shown to follow from letting

PNðX0 j X; tÞ ¼ Peq;NðXÞ þ ½dðX�X0Þ � Peq;NðXÞ	 expð�t=sÞ: ð28Þ

Then:

Cð3ÞðtÞ 
 �
Z

dN0feqðN0Þ
Z

dN expð�t=smÞ

�
Z

dX0D�ðX0ÞPeq;N0ðX0Þ

�
Z

dXDðXÞPeq;NðXÞ expð�t=sÞ: ð29Þ

This expression is seen to be very similar to that of Eq. (25) and may
now be evaluated in an equivalent manner to yield

Cð3ÞðtÞ 
 �ð1=5ÞS2
‘ expð�t=smÞ expð�t=sÞ: ð30Þ

Collecting terms we now have:
CðtÞ
 ð1=5Þ½expð�t=sÞþS2
‘ expð�t=smÞ�S2

‘ expð�t=smÞexpð�t=sÞ	;
ð31Þ

which when Fourier transformed yields the spectral density:

jðxÞ¼ ð1=5Þfs=ð1þx2s2ÞþS2
‘ ½ðsm=ð1þx2s2

mÞ�sj=ð1þx2ðsjÞ2Þ	g;
ð32Þ

where ðsjÞ�1 � ðsÞ�1 þ s�1
m ffi ðsÞ

�1, since s�1
m � ðsÞ

�1 by hypothesis.
This expression is identical to that of Eq. (5.5) in Ref. [15] for the
case of an isotropic medium. That expression also includes the ef-
fect of the large body (e.g., protein) in an ordered medium (e.g., a
membrane bilayer). Disregarding the coefficients 1/5, which is often
included in the definition of the squared magnetic interaction, Eq.

(32) is equivalent to Eq. (1): S2
‘ in Eq. (32) is the same as S2

0

� �2
in

Eq. (1); one obtains a local motional term multiplied by 1� S2
‘

� �
,

by analogy with a local motional term multiplied by 1� S2
0

� �2
� �

in Eq. (1).
We have also introduced a number of simplifications in this

derivation to provide simpler insight. The more detailed derivation
with its subtleties is given in Ref. [15]. Note that the essence of the
derivation is simply based on a fast process coupled to a slow pro-
cess following Markov statistics. This is sufficient to yield Eq. (32),
provided we simplify the tensorial properties of the spin Hamilto-
nian and the ‘‘double tensor” properties of the DL

KMðXÞ [86], as well
as use only the simplest form of the diffusive motions and local
probe ordering by neglecting their full tensorial properties. Ref.
[15] explicitly considers these tensorial properties, but keeps them
simple.

This approach has been generalized in Ref. [21] to include a
rhombic potential term. Then along with the full tensorial proper-
ties of the DL

KMðXÞ it yields the more general time correlation func-
tions, C�K;�K 0 ;M , and by Fourier–Laplace transformation the more
general spectral densities, j�K;�K 0 ;MðXÞ:

C�K;�K 0 ;MðtÞ ¼ D2�

K 0M0 ðX0ÞD2
KMðXÞ

D E
ð33Þ

j�K;�K 0 ;MðxÞ � R

Z 1

0
dtC�K;�K 0 ;MðtÞ expð�ixtÞ

¼ ð1=5Þ
�
sK= 1þx2s2

K

� �
þ
	
sm= 1þx2s2

m

� �
�sjK=

�
1þx2 sjK

� �2�

S�‘;K 0S‘;K
D E�

; ð33aÞ

where S‘, K are the spherical tensorial order parameters (K, K
0
= 2, 1,

0, �1, �2).
The other limit of SRLS that leads within a good approximation

to an equation formally analogous to Eq. (1) was described in
Section 2.1. It involves the same simplifications of the tensorial
properties in the limit of large time-scale separation, but it requires
the prevalence of strong axial, instead of weak axial, local poten-
tials [14,31]. In this limit SRLS features a dominant local motional
correlation time given within a good approximation by 2s=c2

0,
which may thus replace s in Eq. (1).

3.2.2. Specific models for decoupled internal motions
Halle and Wennerström [87] developed Eq. (1) in the context of

2H relaxation of water in heterogeneous systems. A two-step
model featuring slow isotropic overall motion, fast isotropic local
motion, and small axial local ordering collinear with an axial mag-
netic tensor, was set forth. Rhombic (biaxial) magnetic tensors are
also allowed for. However, the equation that justifies this
generalization (Eq. (137), Chapter VIII, Ref. [28]) applies in the ex-
treme motional narrowing limit for the local motion. The various
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steps pursued in developing the two-step model involve casting
the local motion in the form of equilibrium averages, and express-
ing the spin Hamiltonian as a sum of a quasi-single-crystal slow
motional term, and a fast motional term that represents the depar-
ture from this equilibrium value.

Brainard and Szabo [60] developed a model featuring the global
motion, sm, a local motion on the surface of a cone with semi-cone
angle b and correlation time sk, and axial fluctuations of the cone
axis with order parameter called SD and correlation time s\. The
various dynamic modes are assumed statistically independent of
one another. The factor P2(cosb) is taken as the order parameter
for the parallel motion. An analytical local motional time correla-
tion function is developed as a Padé approximant. With b set equal
to 110.5�, this time correlation function yields the MF formula for
methyl dynamics, with se replacing both sk and s\. It is indicated in
Ref. [60] that the overall order parameter, S, may be set equal to
P2(cosb) � SD when sk? 0 and s\ ? 0. As pointed out in Ref.
[38], this model could not reproduce experimental 13C relaxation
data from the methionine methyl groups of dihydrofolate reduc-
tase (DHFR). Note that in Woessner’s model [59], which is the same
as the model for the parallel motion in the present development,
s\ represents sm.

Lipari and Szabo [88] applied the function CL
K¼0ðtÞ developed by

Kinosita et al. [51] to NMR spin relaxation in proteins in the form of
CðtÞ ¼ expð�t=smÞ � CL

K¼0ðtÞ. An analytical expression for se as a
function of coshmax and Dw, valid for hmax < 50�, was developed.
In Ref. [52] Szabo considered a Smoluchwski equation for axial lo-
cal ordering and zero ‘‘diffusion tilt”. He obtained (in agreement
with previous developments [14,30–33]) S2

0 ¼ hP2ðcos hÞi for the
value of CL

K¼0ð1Þ.
In a subsequent paper Lipari and Szabo [89] considered all three

components CK(t), K = 0, 1 and 2, of wobble-in-a-cone for non-axial
ordering in the presence of a square-well potential [89]. Padé
approximants were developed for CK(t). For 0 < hmax < 90�, K = 0,
±2, and 0 < hmax < 75�, K = ±1, the decay constants, 1/sK, and the
jK(0) values, are given analytically as functions of coshmax and Dw.
The availability of all three CK(t) functions allows for the possibility
of local ordering/local diffusion axes tilted from the magnetic
frame. To our knowledge, this capability has not been utilized.

The next papers in the series of Lipari and Szabo papers are Refs.
[11] and [12]. Here Eq. (2) is set forth in a ‘‘model-free” manner.
The assumptions and implications associated with this concept
are outlined in the next section.
3.2.3. Model-free
The MF spectral density is given by Eq. (2) [11,12]. The

following considerations lead to this formula. The total time
correlation function, C(t) = CC(t) � CL(t), is defined implicitly as
hP2(coshLD(t))P2(coshLD(t + s))i, where L and D denote the axial
laboratory and magnetic (dipolar) frames. The time correlation
function for isotropic global motion is given by CC(t) = exp(�t/sm).
The following form is suggested for the time correlation function
for the local motion:

CLðtÞ ¼ S2 þ ð1� S2Þ expð�t=seÞ; ð34Þ

where S2 is the squared generalized order parameter, and se is the
effective correlation time for the local motion. The Fourier trans-
form of the time correlation function obtained by multiplying Eq.
(34) by CC(t) = exp(�t/sm) yields Eq. (2).

The squared generalized order parameter, S2. The parameter S2

represents C(1). The latter quantity is set equal toP
m¼0;�1;�2hj Y2mðh;/Þ j i2, based on the addition theorem of

spherical harmonics, and S2 is designated as the square of a
‘‘generalized” order parameter. As outlined in Section 2.2, the angle
/ is undefined, and the relation of S to S2

0 / hY20i [52] is unclear.
Within the scope of spin relaxation, order parameters are prin-
cipal values of ordering tensors, defined in terms of local potentials
[14,30–33]. They represent ensemble averages. In irreducible ten-
sor notation only two order parameters, S2

0 and S2
2, persist for

L = 2 if there is at least 2-fold symmetry around the main ordering
axis and 3-fold symmetry around the local director. In Cartesian
tensor notation there are in this case three order parameters, Sxx,
Syy and Szz, with Sxx + Syy + Szz = 0, with S2

0 ¼ Szz and S2
2 ¼ffiffiffiffiffiffiffiffi

2=3
p

ðSxx � SyyÞ.
Thus, as defined in MF S2 is conceptually an artificial quantity.

Since the actual local ordering is rhombic [20,48,50], in practice
the experimental data are force-fitted when Eq. (2), which com-
prises only a single order parameter, is used.

The effective local motional correlation time, se. The parameter se

is defined as [11]:

se �
Z X1

i¼1

ai expð�t=siÞ
" #

dt

( ),
ð1� S2Þ ¼

X1
i¼1

aisi=ð1� S2Þ:

ð35Þ

The integrand represents the exact time correlation function for
the local motion; this assumes that s0 � sm =1. Although this sce-
nario is clearly unrealistic there might be conditions under which
Eq. (35) is valid within a good approximation. The mathematical
definition of se prevents identifying these conditions. As pointed
out above, S2 must be either close to zero or close to 1 for the sin-
gle-decay approximation for the local motion to be valid. The
parameter se is undefined by Eq. (35) in the limit in which S2 ? 1.

Statistical independence between the global and local motions is
contingent upon large time-scale separation. The general expression
for a time correlation function describing fast restricted Markovian
internal motions with correlation times, si, in practically static sur-
roundings reorienting (formally) with correlation time, s0, is given
by [11]:

CLðtÞ ¼
X1
i¼0

ai expð�t=siÞ; ð36Þ

with s0 =1� s1, s2, . . . and a0 = C(1). One may write:

CLðtÞ ¼ a0 þ
X1
i¼1

ai expð�t=siÞ: ð37Þ

Let us denote a0 as S2. Since exp(�t/s0) = 1 by virtue of s0 =1,
and since in the context of protein dynamics s0 represents sm,
one may write:

CðtÞ ¼ expð�t=smÞ � CLðtÞ ¼ ðCCðtÞ ¼ 1Þ � CLðtÞ

¼ S2 þ
X1
i¼1

ai expð�t=siÞ: ð38Þ

Thus, C(t) is given rigorously by CC(t) � CL(t) when sm =1. Since
the protein is reorienting in solution, sm is obviously not infinity.
However, in the large time-scale separation limit where sm� s1,
s2, . . ., one may assume that within a good approximation
C(t) � [CC(t) = exp(�t/sm)] � CL(t). One may restate this to say that
the local motion may be treated for ‘‘frozen” global motion. This
is the meaning of statistical independence, or ‘‘mode-decoupling”,
in MF. Clearly large time-scale separation is a contingency, and the
factorization of C(t) into CC(t) � CL(t) is an approximation. This is
shown rigorously in Section 3.2.1.

Theoretical validation of the MF formula. One has to show that
Eq. (34) is a good approximation to Eq. (37). This cannot be
accomplished at the level of the time correlation function. The fol-
lowing is done instead. Based on the assumption that statistical
independence remains valid when CC(t) = 1 is replaced by
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CC(t) = exp(�t/sm), where sm –1, by virtue of sm� s1, s2, . . ., one
obtains the expression:

CðtÞ ¼ CCðtÞ � CLðtÞ ¼ expð�t=smÞ S2 þ
X1
i¼1

ai expð�t=siÞ
" #

: ð39Þ

Fourier transformation of Eq. (39), and the assumption that the
local motions are in the extreme motional narrowing limits, lead
to:

JðxÞ ¼ S2sm= 1þx2s2
m

� �
þ
X1
i¼1

aisi: ð40Þ

Multiplying Eq. (34) by CC(t) = exp(�t/sm), applying Fourier
transformation and assuming that se� sm, yields Eq. (2). In the ex-
treme motional narrowing limit, Eq. (2) yields:

JðxÞ ¼ S2sm= 1þx2s2
m

� �
þ ð1� S2Þse: ð41Þ

This is the same as Eq. (40) provided se is defined by Eq. (35).
Thus, Eq. (34) is validated in the form of a limiting case of the Fou-
rier transform of its product with exp(�t/sm), assuming that large
time-scale separation is in place.

The requirement for large time-scale separation is invoked
explicitly in the derivation of Eqs. (35) and (41) of Ref. [11], and
in the context of Eqs. (57) and (58) of Ref. [11].

The symmetry of the local motion. There is confusion in the liter-
ature (e.g., Ref. [54]) with respect to the physical quantity that rep-
resents the symmetry of a restricted local motion. The symmetry of
a restricted motion is determined by the manner in which the spa-
tial orientations are sampled. The form of the respective conforma-
tional space is given by the equilibrium probability density
function, Peq(h, /)sinhdhd/ (in general, Peq(X), X ? (a, h, /)). The
function Peq(h, /), determined by the form of the local potential,
is used to calculate order parameters [32,33]. Thus, the symmetry
of a restricted motion is determined by the symmetry of the local
ordering tensor, or the symmetry of the local potential in terms of
which the order parameters are defined. The highest symmetry of
the local potential, and of a restricted local ordering tensor, is axial
symmetry.

The local rotational diffusion tensor is determined mainly by
the shape of the probe. It is independent of Peq. In principle, the
highest symmetry of the local diffusion tensor is axial symmetry,
otherwise the orientational restrictions are not ‘‘sensed” by the
probe. In practice, one may approximate the local diffusion tensor
as isotropic in the large time-scale separation limit. Clearly, a scalar
quantity cannot represent the symmetry of a restricted local mo-
tion, as suggested in some cases [54].

The local geometry. In general, the local ordering frame (deter-
mined by liquid dynamics considerations) and the magnetic frame
(determined by quantum mechanical considerations) are not the
same. The MF formula does not distinguish between these frames.
They are intrinsically identical and axially symmetric in MF.

The effect of the local potential on the eigenfunctions of the uncou-
pled local motional diffusion operator. The fact that in the presence
of a local potential the Wigner functions are no longer eigenfunc-
tions of the (axial) diffusion operator was established in early work
[14,30–33] and discussed in Section 3.1.1. Single exponent repre-
sentation of the local motional term in MF constitutes simple Wig-
ner function representation of the (uncoupled) local motional
diffusion operator. As shown below, the effect of the local potential
on the simple (Wigner function) basis set of the uncoupled diffu-
sion operator (Section 3.1.1) is very large even for weak potentials.
This important aspect is completely ignored in MF.

Post-fitting interpretation of the MF parameters. Any model used
to interpret S2 and se obtained with ‘‘model-free” fitting should
pertain to the large time-scale separation limit, have simple func-
tions as eigenfunctions of the uncoupled local motional diffusion
operator, and have se limited according to the particular model
considered. It should feature isotropic global and local motions, ax-
ial local ordering, and collinear local ordering, local diffusion and
magnetic frames. Few motions comply with all of these require-
ments. In general, they are not realistic [20,40].

The extended model-free (EMF) spectral density. The EMF spectral
density is given by [13]:

JðxÞ ¼ S2
f S2

s sm= 1þx2s2
m

� �
þ 1� S2

s

� �
sjs= 1þx2sj2s
� �h i

þ 1� S2
f

� �
sjf = 1þx2sj2f
� �

: ð42Þ

The parameter sf is the effective correlation time for fast local
motion, ss > sf is the effective correlation time for slow local motion,
and S2

s and S2
f are squared order parameters associated with these

motions. 1=sjf ¼ 1=sf þ 1=sm � 1=sf and 1=sjs ¼ 1=ss þ 1=sm. The
large time-scale separation assumption requires that sf � sm

and ss � sm. As pointed out above, it is inappropriate to use Eq.
(42) when ss and sm occur on the same time scale, because mode-
coupling, which dominates the actual spectral density in this
parameter range, is ignored. It is also inappropriate to omit the
third term of Eq. (42), as is often done, because the coefficients of
the various terms in a physical spectral density sum to unity. Hence
omitting terms entails force-fitting. Simplifications should be made
at the stage where the time correlation functions are set forth; this
is clearly not possible with a ‘‘model-free” approach. Besides, we
found that the SRLS analogue of sf, the correlation time
sk ¼ 1=ð6RL

kÞ, does affect the analysis [90]. Setting sk ? 0 leads to
inappropriate results [90].

The MF spectral density adapted to methyl dynamics. As already
indicated, in this context S2 and se are taken to represent both rota-
tion around the C–CH3 bond, and fluctuations of the C–CH3 bond.
The typical probe is the uniformly 13C-labeled, fractionally deute-
rium-labeled methyl group 13CDH2, with the deuterium nucleus
observed [22]. The relevant magnetic interaction for the spin I = 1
2H nucleus is the quadrupolar interaction, Q. As pointed out above,
in the context of HC–HH cross-correlation, a bond length of
rCD = rCH = 1.115 Å is consistent with a tetrahedral angle of 110.5�
[24]. The generalized order parameter, S, is expressed as
S = [P2(cos110.5�)] � Saxis = 0.316 � Saxis, where 0.316 (Saxis) is the
order parameter for motion about (of) C–CH3. The correlation time,
se, is common to both local motions [11,12,36]. This yields the
spectral density for quadrupolar spin relaxation in 13CDH2:

JQQ ðxÞ ¼ 0:1� S2
axissm 1þx2s2

m

� �

þ 1� 0:1� S2

axis

� �
sje 1þx2sj2e
� �


; ð43Þ

where 1=sje ¼ 1=se þ 1=sm � 1=se.
Extended versions of Eq. (43) for treating methyl dynamics have

been also suggested [24].
Eq. (43) represents three motional modes: reorientation about

the C–CH3 axis according to Woessner’s model [59], axial fluctua-
tions of the C–CH3 axis, and global tumbling. Let us examine the
case wherein S2

axis ¼ 1; in this limit Eq. (43) should reproduce
Woessner’s model for methyl rotation.

Woessner’s model. Diffusive (or jump-type) motion about an axis
tilted at a fixed angle, b (110.5� for methyl rotation) from an axial

magnetic frame is treated. The decay constants are sj1
� ��1

¼
1=sm þ 1=s and sj2

� ��1
¼ 1=sm þ 4=s, where s represents the corre-

lation time for local motion about the z-axis of the local diffusion
tensor (for symmetric jumps one has sj1

� ��1
¼ sj2
� ��1

¼
1=sm þ 1=s, where 1/s is the jump rate constant). The internal dif-
fusion axis tumbles isotropically with correlation time sm, and
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sm� s. The measurable spectral density (applied here to quadru-
polar relaxation of 13CDH2) is given by [59]:

JQQ ðxÞ ¼ 0:1sm= 1þx2s2
m

� �
þ 0:323sj1= 1þx2 sj1

� �2
� �

þ 0:577sj2= 1þx2 sj2
� �2

� �
: ð44Þ

d2
00ð110:5�Þ

� �2
¼0:1;2 d2

01ð110:5�Þ
� �2

¼0:323 and 2 d2
02ð110:5�Þ

� �2
¼

0:577, where the coefficients d2
0K , K = 0, 1, 2, denote the reduced

Wigner matrix elements which transform the local diffusion frame
into the magnetic frame. The isotropic tumbling limit,
JQQ ðxÞ ¼ sm= 1þx2s2

m

� �
, is obtained for s ?1, bMQ ? 0, or both.

The following emerges. (1) Eq. (44) requires that sm� s. There-
fore, Eq. (43) should not be used when se is on the order of sm. This
is actually implicit in MF but often not appreciated (see, for exam-
ple, Ref. [91]). (2) Eq. (43) does not converge to the isotropic tum-
bling limit. It yields JQQ ðxÞ ¼ 0:1sm= 1þx2s2

m

� �
for S2

axis ¼ 1 and
se ? 0; this differs from the Woessner model limit (see above).
(3) In Woessner’s model the diffusion axis tumbles isotropically;
Eq. (43) features a diffusion axis fluctuating with axial order
parameter, Saxis. Therefore Saxis is physically vague. (4) The
parameter se in Eq. (43) is taken to represent at the same time
an effective correlation time for local motion, the axial component
of the internal probe diffusion (s in Woessner’s model), and axial
fluctuations of the C–CH3 axis; the latter tumbles isotropically in
Woessner’s model. Therefore se is physically vague. (5) As already
noted, 0.1 in Eq. (43) is a coefficient associated with a frame trans-
formation, not an order parameter. Therefore S2

axis ¼ S2=0:1 is also
physically vague, especially since S2 is considered to be a general-
ized order parameter.

The Very Anisotropic Reorientation (VAR) model [18,92] de-
scribes the same physical scenario as Woessner’s model in terms
of an effective diffusion operator of the form:

bC ¼ RL
k
bJL

z

� �2
þ RC bJL

� �2
: ð45Þ

bJL is the infinitesimal rotation operator for internal probe diffusion
equivalent torX in Eq. (3), bJL

z refers to its z component (z is the axis
about which the internal rotation occurs), and RL

k � RC . The
parameters RC and RL

k represent the global and internal diffusion
coefficients, respectively, with the tilt angle bMQ between the inter-
nal diffusion z-axis and the principal z-axis of the magnetic tensor
to be specified.

VAR is a limiting case of SRLS wherein the axial coupling poten-
tial is very large, i.e., c2

0 !1 equivalent to S2 ? 1. We found that
the parameter set comprising c2

0 ¼ 20; bMQ ¼ 110:5� and
RC = 0.001 (in units of RL

kÞ yields, within a good approximation, sin-
gle-exponential time correlation functions C00ðtÞ;C11ðtÞ and C22(t)
with eigenvalues of 1/sm, 1 and 4, respectively. Given that

s/sm = 0.001, these eigenvalues are the same as 1=sm; sj1
� ��1

¼
1=sm þ 1=s � 1=s and sj2

� ��1
¼ 1=sm þ 4=s � 4=s in Eq. (44); in

units of 1/s one obtains 1/sm, 1 and 4, respectively.
The physical meaning of Eq. (43). This formula may be considered

as a B.-O. limit of SRLS. It represents a diffusive local motion time-
scale separated from isotropic global motion, taking place in the
presence of a weak axial local potential. The corresponding (axial)
local ordering tensor has its principal axis tilted at 110.5� from the
(axial) magnetic frame.

Let us consider Eq. (33a) for the quantum number M set equal to
zero and axial local ordering with S2

0

� �2
� hS�‘;0S‘;0i (we ignore the

coefficient 1/5). The functions jKK(x), with KK = (0, 0), (1, 1) and
(2, 2), are given by:

j00ðxÞ ¼ S2
0

� �2
sm 1þx2s2

m

� �

þ ð1� S2

0

� �2
Þs0 1þx2s2

0

� �

; ð46aÞ
j11ðxÞ ¼ s1=ð1þx2s2
1Þ; ð46bÞ

and

j22ðxÞ ¼ s2= 1þx2s2
2

� �
: ð46cÞ

The measurable spectral density, JQQ(x), is given by:

JQQ ðxÞ ¼ d2
00ð110:5�Þ

� �2
j00ðxÞ þ 2 d2

01ð110:5�Þ
� �2

j11ðxÞ

þ 2 d2
02ð110:5�Þ

� �2
j22ðxÞ

¼ 0:1j00ðxÞ þ 0:323j11ðxÞ þ 0:577j22ðxÞ: ð47Þ

Assuming that s0 = s1 = s2 = s (by virtue of sm� sK), one
obtains:

JQQ ðxÞ ¼ 0:1� S2
0

� �2
sm= 1þx2s2

m

� �
þ 1� 0:1� S2

0

� �2
� �

s= 1þx2s2
� �

: ð48Þ

This is the same as Eq. (43) wherein S2
axis is replaced by S2

0

� �2

and se is replaced by s. The factor 0.1 is d2
00ð110:5�Þ

� �2
.

The local potential is given by u(XCM), where M is the local
ordering frame fixed in the probe and C = C

0
is the local director

fixed in the protein (for isotropic global diffusion C and C
0

are the
same). The potential in Eq. (48) is axially symmetric and weak. This
implies broad axially symmetric distribution of the instantaneous
orientation of the C–CH3 bond (i.e., the ZM axis) about the equilib-
rium distribution of the C–CH3 bond (i.e., the C

0 � C axis). This is
difficult to rationalize for tightly packed protein cores.

On the other hand, weak but rhombic local potentials imply
non-axial distribution of the instantaneous orientation of the bond
vector C–C around the local director. Tightly packed protein cores
can accommodate such excursions. For example, one may conceive
of diffusion in two (or more) rotamer wells with less frequent
jumps between them [17], or asymmetric torsional oscillations
within a given rotamer well. As shown below, rhombic potentials
have been, indeed, determined with SRLS analysis.

Comments on the MF point-of-view. Eq. (2) represents an
approximation to a probe reorienting inside a ‘‘frozen” protein.
The spatial restrictions at the site of the motion of the probe, i.e.,
on the M frame, are exerted by the immediate protein surround-
ings, represented by the C

0
frame. This is formally analogous to

the spatial restrictions at the site of the motion of a rigid (non-
spherical) particle exerted by a liquid crystalline director. Numer-
ous studies of restricted motions in liquid crystals have shown that
general tensorial properties, and the effect of the restricting poten-
tial on the eigenfunctions of the diffusion operator, have to be ac-
counted for [14,30–33]. This leads to intricate numerical solutions.
Hence, realistic spectral densities for treating protein dynamics
cannot be simple (analytical) functions, even when mode-coupling
is not important.

‘‘Mode-coupling” was shown theoretically to be important in
the overdamped diffusion limit [16]. This prediction, which in-
volves intricate time correlation functions, was borne out by
numerous SRLS applications to ESR spin labeled lipids, gramicidin,
proteins and nucleic acid fragments [41–45]. It was further con-
firmed by SRLS applications to NMR spin relaxation in proteins
[19,20,34,35,46–50].

In spite of this evidence, the limitations of the simple MF
method are still not generally appreciated. Thus, it is stated in
Ref. [54] that (1) the time-scale separation is a ‘‘merely sufficient
but not necessary condition”, (2) ‘‘the internal motion can be
approximated by a single exponential”, and (3) ‘‘the robustness
of MF to asymmetric motion is warranted” by recovering similar
S2 values with the MF spectral density and the formula of Ref.
[37]. The latter is an analytical expression valid for ultrafast
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vibrations, librations and stretching motions, based on the results of
normal mode analysis. It has been overlooked in Ref. [54] that both
expressions used are only valid for simple fast axial local motions.

3.3. Local motions coupled to the global motion: the slowly relaxing
local structure approach

The fundamentals of the stochastic coupled rotator slowly
relaxing local structure theory, as applied to NMR spin relaxation
in proteins [19,20], are summarized below.

3.3.1. Geometry
The various reference frames that define the SRLS model are

shown in Fig. 1a. They are related to the N–H bond as the probe.
The laboratory L frame is space-fixed with its Z-axis aligned along
the external magnetic field, B0. The global diffusion frame, C, and
the (uniaxial) local director frame, C

0
, are both fixed in the protein.

The Z-axis of the C
0
frame lies along the equilibrium orientation of

the 15N–1H bond (note that the time-independent Euler angles,
XCC0 , are used in residual dipolar coupling (RDC)-based structure-
determination protocols). M is the coordinate frame in which the
local ordering tensor is diagonal. In previous work we assumed
for simplicity that the local diffusion tensor is diagonal in the same
frame [19,20]. In our most recent fitting scheme for SRLS [90] the
local ordering and local diffusion frames may be distinguished.

The magnetic 15N–1H dipolar tensor frame, D, and the magnetic
15N CSA tensor frame, CSA, are both fixed in the probe. The Euler
angles for rotation from M to D are given by XMD, and the Euler an-
gles for rotation from D to CSA by XCSA. The Euler angles XMD and
XD�CSA are time independent. The D frame is taken as axially
symmetric. If the M frame is also axially symmetric, then
XMD = (0, bMD, 0), where bMD is known as ‘diffusion tilt’. The angle
bMD is determined with data fitting. Its value identifies the main lo-
cal ordering axis.

The L frame is an inertial frame with respect to which all the
moving frames are defined. The time-dependent Euler angles XLM

are associated with the local motion; both the local and global
C'
N

Cα

H

Cα

OCage frames

C

C'

ΩCC'

ΩC'M

M

L

CSA

D

Ω
(α,θ,0)

ΩMD
(0,βMD,γMD)

XM

ZD

βMD

a b

ΩLC

ΩLM

Fig. 1. (a) Various reference frames that define the SRLS model [20]. L is the
laboratory frame; C is the global diffusion frame associated with protein shape; C

0
is

the (uniaxial) local director frame (with ZC0 along the equilibrium orientation of the
N–H bond) and XC0 ¼ YC0 ; M denotes the local ordering/local diffusion frame fixed in
the N–H bond; D is the magnetic 15N–1H dipolar frame and CSA the magnetic 15N
chemical shift anisotropy frame, both fixed in the N–H bond. XLC and XC0M are time-
dependent angles associated with the global motion and the relative local motion,
respectively. (b) Schematic drawing showing the peptide-bond plane and the ZD

axis of the 15N–1H dipolar (D) frame. The YD axis (not shown) is perpendicular to the
peptide plane, and the axes XCSA, Y CSA and ZCSA (not shown) are defined to be aligned
with the most shielded (r11), intermediate (r22) and least shielded (r33) compo-
nents of the 15N shielding tensor, respectively [19]. The orientation of the M frame
with respect to the D frame is given by the best-fit value of bMD, and cMD = 90� (cMD

was fixed at 90� based on stereo-chemical considerations [20]). The orientation
preferences of the M frame axes in the local director frame, C

0
, are determined by

the relative magnitudes and signs of c2
0 and c2

2 (when the potential given by Eq. (52))
[14].
motions modulate them. The time-dependent Euler angles XLC

are associated with the global tumbling; only this motion modu-
lates them.

We consider relative (probe versus protein) coordinates,
expressing XLM as XLM ¼ XLC þXCC0 þXC0M . A shorthand notation
for indicating sequences of rotations will be employed. Namely,
for a generic rotation X12 = X2 + X1, resulting from first applying
the rotation involving angles X1, and then applying the rotation
involving the angles X2, the explicit relation among Wigner rota-
tion matrices is DL

MKðX12Þ ¼
P

M0D
L
MM0 ðX1ÞDL

M0KðX2Þ. The time-
dependent Euler angles XC0M represent the (typically faster) reori-
entation of the probe with respect to the protein.

A segment of the protein backbone comprising the atoms Ca
i , Ni,

HNi, COi�1, Oi�1 and Ca
i�1, the equilibrium positions of which lie

within the peptide-bond plane defined by Ni, HNi, COi�1 and Oi�1,
is illustrated in Fig. 1b. The axis ZD, which lies along the N–H bond,
and the axis XM, which for N–H bond dynamics turned out by data
fitting to be the main local ordering/local diffusion axis lying along
Ca

i�1 � Ca
i , are shown.

The local motional diffusion tensor, RL, is diagonal in the M
frame. The global motional diffusion tensor, RC, is diagonal in the
C frame. We start by assuming Smoluchowski dynamics for the
coupled set of orientational coordinates XLM and XLC, according
to the SRLS approach. Namely, the system consists of two Brown-
ian rotators (or ‘bodies’), the N–H bond (probe) and the protein
(cage), coupled by an interaction potential which depends on their
relative orientation. Each 3D uncoupled rotator (assumed axial, i.e.,
Rx = Ry = R\ and Rz = Rk) is associated with three decay rates
s�1

K ¼ 6R? þ K2ðRk � R?Þ;K ¼ 0;1;2, where R stands for either RC

or RL. The diffusion equation for the coupled system is given by:

@

@t
PðX; tÞ ¼ �bCPðX; tÞ; ð49Þ

where X is a set of coordinates completely describing the system.
One has [19]:

X ¼ ðXLM;XLCÞ;bC ¼ bJðXLMÞRLPeq
bJðXLMÞP�1

eq þbJðXLCÞRCPeq
bJðXLCÞP�1

eq : ð50Þ

where bJðXLMÞ and bJðXLCÞ are the infinitesimal rotation operators for
the probe and the protein, respectively.

Changing to different coordinates is straightforward [20]. It is
physically of interest to select the set defined by XC0M and XLC0 ,
where the probe motion is described as relative to the overall pro-
tein motion. One has [20]:

X ¼ ðXC0M;XLC0 Þ;

bC ¼ bJðXC0MÞRLPeq
bJðXC0MÞP�1

eq þ ½bJðXC0MÞ

� bJðXLC0 Þ	RCPeq
bJðXC0MÞ � bJ XLC0ð Þ
h i

P�1
eq : ð51Þ

The Boltzmann distribution is

Peq ¼ exp½�UðXC0MÞ=kBT	=hexp½�UðXC0MÞ=kBT	i,

where XC0MðtÞ ¼ XLMðtÞ �XLC0 ðtÞ. The Euler angles XC0MðtÞ represent
the motion of the probe relative to the protein, the Euler angles
XLM(t) represent the motion of the probe relative to the lab frame,
and the Euler angles XLC0 ðtÞ represent the motion of the protein
relative to the lab frame.

The potential UðXC0MÞ is expanded in the full basis set
of the Wigner rotation matrix elements, i.e., UðXC0MÞ ¼
�
P

L;K;McL
MDL

KMðXC0MÞ. For D2 point group molecular symmetry,
and axial local director, the terms with L = 2 and 4, and K = 0, 2
and 4 are preserved. It might be oversimplified to regard the local
ordering potential at the site of the motion of the probe as
necessarily obeying the macroscopic symmetry constraints of
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typical ordered phases. One might expect biaxial character of the
local director, C

0
. Similarly, one might expect that the summation

need not be restricted to even L terms. We first note that the aniso-
tropic magnetic interactions in the spin Hamiltonian have L = 2.
Then we note that second-rank correlation functions are qualita-
tively very similar whether a first-rank or second-rank SRLS poten-
tial is used [16].

Thus, for economy in the number of fitting parameters, and for
convenience, we have restricted L so far to just even values. In the
same spirit, we have ignored any biaxiality in the local ordering po-
tential, so M = 0 in the expansion of uðXC0MÞ. The typical SRLS po-
tential used so far has been:

uðXC0MÞ ¼
UðXC0MÞ

kBT


 �c2
0D2

0;0ðXC0MÞ � c2
2 D2

0;2ðXC0MÞ þ D2
0;�2ðXC0MÞ

h i
: ð52Þ

The coefficient c2
0 is related to the orientational ordering of the

N–H bond with respect to the local director, whereas the coeffi-
cient c2

2 is related to the asymmetry of the ordering around the
director. Terms corresponding to L = 4, K = 0, 2, 4 (c4

0; c
4
2 and c4

4Þ
are included in our latest software [90]. This allows for modeling
diffusion within two wells with less frequent jumps between them
[17,39]. More general jump models may be included by adding
appropriate terms in the expansion of uðXC0MÞ.

Eq. (51) can be solved in terms of the time dependent
probability density function P(XC0M;XLC , t), which describes the
evolution of the system in time and orientational space. Alterna-
tively, it is convenient to directly calculate the time correlation
functions CJ

M;KK 0 ðtÞ ¼ hD
J�

M;KðXLMÞj expð�bCtÞjDJ
M;K 0 ðXLMÞPeqi (where

the brackets h. . .i mean integration over the full space of orienta-
tional coordinates), which for appropriate values of the coefficients
J, M, K, K

0
determine the experimental NMR relaxation rates. Actu-

ally, the Fourier–Laplace transforms of CJ
M;KK 0 ðtÞ are needed. They

are obtained as the spectral densities given by:
jJ
M;KK 0 ðxÞ ¼ DJ�

M;KðxC0MÞjðixþ bCÞ�1jDJ
M;K 0 ðXC0MÞPeq

D E
: ð53Þ

As stated here the model features a large number of parameters
including the potential coefficients c2

0; c
2
2; c

4
0; c

4
2 and c4

4, the principal
values of the local diffusion tensor, RL

i ; i ¼ 1;2;3, and the principal
values of the global diffusion tensor, RC

i , with i = 1, 2, 3. The geo-
metric parameters featured include the Euler angles aMD and bMD

for the relative orientation of the (axial) dipolar and local ordering
frames, and the Euler angles XCC0 for the relative orientation of the
global diffusion and local director frames. The Euler angles for the
relative orientation of the local ordering and local diffusion frames
(not shown in Fig. 1) can also be varied. Clearly only a small num-
ber of parameters are varied in a given calculation. We found that
for N–H bond dynamics studied with 15N spin relaxation it is
appropriate (i.e., no over-fitting is encountered) to vary at most
five parameters using data sets that comprise six data points
(15N T1, T2 and 15N–{1H} NOE acquired at two magnetic fields).
For methyl dynamics studied with 2H spin relaxation of 13CDH2,
it is appropriate to vary at most three parameters using data sets
that comprise four data points (2H T1 and T2 acquired at two mag-
netic fields). In Appendix A we show examples in which the
parameters c2

0; c
2
2;R

L
k and RL

? (c2
0; c

2
2 and RL) were varied in analyzing

N–H bond dynamics.
The generality of the fitting scheme makes it possible to select

various parameter combinations. Also, it is possible to carry out
predictive or exploratory simulations.

The global diffusion tensor, RC, takes the following form in the C
0

frame:
RC
? cos2 bCC0 þ RC

k sin2 bCC0 0 1=2 RC
? � RC

k

� �
sin 2bCC0

0 RC
? 0

1=2 RC
? � RC

k

� �
sin bCC0 0 RC

? sin2 bCC0 þ RC
k cos2 bCC0

0BBB@
1CCCA:
ð54Þ

Note that for bCC0 ¼ 0 or RC
? ¼ RC

k , the global diffusion tensor is
diagonal and invariant in both the C and C

0
frames.

3.3.2. Numerically exact treatment
We address here the problem of devising an efficient procedure

for evaluating numerically accurate spectral densities. We adopt a
variational scheme based on a matrix vector-representation of Eq.
(53) followed by an application of the Lanczos algorithm in its
standard form, developed for Hermitian matrices. It is convenient
to express the generic time correlation functions as linear combi-
nations of the normalized auto-correlation functions. By defining
2AJ

M;KK 0 ¼ DJ
M;K þ DJ

M;K 0 , the spectral densities of the normalized
auto-correlation functions of interest are:

jS
M;KK 0 ðxÞ ¼ AJ�

M;KK 0 ðXC0MÞP1=2
eq jðixþ eCÞ�1jAJ

M;KK 0 ðXC0MÞP1=2
eq

D E
jAJ

M;KK 0 ðXC0MÞj2Peq

D E.
; ð55Þ

and the generic spectral densities are:

jM;KK 0 ðxÞ ¼ 2ð1þ dK;K 0 Þj
S
M;KK 0 ðxÞ � jS

M;KKðxÞ � jS
M;K 0K 0 ðxÞ

h i
=2½J	;

ð55aÞ

where J = 2 and the symmetrized form of the time evolution opera-
tor is eC ¼ P�1=2

eq
bCP1=2

eq . The value of the quantum number M depends
on the interaction(s) involved in the relaxation parameter exam-
ined. Thus, M – 0 for terms including bI�, where bI denotes the spin
operator of a nuclear spin of 1/2 or 1. We use the shorthand nota-
tion [J] = 2J + 1. A numerical calculation is then performed by choos-
ing a basis set of functions, representing in matrix form the
symmetrized operator, eC, and evaluating Eq. (55) directly by
employing a standard Lanczos approach. The latter is reviewed here
for completeness in accordance with the standard technique of
Moro and Freed [93,94]. Let us suppose that we are interested in
calculating the Fourier–Laplace transform of the normalized auto-
correlation function of an observable f(q) or a diffusive symmetrized
(i.e., Hermitian) operator, eC, acting on the coordinate q, in the form
of jðxÞ ¼ hdf �P1=2

eq jðixþ eCÞ�1jdfP1=2
eq i=hjf j

2Peqi, where df = f � hfPeqi is
the observable redefined to yield an average value of zero. In the
present case we consider only rotational motion in isotropic fluids,
so that hfPeqi = 0.

The Lanczos algorithm is a recursive procedure for generating
orthonormal functions that allow a tridiagonal matrix representa-
tion, T, of eC. The spectral density can be written in the form of a
continued fraction [93,94]. The calculation of the tridiagonal ma-
trix elements can be carried out in finite precision by working in
the vector space obtained by projecting all the functions and
operators onto a suitable set of orthonormal functions jk > . One
only needs to define the matrix C, and the starting vector elements,
v1, which are given by Ck;k0 ¼ hkjeCjk0i and vk = hkj1i, respectively.

In the case under consideration, the SRLS diffusion operator is given
by Eq. (51) and the starting vector is given by: j1i ¼
AJ

M;KK 0 ðXC0MÞP1=2
eq =hjA

J
M;KK 0 j

2Peqi ¼
ffiffiffiffiffiffiffiffiffiffiffi

2½J	
1þdK;K0

q
AJ

M;KK 0 ðXC0MÞP1=2
eq . A natural

choice for a set of orthonormal functions is the direct product of normal-
ized Wigner matrices. What is left is the calculation of the matrix ele-
ments Ck, k0 and the vector elements hkj1i. The algebraic intermediate
steps are relatively straightforward and based on properties of the Wig-
ner rotation matrices, infinitesimal rotation operators and spherical
tensors. We skip the technical details and list the resulting expressions.
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3.3.3. Observables
In order to interpret 15N–1H dipolar and 15N CSA auto-corre-

lated relaxation in the presence of axial potentials, only diagonal
time correlation components, KK, are required. In the presence of
rhombic potentials cross-terms, KK

0
, are also required. This sce-

nario is discussed below in detail.
According to standard analysis in the motional narrowing re-

gime (Chapter 12 of Ref. [33]), one may define the observable spec-
tral densities for two magnetic interactions, l and m, as the real
part of the Fourier–Laplace transform of the time correlation func-
tion of the second rank Wigner functions. The latter are given in
terms of the orientation of the magnetic tensors in the laboratory
frame (here l, m = D or CSA, XD = XMD, and XCSA = XMD + X, cf.
Fig. 1a):

Jlm
M ðxÞ ¼

Z 1

0
e�ixt D2�

M;0½X
l þXC0MðtÞ	D2�

M;0½X
m þXC0Mð0Þ	

D E
: ð56Þ

Based on standard properties of the Wigner functions one has:

Jll
M ðxÞ¼

Z 1

0
e�ixt

X
KK 0

D2�
K;0ðX

lÞD2
K 0 ;0ðX

lÞ D2�
M;K ½XC0MðtÞ	D2�

M;K 0 ½XC0Mð0Þ	
D E

:

ð56aÞ

Jll
M ðxÞ ¼

Z 1

0
e�ixt

X
KK 0

D2�
K;0ðX

lÞD2
K 0 ;0ðX

lÞ D2�
M;K ½XLMðtÞ	D2

M;K 0 ½XLMð0Þ	
D E

:

ð56bÞ

Based on the symmetry relation jJ
M;KK 0 ¼ jJ

M;K 0K (cf. Eq. (56a)) we
obtain:

R Jll
M ðxÞ
� �

¼
X

K

jD2
K;0ðX

lÞj2R½jM;KKðxÞ	

þ 2
X
K<K 0

R½D2�
K;0ðX

lÞD2
K 0 ;0ðX

lÞ	R½jM;KK 0 ðxÞ	; ð57Þ

where R stands for the real part. Note that for axial potentials
c2

2 ¼ 0
� �

the second term goes to zero. The coefficients D2
K;0ðX

DÞ
are readily evaluated, while D2

K;0ðX
CSAÞ can be calculated in terms

of XMD and X, according to the expression D2
K;0ðX

CSAÞ ¼P
LD2

K;LðXMDÞD2
L;0ðXÞ.

The spectral densities for 15N–1H dipolar and 15N CSA auto-cor-
relation are thus obtained as JDDðxÞ ¼ R½JDD

0 ðxÞ	 and
JCCðxÞ ¼ R½JCSACSAðxÞ	, respectively. The measurable 15N relaxation
parameters T1, T2 and 15N–{1H} NOE are calculated as functions of
JDD(0), JDD(xH), JDD (xN), JDD (xH �xN) and JDD(xH + xN), and
JCC(0) and JCC(xN), using standard expressions for NMR spin
relaxation [28,29]. Note that due to the additional symmetry
jM;K;K 0 ¼ jM;�K;�K 0 , only the nine distinct couples K, K

0
= (�2, 2),

(�1, 1), (�1, 2), (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2) need to be
considered for rhombic local ordering and magnetic frames. For
rhombic local ordering and axial magnetic frames, one has the
explicit expression (denoting jKK 0 ¼ R½j2

0;KK 0 ðxÞ	 for brevity):

JDDðxÞ ¼ d2
00ðbMDÞ

� �2
j00ðxÞ þ 2 d2

10ðbMDÞ
� �2

j11ðxÞ

þ 2 d2
20ðbMDÞ

� �2
j22ðxÞ þ þ4d2

00ðbMDÞd
2
20ðbMDÞj02ðxÞ

þ 2d2
�10ðbMDÞd

2
10ðbMDÞj�11ðxÞ

þ 2d2
�20ðbMDÞd

2
20ðbMDÞj�22ðxÞ; ð58Þ

with only six couples K, K
0
= (0, 0), (1, 1), (2, 2), (0, 2), (�1, 1) and

(�2, 2) involved. The function JCC(x) is obtained using Eq. (56a)
with l representing the 15N CSA interaction.

A convenient measure of the local ordering of the N–H bond is
provided by the order parameters S2

0 ¼ hD
2
00ðXC0MÞi and S2

2 ¼
hD2

02ðXC0MÞ þ D2
0�2ðXC0MÞi. They are related to the orienting potential

(Eq. (52)), and hence to c2
0 and c2

2, via the ensemble averages:
hD2
0nðXC0MÞi ¼

Z
dXC0MD2

0nðXC0MÞ exp½�uðXC0MÞ	Z
dXC0M exp½�uðXC0MÞ	

�
: ð59Þ

One can convert to Cartesian ordering tensor compo-
nents according to Szz ¼ S2

0; Sxx ¼
ffiffiffiffiffiffiffiffi
3=2

p
S2

2 � S2
0

� �
=2; Syy ¼

�
ffiffiffiffiffiffiffiffi
3=2

p
S2

2 þ S2
0

� �
=2, with Sxx + Syy + Szz = 0.

In the case of zero potential, c2
0 ¼ c2

2 ¼ 0, and axial diffusion, the
solution of the diffusion equation associated with the time evolu-
tion operator features three distinct eigenvalues:

1=sK ¼ 6RL
? þ K2ðRL

k � RL
?Þ for K ¼ 0;1;2; ð60Þ

where RL
k ¼ 1=ð6skÞ and RL

? ¼ 1=ð6s?Þ ¼ 1=ð6s0Þ. Only diagonal
jK(x) � jK, K(x) terms are non-zero, and they can be calculated
analytically as Lorentzian spectral densities, each defined by width
of 1/sK. When the ordering potential is axially symmetric,
c2

0–0; c2
2 ¼ 0, again only diagonal jK(x) survive, but they are given

as infinite sums of Lorenzian spectral densities, which are defined
in terms of the eigenvalues, 1/si, of the SRLS operator (Eq. (51)),
and the weighing factors, cK, i, so that:

jKðxÞ ¼
X

i

cK;isi

1þx2s2
i

: ð61Þ

The eigenvalues 1/si represent normal modes of motion of the
system. The weighting factors (eigenmodes) depend on the
parameters that define the tensors RL and RC, and the coefficients
of the coupling potential. Although in principle the number of
terms in Eq. (61) is infinite, in practice a finite number of terms
is sufficient for numerical convergence of the solution, which must
be ensured. Note that the eigenmodes depend on a small number
of physical parameters.

Finally, when the local ordering potential is rhombic,
c2

0–0; c2
2–0, both diagonal, jK(x), and non-diagonal, jKK 0 ðxÞ, terms

are different from zero. The functions jKK 0 ðxÞ are evaluated explic-
itly according to expressions analogous to Eq. (61).

The spectral densities jK(x) (in general, jKK 0 ðxÞ) are the building
blocks of a given dynamic model, and the spectral densities JXX(x)
for auto-correlated relaxation and JXY(x) for cross-correlated relax-
ation are the building blocks for a specific geometric implementa-
tion of this model. Together with the magnetic interactions, the
appropriate values of the spectral densities JXX(x) and JXY(x) deter-
mine the experimentally measured relaxation parameters [28,29].

To further clarify the relationship between jKK 0 ðxÞ and JXX(x) or
JXY(x), let us consider a rigid peptide-bond plane (e.g., as in 3D GAF
[65,78]). Several probes, with their equilibrium orientations lying
within this plane, are conceivable: 15N–1H, 13C

0
–13Ca, 15N–13Ca,

13Ca–2H, etc. They all sense the same motion, associated with the
local ordering/local diffusion frame, M, which is attached rigidly
to the peptide-bond plane. Therefore the same jKK 0 ðxÞ functions
may be used to calculate all the auto-correlated and cross-corre-
lated relaxation parameters associated with all of these probes.
The various probes differ in (1) their local geometry, i.e., the orien-
tation of the relevant magnetic frame(s) with respect to the M
frame, and (2) the relevant magnetic interactions. These properties
are not part of the dynamic model. They enter the calculation when
JXX(x) and JXY(x) are assembled out of the jKK0 ðxÞ functions, and
when the relaxation parameters are assembled out of the appropri-
ate values of JXX(x) or JXY(x).

If the peptide-bond plane is engaged in a given motion, e.g.,
crankshaft-type torsion, anti-correlated movement between the
dihedral angles Ui�1 and Ui, etc., then all the probes with their
equilibrium orientations lying within the peptide-bond plane will
experience the same motion. This has not always been appreciated
[95].
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For practical reasons our first fitting scheme for SRLS is based on
pre-calculated 2D grids of spectral densities, jKK(x), calculated for
axial potentials [19]. The coordinates of these grids are c2

0 and RC

(in units of RL). The parameter combinations used are formally
analogous to models 1–5 of Refs. [96] and [97], and models 1–8
of Ref. [97]. We also made the approximation that RL

k � RL
?, in anal-

ogy with ss > sf in MF. This fitting scheme for SRLS differs from MF
in accounting for mode-coupling, allowing for a ‘‘diffusion tilt”, and
accounting for titled magnetic frames. The global diffusion tensor,
RC, is taken to be isotropic.

Pre-calculated grids of spectral densities are only practical for
two coordinates; this limits the number of parameters that can
be varied. Imposing axial potentials and taking RL

k � RL
? turned

out to be oversimplifications [90]. To improve the analysis we
developed a newer fitting scheme for SRLS [20] where the spectral
densities are calculated at each iteration step in the minimization
process. This fitting scheme allows for rhombic potentials and for
arbitrary RL

k=RL
? ratios. The global diffusion is still taken as isotropic.

Enhancing it to axial global diffusion is relatively easy. However,
this extension has not been carried out because this fitting scheme
is inefficient when the time scale separation is large and the local
potential is rhombic, which is the common scenario for ‘‘rigid” N–H
bonds.

In our most recent fitting scheme [90] the global diffusion ten-
sor, RC, is allowed to be rhombic. Also, the local ordering and local
diffusion frame can be distinct. In addition, the local diffusion ten-
sor is allowed to be rhombic. The local potential includes terms
with L = 2 and L = 4, which (as already mentioned) makes possible
modeling diffusion within rotamer wells with (less frequent)
jumps between the wells [17]. The programming language used
is C++ (previously we used the FORTRAN programming language
[20]). The computer-intensive parts of the code have been
parallelized, and object-oriented programming has been enacted.
These features brought about an increase in efficiency of approxi-
mately one order of magnitude relative to the earlier fitting
scheme developed in Ref. [20]. Importantly, the SRLS program
has been integrated with a hydrodynamics-based approach for cal-
culating anisotropic global diffusion tensors [98].

We call this software package C++OPPS (COupled Protein Probe
Smoluchowski) [90]. C++OPPS is distributed under the GNU Public
License (GPL) v2.0. The software is available at the website http://
www.chimica/unipd.it/licc/software.html.

The illustrative calculations presented in Appendix A were car-
ried out using this fitting scheme. We also compare in that Appen-
dix SRLS and MF, using the same number of formally analogous
C
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Fig. 2. (a) Same as the captions of Fig. 1a, except for the magnetic frames; Q denotes
the axial quadrupolar tensor. (b) Methyl group schematic corresponding to a
rhombic local ordering scenario. ZQ denotes the principal axis of the quadrupolar
tensor. XM denotes the main ordering axis lying along the C–CDH2 bond.
free variables. For MF analysis, we used in our work the programs
Modelfree 4.0 [96] or Dynamics [97].

Application to 13CDH2 deuterium spin relaxation. The SRLS frames
shown in Fig. 2a for methyl dynamics are the same as the frames
shown in Fig. 1a, except that the magnetic tensor is in this case
the 2H quadrupolar tensor (Q frame). The experimentally deter-
mined rhombic local ordering/local diffusion frame, M, and the Q
frame, are depicted in Fig. 2b. The axis XM is the main local ordering
axis, aligned parallel to the C–CH3 axis (the angle bMQ is close to
110.5�).

For an axial quadrupolar tensor, Q, one has:

JQQ ðxÞ ¼ d2
00ðbMQ Þ

� �2
j00ðxÞ þ 2 d2

10ðbMQ Þ
� �2

j11ðxÞ

þ 2 d2
20ðbMQ Þ

� �2
j22ðxÞ þ þ4d2

00ðbMQ Þd
2
20ðbMQ Þj02ðxÞ

þ 2d2
�10ðbMQ Þd

2
10ðbMQ Þj�11ðxÞ

þ þ2d2
�20ðbMQ Þd

2
20ðbMQ Þj�22ðxÞ: ð62Þ

For 2H relaxation the spectral densities JQQ(0), JQQ(xD) and
JQQ(2xD), together with the magnitude of the quadrupolar interac-
tion, determine the experimentally measured relaxation rates 2H
T1 and T2 according to standard expressions for NMR spin relaxa-
tion [28,29]. Eq. (62) applies to cases when the quantum number
M is equal to zero.

3.4. Collective motions

The analysis of collective behavior is based on conformational
fluctuations in the protein. Collective coordinates are mainly used
to single out functionally relevant motions and to elucidate protein
energy landscapes. The simplest approach of this kind is the Gauss-
ian network model (GNM) [27], which pertains to the coarse-
grained elastic network category. GNM predicts both localized
modes, which have been associated primarily with structural fea-
tures, and collective modes, which have been associated in many
cases with biological function.

Methods for treating collective internal motions include normal
mode analysis (NMA) [99], molecular dynamics in the context of
principal component analysis (PCA) [100], essential dynamics
analysis (EDA) [101], combined PCA and NMA based on jumping
among minima (JAM) [102], and various elastic network models
[27,103,104]. A combined contact and elastic-network-model-
based approach has also been developed [105]. Approaches where
the Langevin equation is applied in the context of independent
damped oscillators have been set forth [106].

MD techniques based on simplifications of the empirical poten-
tial energy functions, or advanced sampling techniques, can be in-
cluded in the present section (e.g., see Ref. [107] and relevant
papers cited therein). Recourse to low-dimensional sub-spaces,
where significant motions occur, and considering parts of the pro-
tein as quasi-rigid bodies, are common strategies [108]. In general,
a relatively small number of dominant independent collective
modes are determined.

Several predictive structure-based methods have been inte-
grated with MF analysis [109–111].

The network of coupled rotators (NCR) [112–115] is among the
most sophisticated structure-based approaches. Internal dynamics
is described in terms of bond vectors coupled by pair-potentials,
within the scope of analytical time correlation functions. Order
parameters are derived, and conformational entropy is calculated.
Unlike the simpler models, NCR solves the Langevin equation at
each N–H site. It captures the important aspect of local structural
asymmetry. The local geometry is encoded. NCR shares some com-
mon features with contact-based approaches [116–118] and elas-
tic network models [27,103,104,119].

http://www.chimica/unipd.it/licc/software.html
http://www.chimica/unipd.it/licc/software.html


E. Meirovitch et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 56 (2010) 360–405 375
Brüschweiler and Prompers developed the isotropic reorienta-
tional eigenmode dynamics (iRED) approach [25,26]. In this
method, the snapshots derived from the MD trajectory are treated
analytically to yield an isotropic ensemble from which a covariance
matrix is computed. A geometric ‘‘separability” parameter, which
singles out the five largest eigenvalues associated with the global
motion, is defined. Non-separability does not account for correla-
tions between the rotational degrees of freedom of the protein
and the probe. However, iRED treats correlated motions along
the polypeptide chain; it is applicable to partially unfolded and un-
folded proteins.

We include in this section the method of Vugmeyster et al.
[120]. This approach assumes that C(t) = CC(t) � CL(t), belonging
thus to the mode-decoupling limit. It associates dynamical cou-
pling with comparable values of se and sm.

”Diffusive mode-coupling” approaches [121,122] treat the effect
of fast local bond-vector fluctuations on the global diffusion tensor,
i.e., on the shape of the protein. The method of Perico and co-work-
ers [121] recovers the original MF formula. The agreement with the
experimental NMR data is not satisfactory. Caballero-Manrique
et al. [122] developed an enhanced approach and used it to calcu-
late experimental relaxation parameters; here the agreement be-
tween theoretical and experimental relaxation parameter is good.

There is ample literature on Markov chain dynamics [123–127]
and lipid dynamics [128–130].
4. Future directions

The SRLS model as described in this review article has served as
a working model in several analyses of NMR spin relaxation data
from proteins [19,20,34,35,46–50]. We have found that for N–H
bonds located in flexible regions of the protein structure, and for
methyl groups, this model provides a new and insightful picture
of protein dynamics, with a level of parameterization of the model
sufficient in most cases to provide consistent analyses of the
available experimental data. The analysis of a ‘‘rigid” N–H bond
can be improved by including inertial effects (see below).

This modeling can be improved in a number of ways. For exam-
ple, from the viewpoint of an 15N–1H bond located in a mobile do-
main or flexible loop, one perhaps expects three types of motions
including the local motion of the N–H bond, the motion of the
flexible moiety housing it, and the overall tumbling of the protein.
A natural extension of our current 2-body Smoluchowski SRLS
model would be a 3-body Smoluchowski SRLS model to incorpo-
rate all three kinds of motion; one such example is developed in
Ref. [16]. One can also account for rotamer jumps around side-
chain v angles [17]. However, this would yield additional parame-
ters to fit, an issue on which we comment further below.

The analysis of ‘‘rigid” N–H bond dynamics has been
problematic in some cases, as pointed out in Appendix A. This
can be rationalized by recognizing that in the presence of strong
local potentials rapidly moving N–H bonds are expected to expe-
rience torsional oscillations which are not included in the over-
damped diffusive or Smoluchowski limit. One must therefore
account for inertial effects via explicit inclusion of the respective
angular momentum degrees of freedom. This leads to the Fokker–
Planck–Kramers (FPK) SRLS model, which has been previously de-
scribed in detail by Polimeno and Freed [16]. The methodology is
somewhat more complex, but tractable. The additional physical
parameters needed are the moments of inertia of the bodies,
which can be inferred from structural considerations. For local
motions occurring in strong potentials, this can lead to a reason-
able modeling of (under-damped) torsional oscillations. The
implementation of the FPK SRLS model to NMR spin relaxation
in proteins is in progress.
Another limitation of the Smoluchowski equation is in the
back-reaction, due to the coupling potential, on the heavy body,
i.e., the overall protein motion, which is rigorously required for
‘‘detailed-balance”; this back-reaction was ignored in the early
Born–Oppenheimer-type of treatment [15]. In the Smoluchowski
SRLS model this leads to significant ‘‘mode-coupling” between
the local probe motion and the overall protein motion when their
diffusive rates become comparable, with the small body ‘‘pulling”
on the large body. In the FPK-SRLS model, the much larger mo-
ment-of-inertia of the whole protein relative to the local probe
will greatly suppress this effect, as may be seen in the analysis
provided in Ref. [16]. Thus, to treat this limit, it will be appropri-
ate to replace the Smoluchowski equation with the more com-
plete FPK equation. However, in our extensive analyses of NMR
data, we have found that such cases of slow local motion are typ-
ically associated with mobile domains or relatively large loops;
for these heavier probes, Smoluchowski SRLS is reasonably
adequate.

One may also ask whether it is useful to compare the results
of SRLS analyses of the experimental data with the results of MD
simulations. Currently comparisons are made between results
from MF analyses of the NMR data and MD [36,70,131–135].
We argue in this review that the results of a SRLS analysis are
more physically relevant than those from MF, so it would be
appropriate to make comparisons between SRLS and MD. Once
the SRLS analysis is completed, producing the best-fit values of
the parameters which define the local potential, the diffusion
tensors, and the geometric factors (i.e., relative frame orienta-
tions), relevant time correlation functions of the D2

MKðXÞ (cf.
Eqs. (56) and (56a)) can readily be computed. It would then be
of interest to calculate the equivalent correlation functions
from the MD trajectories and compare with their SRLS counter-
parts.

So far the comparison between NMR/MF and MD has been car-
ried out as follows. Based on the assumption that
C(t) = CC(t) � CL(t), the global motion is first eliminated from the
MD trajectory by frame superimposition onto a reference struc-
ture. Based on the form of Eq. (34), S2 MD is typically derived as
the value of CL(t) at long times. In some cases least-squares fitting
of the CL(t) MD to Eq. 34 was carried out. In a very few cases CL(t)
was computed as the time correlation function of P2(cos bCD),
where D is the magnetic dipolar frame typically lying along the
symmetry axis of the probe, and C is the protein-fixed frame asso-
ciated with the reference structure (a thorough discussion of these
matters appears in Appendix B). Clearly none of these methods
provide the correlation functions of the D2

MKðXÞ.
Progress on how such correlation functions may be obtained

from MD simulations is illustrated in Refs. [136,137]. It was found
that in extracting information on rotational reorientation from MD
trajectories, it is more convenient to work with quaternions rather
than Euler angles [136]. It is then possible to transform an analysis
based upon quaternions into the D2

MKðXÞ. In addition, efforts were
made in Ref. [136] to model the MD trajectories as Markov chain
processes to overcome the need for very long trajectories, and
the need to obtain enough trajectories to provide adequate ensem-
ble averages.

An MD approach based on these techniques has been success-
fully applied to simulate complex ESR line-shapes over a 20-fold
range in frequencies [43,136,138–140]. The ESR spectra calculated
with MD agreed very well with their counterparts calculated with
SRLS. The reproduction of ESR line-shapes with MD represents an
even greater challenge than the reproduction of the NMR relaxa-
tion parameters (typically T1, T2 and heteronuclear NOE), which
only require time correlation functions for their evaluation. The
techniques developed in these ESR studies could be adapted to
help calculate from the MD trajectories the expressions for the
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experimental NMR spin relaxation parameters, in analogy to the
calculation of ESR line-shapes.

As noted above, in its present implementation SRLS does not
treat explicitly correlated N–H bond vector motions along the
polypeptide chain, or such correlations for domain motion. More
advanced modeling would be required to achieve this. Polimeno,
Barone and co-workers have developed an integrated approach
that combines stochastic models, molecular dynamics, quantum-
chemical calculations and hydrodynamics-related methods [141–
145]. This approach has been applied successfully to small
molecules in the context of both ESR [141–145] and NMR [146].
Current efforts are directed toward its application to bio-
macromolecules.
5. Conclusions

Experimental NMR spin relaxation data from proteins can be
used to obtain unique information on mode-coupling, local poten-
tials, local ordering, conformational distributions, global and local
motional rates, associated activation energies, and features of local
geometry. When inertial effects are unimportant, i.e., for over-
damped conditions, the Smoluchowski SRLS equation provides an
appropriate tool for extracting this information. The generality of
its solution makes it possible to determine, for each case, the
parameter combination that conforms to the sensitivity of the
experimental data. When the conditions mentioned above are
not fulfilled, then analogous FPK equations are appropriate; their
development is currently near completion.

In the Smoluchowski limit the main factors that affect protein
dynamics include mode-coupling, the asymmetry of the local po-
tential, and the fact that in the presence of a local potential the
eigenfunctions of the (axial) local motional diffusion operator are
no longer simple. For amide bonds located in well-structured re-
gions of the protein structure the dominant factor is the asymme-
try of the local potential. For amide bonds located in mobile
domains and flexible loops, all of the factors mentioned above
are important. For methyl dynamics mode-coupling is typically a
small effect, but the other factors are important.

N–H bonds reorient primarily about the Ca
i�1 � Ca

i axis with ps
correlation times when located in well-structured regions, and
with ns correlation times when located in mobile domains or
flexible loops. For ‘‘rigid” (flexible) N–H bonds, the local potential
is strong (of moderate strength) and highly rhombic when the
main ordering axis is defined to lie along the instantaneous N–H
orientation. When the main ordering axis is defined to lie along
Ca

i�1 � Ca
i then the local ordering is strong at both ‘‘rigid” and

flexible N–H sites, with different degrees of rhombicity.
The local ordering at methyl sites in proteins is rhombic, with

the main local ordering axis lying along the C–CH3 bond. The rate
of the local motion is typically fast relative to the rate of the global
motion. The local potential is weak and highly rhombic. The diver-
sity of the potential at different sites represents in a simple, eco-
nomical and physically reasonable manner the effect of the
structure surrounding methyl groups on their motion.

The model-free approach does not feature key elements that are
found to be important by the SRLS model. In view of the oversim-
plifications inherent in the MF method the experimental data are
force-fitted, and the best-fit parameters are often not appropriate
for physical interpretation. Their problematic nature is intensified
by simplified constructs (e.g., see the expression for S2) or mathe-
matical definitions (e.g., see the expression for se, based on the the-
ory of moments) whose meanings are physically vague, and by the
utilization of spectral densities which do not represent a physical
scenario (e.g., see the MF formula for methyl dynamics [36]). There
is ample evidence for adverse implications of parameterization and
for not abiding by the assumptions underlying the equations
employed.

In the limit of large time-scale separation one may express the
total time correlation function as exp(�t/sm) � CL(t). Replacing the
simple MF forms of CL(t), which we found to be unrealistic with
more elaborate analytical functions within the scope of a physical
scenario is usually not possible because the time correlation func-
tions for restricted motions in the presence of POMFs lead to intri-
cate numerical solutions – cf. Section 3.1.1.
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Appendix A. Typical data fitting scenarios

Let us denote N–H bonds located in well-structured regions of
the protein, notably elements of secondary structure, as ‘‘rigid”,
and those located in mobile domains, loops, end-chain segments,
etc., as ‘‘flexible”. In many cases the MF analysis of ‘‘rigid” N–H
bonds (and in some cases of ‘‘flexible” N–H bonds) requires the
inclusion of conformational exchange (Rex) contributions (added
to the expression for 1/T2 given in Eq. (64)). The fitting of the
experimental data by the program SRLS/C++OPPS in terms of the
motion of these three types of N–H bond is illustrated below
[90]. We selected as an example typical 15N relaxation parameters
of Escherichia coli adenylate kinase (AKeco) acquired at 14.1 and
18.8 T, and 302 K [46,47]. The global motional correlation time at
this temperature is 14.9 ns [50].

The expressions for 15N 1/T1, 1/T 2 and 15N–{1H} NOE are given
by [29]:

1=T1 ¼ d2½JDDðxH �xNÞ þ 3JDDðxNÞ þ 6JDDðxH þxNÞ	 þ c2JCCðxNÞ;
ð63Þ

1=T2 ¼ 1=2d2½4JDDð0Þ þ JDDðxH �xNÞ þ 3JDDðxNÞ
þ 6JDDðxHÞ þ 6JDDðxH þxNÞ	
þ c2=6½4JCCð0Þ þ 3JCCðxNÞ	; ð64Þ



Table 1
Results of SRLS-based fitting of 15N relaxation parameters of selected residues of
AKeco acquired at 14.1 and 18.8 T, and 302 K. A correlation time for global diffusion of
14.9 ns was used [50]. The underlined s\ values in row 5 was fixed at 14.9 ns in the
calculation. The parameter values of rNH(eff) = 1.015 Å (Ref. [147]), Dr = �169 ppm
(Ref. [148]) and bD�CSA = 17� (Ref. [149]) were used. The local ordering and local
diffusion frame were taken to be the same. Values of Lmax = 18–24 were used. The
angles aMD and bMD were fixed at 90� and 101.3�, respectively. The program
DYNAMICS [97] was used to perform the MF calculations. Further details are given in
the text.

Residue Method
c2

0 S2
0

� �2
� �

b s\ (ns) sk (ns) bMD (�) Rex (s�1) v2

197 MF 12.4 (0.84) 0.078c 0.078c 2.0
197 SRLS ax 11.6 (0.83) 0.069 0.069 0.6
209 MF 9.0 (0.78) 0.042c 0.042c 4.4 8.8
209 SRLS ax 10.1 (0.81) 0.031 0.006 3.6 5.8
209 SRLS rh �15.9a

14.9 0.013 2.4

46 MF 8.9 (0.778) 0.91 0.0 12.2d 1.8 5.1
46 SRLS ax 3.6 (0.448) 7.12 0.004 21.4 4.0 0.9
46 SRLS rh �6.8a 4.0 0.021 2

a In the calculation of residue 209, carried out with the method designated
SRLS rh, the local potential used was given by c2

0 ¼ �15:9 and c2
2 ¼ �3:4. In the

calculation of residue 46, carried out with the method designated SRLS rh, the local
potential used was given by c2

0 ¼ �6:8 and c2
2 ¼ �4:4).

b In the SRLS calculations the parameter that is varied is the axial coefficient, c2
0,

of the potential, u; the latter is defined by Eq. (52) with c2
2 ¼ 0. The order parameter,

S2
0, is calculated using this form of u and the axial versions of Eq. (59). In the MF

calculations the parameter that is varied is S2. We calculated a corresponding
potential coefficient, c2

0, using the axial versions of Eqs. (52) and (59).
c The MF calculation yielded se (formally analogous to s = sk = s\), which in the

limit of high axial local potentials agrees with the ‘‘renormalized” correlation time,
sren � 2s=c2

0 (Ref. [14]). The data that appear in the table are s values obtained from
se using this formula. These values should be compared with s from SRLS.

d The angle bMD is derived from the MF parameters S2
f according to

S2
f ¼ ð1:5 cos2 bMD � 0:5Þ2 (Ref. [19]).
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and

NOE ¼ 1þ fðcH=cNÞd
2½6JDDðxH þxNÞ � JDDðxH �xNÞ	T1g; ð65Þ

where d2 ¼ c2
Hc2

Nh2
=ðð40p2Þh1=r3

NHi
2Þ; c2 ¼ ð2=15Þc2

NB2
0ðrjj � r?Þ2; rNH

is the 15N–1H internuclear distance in Å, B0 is the magnetic field
strength, and rk and r\ are the parallel and perpendicular compo-
nents of the axially symmetric 15N chemical shift tensor. JDD(x) and
JCC(x) are obtained using Eq. (56a) with l representing the 15N–1H
dipolar interaction or the 15N CSA interaction, respectively. The
magnetic interaction parameters used in the calculations presented
below are rNH(eff) = 1.015 Å [147], Dr = �169 ppm [148] and
bD–CSA = 17� [149].

Lmax (the quantum number which determines how many terms
need to be preserved in Eq. (61) and similar equations) of 24 was
always found to suffice in these calculations. In our previous
implementation of SRLS [20] the principal values of the global
and local diffusion tensors, RC and RL, are given in units of RL or
RL
?. In the SRLS/C++OPPS program they are given in units of s�1.

We use the same notation in both cases.
For axial local potentials we also show below the results of the

MF analyses corresponding to the SRLS analyses carried out. Corre-
sponding calculations feature the same number of formally analo-
gous variables; hence, the differences arise from the manner in
which the time correlation functions (spectral densities) are
calculated.

The MF parameter S2 is formally analogous to S2
0

� �2
in SRLS. For

high axial local ordering se agrees with sren � 2s=c2
0 [14,20,31,40].

The MF parameters sf and ss are formally analogous to
sk ¼ 1=ð6RL

kÞ and s? ¼ 1=ð6RL
?Þ, respectively, in SRLS. The parame-

ters S2
f and S2

s can be expressed in terms of S2
0

� �2
and S2

2

� �2
[20,40].

Example 1. ‘‘Rigid” residue with axial local ordering.

Data for the 15N–1H bond of the aspartic acid residue D197 of the
CORE domain of AKeco were analyzed with the MF program
DYNAMICS [97]. MF model 2, where S2 and se are varied, was se-
lected. It led to the best-fit values of S2 = 0.84 (corresponding to
the coefficient c2

0 ¼ 12:4 of the potential u given (in units of kBT) by
the axial version of Eq. 52, calculated assuming that

S2 ! S2
0

� �2
¼ hD2

00i
2Þ and se = 12.7 ps (corresponding to s = 78 ps

using the expression for sren given above), with v2 = 2. In analogy,
we allowed c2

0 and s to vary in the SRLS calculation. We fixed the an-
gle bMD at 0�, in accordance with its implicit value in MF. This led to

c2
0 ¼ 11:6 S2

0

� �2
¼ 0:83

� �
and s = 69 ps, with v2 = 0.6. The SRLS cal-

culation lasted 19 s. These results are shown in Table 1, rows 1 and 2.
The differences between the SRLS and MF results are 1.2% for

the squared order parameter, 13% for the local motional correlation
time, and 6.9% for the potential coefficient, c2

0. Although v2 = 0.6 in
the SRLS calculation and v2 = 2 in the MF calculation, both are con-
sidered appropriate since both values lie below 5.99, which is the
percentile value for v2 distribution for 4 degrees of freedom (six
data points and two variables) for a commonly used 5% threshold
(Table 39 of Ref. [150]).

The differences stem from (1) accounting in SRLS for the frame
transformation between the 15N–1H dipolar and 15N CSA frames
[20] (Fig. 1), and (2) possible deviations in MF from the single-de-
cay approximation for the local motion [20]. In the presence of lo-
cal motions the transformation from the 15N–1H dipolar frame to
the 15N CSA frame requires besides j00(x) the time correlation
functions j11(x) and j22(x), which do not exist in MF. This frame
transformation is required to calculate JCC(x), as well as the
cross-correlated spectral density, JDC(x).
When the local motion is in the extreme motional narrowing
limit the functions j11(x) and j22(x) are negligible in comparison
to j00(x). Hence, MF can calculate JCC(x) and JDC(x) adequately
only in this limit. This is stated explicitly in Ref. [151] in the con-
text of JDC(x). SRLS can treat cross-correlated relaxation, as well
as provide JCC(x), over the entire parameter range relevant for
folded proteins. It is therefore recommended to use SRLS even in
cases in which the local potential is axially symmetric.

Example 2. ‘‘Rigid” residue with rhombic local ordering.
The leucine residue L209 of AKeco is also a ‘‘rigid” residue. In

this case the MF calculation did not pass the Goodness-Of-Fit
(GOF) criteria of the program DYNAMICS [97]. The best results gen-
erated by this program, obtained with model 3 MF, are
S2 ¼ 0:78 c2

0 ¼ 9
� �

, se = 9.3 ps (s = 41.7 ps) and Rex = 4.35 s�1. The
v2 value is 8.8, which is higher than the relevant threshold of
7.81 (Table 39 of Ref. [150]). By using as variables c2

0; RL and Rex

(in analogy with the MF variables), and setting bMD = 0�, we

obtained with SRLS c2
0 ¼ 10:1 S2

0

� �2
¼ 0:805

� �
, s = 30.9 ps and

Rex = 3.56 s�1. The v2 value is 5.8, which is below the relevant
threshold. These results are shown in Table 1, rows 3 and 4.

It was shown previously that Rex can absorb unaccounted for
rhombicity of the local potential [40]. With this in mind we set
bMD = 101.3� and aMD = 90�. This is consistent with rhombic local
ordering with Ca

i�1 � Ca
i (rather than N–H, as implied by axial order-

ing and bMD = aMD = 0�) being the main local ordering/local diffusion
axis [20,46–50,65,78]. Within the scope of this geometry we allowed
c2

2 to vary and set Rex equal to zero. To obtain good statistics and
effective convergence we had to set RL

? ¼ RC and allow RL
k to vary.

The results of this calculation are shown in Table 1, row 5. The
potential coefficients are c2

0 ¼ �15:9 and c2
2 ¼ �3:4. The Cartesian

tensor components calculated from these coefficients (e.g., see
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Ref. [20]) are Sxx = �0.401, Syy = +0.874 and Szz = �0.473.2 Viewed in
the context of aMD = 90� and bMD = 101.3�, the fact that Syy = +0.874
means that relatively high ordering prevails along the Ca

i�1 � Ca
i axis.

The anisotropy of the local ordering around Ca
i�1 � Ca

i is given by
(Sxx � Szz)/Syy = 0.082.

The value of RL
k ¼ 1:3� 1010 s�1 corresponds to s = 12.8 ps. This

represents fast fluctuations of the N–H bond. Setting RL
? equal to

RC = 1.117 � 107 s�1 (14.9 ns) means that we cannot detect back-
bone motions which, based on geometric considerations, are asso-
ciated with RL

?. Thus, the combined two-field data from the ‘‘rigid”
N–H bond of residue L209 makes it possible to determine the mag-
nitude and symmetry of the local ordering, the form of the poten-
tial in terms of which the order parameters S2

0 and S2
2 (or Sxx, Syy and

Szz) are defined, and the rate of the N–H fluctuations.
Note that not accepting the simple scenario of an axial potential

and locating the main local ordering/local diffusion axis along the
N–H bond, i.e., setting bMD equal to 0�, was motivated by physical
considerations. If only statistical criteria were considered, we
would have accepted the results shown in Table 1, row 4. At
present the local geometry associated with residue L209 is fixed
at aMD = 90� and bMD = 101.3�, and RL

? ¼ RC is fixed. The analysis
of data combined from three B0 values, concerted analysis of
temperature-dependent data, or combined analysis of several
probes with their equilibrium orientation lying within the peptide
plane, might allow for a larger number of variables, including RL

?.
The time required to complete the calculation illustrated in Ta-

ble 1, row 5, was approximately 1 h. The local potential determined
is high c2

0 ¼ �15:9
� �

, the local ordering is high (Syy = +0.874), and
the time-scale separation between RL

k and RC is large (0.00087).
The L max value required was 24. Higher potentials do not require
much larger L max values, and the time-scale separation has already
reached a limiting value for which a robust fitting calculation
should stop. Therefore, this example may be considered represent
a typical long fitting calculation.

Example 3. ‘‘Flexible” residue with rhombic local ordering.
The glycine residue G46 of AKeco is located in the mobile do-

main AMPbd. The program DYNAMICS [97] selected model 7 but
the calculation did not pass the GOF criteria. The best results are
S2 ¼ 0:778 c2

0 ¼ 8:9
� �

; S2
f ¼ 0:87 (corresponding to bMD = 12.2�,

according to S2
f ¼ ð1:5 cos2 bMD � 0:5Þ2 – see Ref. [19]), ss = 0.91 ns,

sf = 0.0 ps and Rex = 1.8 s�1. The v2 value is 5.1. By using SRLS with
axial potentials and assuming that RL

k � RL
? [19], in analogy with

ss� sf in MF, we obtained c2
0 ¼ 3:6 S2

0

� �2
¼ 0:448

� �
, bMD = 21.4�,

s\ = 7.12 ns, Rex = 4s�1 and sk = 0.004 ns [46]. These results are
shown in Table 1, rows 6 and 7.

As reported previously [46], the SRLS and MF results differ sig-
nificantly mainly because mode-coupling is not accounted for in
MF. However, the SRLS results shown in Table 1, row 7, are also
problematic because c2

0 ¼ 3:6 represents too weak a potential in-
side a folded protein, and a 21.4� tilt from the N–H bond does
not identify a structural element which can serve as the main local
ordering/local diffusion axis [20].

Row 8 of Table 1 shows the results obtained with SRLS/C++OPPS
by allowing the local potential to be rhombic and the local diffu-
sion tensor, RL, to be axially symmetric. The angles aMD and bMD

were set equal to 90� and 101.3�, respectively. The best-fit values
of the potential coefficients are c2

0 ¼ �6:8 and c2
2 ¼ �4:40, and

the corresponding Cartesian tensor components are Sxx = �0.426,
Syy = +0.876 and Szz = �0.450. The anisotropy of the local ordering
2 The fact that YM is the main ordering axis in the C++OPPS fitting scheme for SRLS
[90], whereas XM is the main ordering axis in our previous fitting scheme for SRLS
[20], is related to a different definition of the local ordering frame, M. This is
inconsequential as far as the physical picture is concerned.
around Ca
i�1 � Ca

i is given by (Sxx � Szz)/Syy = 0.027. RL
? ¼

4:15� 107 s�1 corresponds to s\ = 4.0 ns, and RL
k ¼ 8:11� 109 s�1,

to sk = 20.6 ps. An Rex contribution is not required. This calculation
was completed in 21 min.

The physical picture is as follows. Based on geometric (and
other [20,46]) considerations, the perpendicular component,
s\ = 4.0 ns, may be associated with domain motion. In the present
case s\ is 3.7 times faster than the global tumbling. The parallel
component, sk = 20 ps, represents fast fluctuations about an axis
in close proximity to the equilibrium N–H orientation, and is 1.6
times slower for the ‘‘flexible” N–H bond of residue G46 than for
the ‘‘rigid” N–H bond of residue L209.

Both the ‘‘rigid” N–H bond of residue L209 and the ‘‘flexible”
N–H bond of residue G46 experience comparably high ordering
around the Ca

i�1 � Ca
i axis: we obtained Syy = +0.874 for the former

and Syy = +0.876 for the latter. On the other hand, the anisotropy
of the local ordering is nearly 3-times higher for the ‘‘rigid” site
than for the ‘‘flexible” site. This is interesting new information.
There are controversial views, based largely on order parameters
from MF analysis of spin relaxation, on whether proteins prevail
in solution as narrow or broad conformational ensembles [152].
The forms of these ensembles bear a direct relationship to the rel-
ative equilibrium probability density, Peq, determined with SRLS.
The Peq function depends on the geometric perspective; this is
illustrated in Appendix F.4.

The 3D GAF model [65,78] can also quantify the magnitude and
anisotropy of the local ordering. However, it requires the preva-
lence of fast local motions, the availability of MD trajectories,
and it does not provide local potentials (which can be used to cal-
culate thermodynamic quantities).

SRLS/C++OPPS-based 15N spin relaxation analysis of an entire pro-
tein: estimate of efficiency. Let us consider a representative protein
comprising 300 residues, and assume that 10% of the residues are
‘‘flexible”. Example 3 above describes the analysis of a ‘‘flexible”
residue of AKeco; this case may be considered as a paradigm for
the analysis of the ‘‘flexible” residues of the representative protein.
By analogy it would take about 10.5 h to least-squares fit the
experimental data for 30 ‘‘flexible” residues. Example 2 above de-
scribes the analysis of a ‘‘rigid” residue of AKeco; this case may be
considered as a paradigm for the analysis of the ‘‘rigid” residues of
the representative protein. By analogy it would take about 270 h to
least-squares fit the experimental data for 270 ‘‘rigid” residues. Let
us multiply this time by 1.5, to account for the possibility that 50%
of the ‘‘rigid” residues require a second trial of starting parameters.
Based on these considerations it would take 405 h to least-squares
fit the experimental data for 270 ‘‘rigid” residues, and about 17
days to analyze all the residues of this protein.

This estimate is based on calculations carried out with a non-
parallized code on a portable HP computer equipped with an Intel
2.7 GHz Dual Core CPU and 4 GB RAM. On a Quad-Core i7 Extreme
CPU with a 3.2 GHz clock speed, 1600 MHz 8 MB cache, and 24 GB
of 1300 MHz CL6 RAM, the analysis of the 300 residue protein se-
lected as example will be completed in 4–5 days. Utilization of the
parallelized version of C++OPPS in the context of a computer clus-
ter will reduce the running time significantly.

Problems encountered in some cases and prospects. The present
data-fitting scheme of the C++OPPS package features the publicly
available MINPACK minimization package. The pertinent mini-
mizer has not been adapted/optimized, and other minimizers have
not been yet implemented/examined. With ‘‘rigid” N–H bonds we
encountered in some cases problems associated with the exit crite-
ria of the MINPACK minimizer. In the context of SRLS/ESR the
Levenberg–Marquardt minimizer has been adapted/optimized suc-
cessfully [153]. We might be able to overcome the problem noted
by optimizing the MINPACK minimizer, or employing other mini-
mizers. Such efforts are underway.
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It is easy to fit the ‘‘rigid” N–H bond data that correspond to
strong axial potentials, fast isotropic local diffusion, and frequent
inclusion of conformational exchange contributions. This is similar
to the results obtained with MF analyses. When rhombic potentials
or axial local diffusion were allowed for, with aMD = 90� and
bMD = 101.3�, we encountered (in the limited calculations carried
out so far) quite a few cases in which the fitting process led to
unphysical results. It is known that in the large time scale separa-
tion limit and in the presence of strong local potentials one should
use the Fokker–Planck–Kramers (FPK) equation with both orienta-
tion and angular momentum included explicitly [16,154]. This will
allow the probe to engage in torsional oscillations in the potential
well, expected on physical grounds, which in the overdamped
Smoluchowski treatment are relaxed instantaneously. Thus, the
problems encountered in fitting data for ‘‘rigid” N–H bonds might
have a physical reason, which could be tackled by solving the cor-
responding FPK equation. The latter includes inertial effects; the
dynamic picture of the well-structured regions of the protein
might change by accounting for these effects.

The full two-body FPK model is treated explicitly in Ref. [16]. Ef-
forts to implement it for 15N spin relaxation in proteins are under-
way. The additional parameters required are moments of inertia,
which can be derived from 3D structures.
Appendix B. NMR parameters calculated with molecular
dynamics methods

NMR relaxation of natural abundance 13C has been treated al-
ready in early MD work [155]. Relatively simple models were
developed to interpret the experimental data. The models
considered pertain to the continuous diffusion, restricted diffusion
and lattice jump categories. Their accuracy was tested. Stochastic
dynamics was used to calculate experimental 13C NMR relaxation
parameters of small alkanes. The results obtained were used to
predict NMR relaxation in proteins. Since then extensive MD
studies of proteins have been carried out in the context of NMR
spin relaxation. At present ls long simulations, which feature
explicit solvent and use constantly improving force-fields, can be
carried out for small proteins.

In calculating time correlation functions from MD trajectories it
is typically assumed that the global and local motions are statisti-
cally independent, i.e., C(t) = CC(t) � CL(t). Based on this assumption
the global motion is usually eliminated by superimposing the MD
frames onto a reference structure. The time correlation function
obtained in this way for internal motion, CL(t), is often least-
squares fitted to the form of the MF time correlation function,
and in some cases to the Extended Model Free (EMF), reduced
EMF, or other variants of the MF formula. This yields order
parameters and correlation times that are compared to their MF
counterparts. In some cases the squared order parameter is derived
directly as the plateau value of the CL(t) function, or calculated
using the expression developed in Ref. [37], the isotropic Reorien-
tational Eigenmode Dynamics (iRED) method [25,26], or other
methods (see below).

To calculate spectral densities and relaxation parameters with
MD the total time correlation function, C(t), is required. One usu-
ally determines CC(t) by calculating the global diffusion tensor
based on experimental 15N T1/T2 ratios. Multiplication by CL(t)
(parameterized as outlined above) yields an analytical form of C(t).

To calculate from the MD trajectory CL(t), or S2 according to Ref.
[37], it is necessary to carry out the frame superposition mentioned
above. This procedure depends non-negligibly on the choice of the
reference structure [132,156]. Frame superposition is not required
when order parameters are calculated using the iRED method
[25,26].
The network of coupled rotators (NCR) of Abergel et al.
[112–115] provides order parameters, as well as local motional
correlation times. NCR is based on interesting physical ideas; it
provides implicitly information on the asymmetry of the local
ordering. However, it pertains to the large time-scale separation
limit, the local geometry is encoded, and the local motion is intrin-
sically isotropic.

Methods for calculating order parameters based on harmonic
approximations, such as normal mode analysis (NMA) [99] and
Gaussian network model (GNM) [27], have been developed. Con-
tact models for calculating order parameters based on parameter-
ization of the local structure have been developed by Brüschweiler
and co-workers [116–118].

Several representative MD studies, where results are compared
with MF analyses of NMR spin relaxation data, are presented be-
low. The extent of agreement between order parameters, spectral
density values and relaxation parameters obtained with MD and
NMR/MF is discussed.

Chatfield et al. [36] used the force field CHARMM and the TIP3P
model for water to generate a trajectory of 18 ns in length for li-
ganded and 3.75 ns in length for unliganded SNase. Order parame-
ters were calculated using the expression developed in Ref. [37].
For N–H and Ca–H the agreement between S2(MD) and S2(MF)
was found to be reasonably good. On the other hand, large
discrepancies were found between S2(MD) and S2(MF) for the
Ca�Cb bond of alanine. While MD yields comparable squared order
parameters for Ca–H and Ca�Cb, as one would expect, MF yields
S2(Ca�Cb) approximately 30% smaller than S2(Ca–H). This dis-
crepancy has not been resolved over the years. The S2

axis order
parameters of eglin c are still much smaller as compared to their
MD-derived counterparts [70].

Showalter et al. [157] used the improved AMBER99SB force field
to simulate 13CDH2 methyl dynamics in calbindin Dk9. After elim-
inating the global motion, the time correlation function calculated
from the MD trajectory was parameterized according to:

CLðtÞ ¼ CCCðtÞ � CCH3ðtÞ ¼ CCCðtÞ � ½0:1þ 0:9 expð�t=sCH3Þ	: ð66Þ

CCH3(t) represents the motion about the C–CH3 axis and CCC(t)
the motion of the C–CH3 axis. CCC(t) was parameterized with a
sum of 5 exponentials and an offset [65]. The differences between
corresponding simulated and experimental values of J(0), J(xD)
and J(2xD), obtained previously and analyzed with MF [158], were
minimized allowing sCH3 to vary. Good agreement was obtained
for J(xD) and J(2xD) and poorer agreement for J(0), with the
values obtained with MF analysis of the experimental data [158]
smaller than the corresponding MD values. This is due partly to
having varied sCH3, which affects to a larger extent the higher fre-
quency values of J(x) [157].

Additional parameterization schemes have been used: (1) CCC(t)
was parameterized using Eq. (34) with CCH3(t) taken as shown in
Eq. (66), and (2) CL(t) was parameterized using Eq. (43). The first
protocol led to better agreement between MD and MF; in particu-
lar, the differences between corresponding squared order parame-
ters were less systematic. This indicates that allowing for two
separate local motions for the methyl group is a better approxima-
tion to the actual scenario than Eq. (43), in agreement with the lat-
ter not representing intrinsically a physical scenario (cf.
Section 3.2.3) whereas Eq. (66) might represent one in simple
limits.

In general, the agreement between MD and NMR/MF is better
using the improved AMBER99SB force-field [157]. In particular,
the agreement between corresponding MD and NMR/MF methyl-
related squared order parameters is still significantly worse than
the agreement between corresponding MD and NMR/MF N–H-re-
lated squared order parameters [160].
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Pfeiffer et al. [132] used the AMBER 5.0 force field and the TIP3
model for water to generate a 7.6 ns trajectory for the b-adrenergic
pleckstrin homology (PH) domain of the b-adrenergic receptor ki-
nase-1. The objective was to study N–H bond dynamics. The global
motion was treated as in Ref. [157]. The time correlation function
for local motion was least-squares fit to a MF-type time correlation
function featuring three decoupled local motions. This implies
three squared order parameters and three local motional correla-
tion times entering CL(t). The generalized order parameter, S2, gi-
ven by the product of these three squared order parameters, was
calculated according to Ref. [37]; it was then used as a restraint
in the fitting process.

For the core of the protein J(0) and J(xN) from MD were found to
be on average lower by 6% than their MF counterparts. On the
other hand, J(0.87xH) from MD was found to be lower by 21% than
J(0.87xH) from MF. The value of J(0.87xH) represents J(xH + xN),
J(xH) and J(xH �xN) combined into a single spectral density value
within the scope of the Reduced Spectral Density strategy (e.g., see
Ref. [8]). The value of S2 from MD was 1% (6%) lower than S2 from
MF for all the N–H bonds (the N–H bonds in the protein core).

This pattern is opposite to the pattern determined by Showalter
et al. [157] for methyl dynamics. This is likely to be associated with
using different parameterization schemes, in the context of differ-
ent parameter ranges dominated by different factors. Thus, the lo-
cal ordering is strong for ‘‘rigid” N–H bonds [132]; in this limit the
Wigner functions are relatively good approximations to the eigen-
functions of the local diffusion operator [14,20]. On the other hand,
the local ordering is weak at methyl sites; as shown in Appendix G,
even very weak potentials render the Wigner functions to be poor
approximations to the eigenfunctions of the local diffusion
operator.

Ref. [160] also employed the improved AMBER99SB force field
to study N–H bond dynamics in ubiquitin. In that study, the MD
time correlation function for internal motion was parameterized
according to Eq. (2), the squared order parameters were calculated
with the iRED method [26], and an axial global diffusion tensor was
determined independently based on 15N T1/T2 data. Good agree-
ment was obtained with this parameterization scheme between
relaxation parameters from MD and MF. On the other hand, the
agreement between values of the corresponding squared order
parameters was less satisfactory. A similar picture emerges from
Table 1 shown above. We found repeatedly that experimental
relaxation parameters could be fit equally well from a statistical
point-of-view with formally analogous SRLS and MF spectral den-
sities, albeit with different best-fit parameters.

The reason for better agreement between corresponding MD
and NMR/MF relaxation parameters as compared to order param-
eters is that the principal quantities are the jKK 0 ðxÞ functions. They
comprise intrinsically the best-fit parameters. Agreement between
corresponding best-fit parameters means good reproduction of the
actual physical scenario. Agreement between relaxation parame-
ters means statistical reproduction of the JXY(x) or JXX(x) func-
tions. If the former type of agreement is worse that the latter
type, this is an indication that the force-field is largely accurate,
whereas the MF analysis is relatively inaccurate.

Parameterization renders the derivation of consistent informa-
tion problematic. Results with different characteristics are obtained
even when the same force-field is used – cf. Refs. [157] and [160]. It
would be useful to calculate the MD counterparts of the SRLS CKK 0 ðtÞ
functions instead of parameterizing the MD trajectory in various
ways. Deriving consistent physical information from calculations
of the (artificial) generalized order parameter using various
parameterizing techniques [160] is also problematic. There exist
established methods for calculating potentials in terms of which
physical order parameters are defined [161,162]. It would be useful
to apply these methods to study local ordering in proteins.
Discrepancies between corresponding MD-, and MF-derived or-
der parameters, spectral density values, and relaxation parameters
have been ascribed to force-field imperfections, insufficient length
of the MD trajectories, problematic aspects of the MD protocols,
and/or motions affecting the MD trajectory but not affecting the
experimental data [132,133,157,163]. We suggest adding to this
list the oversimplification inherent in MF.

Trbovic et al. [133] used the improved AMBER ff99sb, AMBER
ff03 and OPLS AA force-fields to study N–H bond dynamics of the
B3 immunoglobulin-binding domain of streptococcal protein G
(GB3). Thirteen trajectories of 2.4 ns generated using OPLS AA were
subjected to simulation using AMBER ff99SB and ff03. The global
motion was eliminated from the MD trajectory. CL(t) was calcu-
lated as the time correlation function of the Legendre polynomial
of rank 2, and order parameters were calculated according to Ref.
[37]. Final time correlation functions and order parameters were
obtained as averages over multiple trajectories.

Squared order parameters from MD were compared with their
MF counterparts. In many cases S2(MD) was found to be smaller
than S2(MF). This was associated primarily with imbalance be-
tween the description of hydrogen bonding and other terms in
the force-fields employed [133]. However, the parameterization
strategies used in the MD and MF protocols are not the same; this
may also influence the results.

Maragakis et al. [135] generated recently a 1.2 ls trajectory of
ubiquitin using the improved OPLS–AA/SPC force field. After
eliminating the global motion S2 was obtained as CL(100 ns) (meth-
od 1) or according to Ref. [37] (method 2). The parameter S2 was
also calculated from the original MD trajectory by least-squares
fitting the MD time correlation function for internal motion to
the reduced extended MF formula (method 3).

It was found that in loop regions the correspondence between
S2(MD) and S2(MF) is significantly better using method 3. This
was ascribed to the global motion, which is preserved in method
3, decorrelating local motions slower than it. Thereby the simu-
lated time correlation function is brought into better agreement
with the experimental time correlation function which is only af-
fected by local motions comparable to, or faster than, the global
motion.

The MD simulations led to sm = 1.98 ns; the experimental sm

value of ubiquitin at the relevant temperature is 4.1 ns [164,165].
Accurate determination of the global diffusion from MD trajecto-
ries is notoriously difficult because the rate constant for the rota-
tional reorientation of water is overestimated even in the most
advanced models for water. It was shown in Ref. [135] that
S2(MD) and S2(MF) agree; then ss; S

2
s and/or S2

f must differ to over-
come the differences in sm. Again, an improved spin relaxation
analysis might be useful.

Wong and Case [163] studied ubiquitin, binase, GB3 and lyso-
zyme using the AMBER99sb force field with the TIP4P/EW or
SPC/E models for water. Trajectories 6–60 times as long as the
mean experimental sm value were generated. For the first time a
method for determining the global diffusion tensor from the MF
trajectory was set forth. Site-specific global-motional correlation
times, sm(i), were calculated based on the method of Ref. [166],
which is applicable to RC

k=RC
? 6 2. The trace of the RC tensor was

6.6–24.6% smaller as compared to its MF counterpart.
This provided CC(t). The time correlation function CL(t) was cal-

culated from the MD trajectory assuming reorientation of the
probe with respect to a ‘‘frozen” protein. The fact that C(t) and
CC(t) � CL(t) agreed was taken as proof that C(t) may be factorized
into CC � CL(t). However, the important point is whether the
parameters entering CL(t) are physically meaningful, or force-fitted
quantities. This is examined below.

Table 2 shows the S2 and se values obtained in Ref. [163] by fit-
ting the MD CL(t) function to the MF time correlation function (Eq.



Table 2
Squared order parameters, S2, and local motional correlation times, s, obtained from
the total MD time correlation function as outlined in Ref. [163], and from MF applied
to the corresponding experimental 15N relaxation data [164,167]; ‘‘ubi” is a shorthand
notation for ubiquitin.

Residue MD MF

S2 s (ns) S2 se (ns)

63 of ubi 0.90 0.07 0.82 0.037
11 of ubi 0.56 0.64 0.71 0.058
73 of ubi 0.46 2.00 0.57 0.071
49 of GB3 0.82 0.01 0.82 NA
13 of GB3 0.60 1.30 0.67 NA
41 of GB3 0.34 2.10 0.50 NA
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(34)), along with their MF counterparts. The MD parameters are in
most cases different from the corresponding MF parameters. This is
ascribed in Ref. [163] to local motions slower than the global mo-
tion affecting the MD trajectory but not affecting the NMR relaxa-
tion parameters. However, the local motions detected are on the
order of 2 ns and faster; such motions should have been detected
with MF. Yet, MF analyses of these proteins yielded (with a few
exceptions) se values on the order of several tens of ps
[164,165,167].

Thus, even a very careful study, which determined the global
diffusion tensor from the MD trajectory, used improved force-
fields and employed high-quality experimental data, led to best-
fit parameters that differ significantly from their MF counterparts.

A recent study used MD methods to investigate structural
dynamics of arginine side chains [168]. It was concluded that
side-chain flexibility is concealed from 15Ne spin relaxation ana-
lyzed with MF due to the persistence of salt bridges, while the ali-
phatic part of the arginine side chain retains substantial disorder.
Improved analysis of the 15Ne relaxation data might be useful.

Best et al. [71] derived order parameters for methyl dynamics
from MD trajectories. Non-harmonic effects were shown to be
important; transitions among local (rotameric) minima were con-
sidered. Hu et al. [70] correlated semi-quantitatively MF S2

axis for
C–CH3 motion with the populations of rotameric states associated
with the preceding v angle. However, as outlined herein (in
particular in Section 3.2.3) and in Refs. [34] and [35], S2

axis MF is
often inaccurate; this is likely to affect the analysis.

Vendruscolo and co-workers [169,170] developed an ensemble
refinement method that uses the squared generalized MF order
parameter as a restraint. Its calculated counterpart is obtained
mostly using the formula of Ref. [37]. Extensive conformational
distributions are predicted by this method.

The accuracy of the local ordering derived from the MD trajec-
tory can be improved by developing methods for calculating
unambiguously hD2

00i and hD2
02 þ D2

0�2i. The accuracy of the local
ordering derived from the experimental NMR data can be im-
proved by calculating S2

0 and S2
2 using SRLS. The form of the confor-

mational distributions determined might change when physical
order parameters, and consistent frame definitions, are used.

Clore and Schwieters [152,171,172] also derived squared order
parameters with MD within the context of ensemble refinement
strategies. These authors found narrow conformational distribu-
tions both in solution and in polycrystalline environments, com-
prising optimally 4–8 members. This is inconsistent with the
extensive conformational distributions found by Vendruscolo and
co-workers [169,170] and Griesinger and co-workers (based on
values of RDC) [173–176] in solution, as well as the work of Lorieau
et al. [177], who detected large-amplitude axial motions for Ca, Cb

and several side-chain carbons in polycrystalline ubiquitin.
The significant differences in the extent of the conformational

distributions derived might stem from the way in which Peq is ob-
tained (often implicitly) in the various studies. As pointed out
above since the actual local ordering frame is rhombic, Peq depends
on the definition of the ordering frame.

Operating within physically well-defined theoretical scenarios
and abiding by the assumptions underlying the equations/expres-
sions used is important in practice. For example, overlooking the
premises underlying MF, and considering the limiting expression
of Ref. [37] (criticized in Ref. [178]) to be exact, led in Ref. [54] to
an altogether oversimplified analysis. Methyl dynamics was
modeled in terms of jumps (or diffusive motion) among three un-
equally populated rotamers. This highly asymmetric motion
corresponds necessarily to rhombic local ordering. Yet, a single
order parameter – S MF – was used to interpret this ordering
scenario, with the objective of proving that this strategy is
appropriate. Rhombic ordering is to be treated in the context of
properly defined order parameters S2

0 and S2
2 [32,33], e.g., as done

in Refs. [179,180].
The MD trajectories calculated for proteins are becoming

increasingly longer and the force-fields become increasingly better.
It is timely to develop methods for extracting from the MD trajec-
tory mesoscopic parameters that can be compared with experi-
mental counterparts based on stochastic models. As pointed out
above, this could be accomplished by devising methods for com-
puting the MD analogues of the CKK 0 ðtÞ functions obtained with
SRLS analysis of NMR spin relaxation parameters.
Appendix C. Protein dynamics in the solid state

Ref. [181] summarizes this topic until the end of 2004. The main
methods include lineshape analysis, T1 relaxation and exchange
experiments, using primarily 2H and 13C nuclei. Recent develop-
ments are summarized below.

Giraud et al. [182] acquired 15N T1 data at 293 K from a poly-
crystalline powder of the 21 kDa dimeric Crh protein. The dynamic
model used consists of wobble-in-a-cone in the presence of a
square-well potential. It includes the time correlation functions
for K = 0, 1 and 2, required by the powder averaging. Wobbling cor-
relation times, 1/(6Dw), of 50–500 ns, and a semi-cone angles of
10–15�, were determined.

Qualitative observations on rocking backbone motion in Crh
have been reported. To quantify them, and eventually detect addi-
tional dynamic and structural features, it would be useful to ac-
quire T1 data and powder patterns at lower temperatures. Slow-
motion line-shapes, affected by motional rates on the order of
the magnetic anisotropies, can detect ls motions. T1 relaxation
times can detect motions at least 10 times faster. Both can be ana-
lyzed with the microscopic order macroscopic disorder (MOMD)
approach [183], which is the SRLS limit wherein the protein is
immobile.

Lorieau and McDermott [177] acquired motionally averaged
powder patterns of Ca, Cb and side-chain carbons from polycrystal-
line samples of 13C-labeled ubiquitin. These spectra have been ana-
lyzed assuming complete axial motional averaging (although some
of the patterns observed had a rhombic appearance). Order
parameters ranging from 0.44 to 0.94 have been reported. Here
too lowering the temperature to enter the slow motional regime
will be very useful, in particular to reveal the nature of the rhombic
powder patterns. To enter the relevant time-window one can mon-
itor, besides the temperature, the NMR nucleus type, its chemical/
magnetic surroundings, and (except for auto-correlated dipolar
relaxation) the external magnetic field.

Additional examples of bio-macromolecular dynamics in the so-
lid state studied with NMR appear in Refs. [76,184–193]. Echodu
et al. [188] investigated furanose ring puckering in DNA fragments.
T1, and motionally averaged powder patterns from 2H nuclei with-
in the furanose ring, were analyzed in concert. A previously
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developed model [185] for restricted motion in the presence of a
harmonic potential was used. The rate for internal motion was
determined to be 1.8 � 107 s�1 at 300 K, and the coefficient of
the axial potential was determined to be 2.5 kBT.

T1 from samples labeled with 13C at furanose ring positions was
measured in solution [185]. Mode-decoupling, i.e., C(t) = CC(t)� CL(t),
was assumed. CL(t) was taken the same as the time correlation func-
tion used to analyze the solid-state 2H data. CC(t) was determined
with hydrodynamic calculations, which yielded RC

? ¼ 3:6� 107 s�1

and RC
k ¼ 7:7� 107 s�1.

The 13C T1 data [185] could be reproduced satisfactorily in this
manner, although the factorization of C(t) into the product
CC(t) � CL(t) requires that RL� RC, while in actual fact RL = 1.8 �
107 s�1 and RCðeffÞ ¼ 1=3ð2RC

? þ RC
k Þ ¼ 5:0� 107 s�1. Because the

local motional rate, RL (adopted from the solid-state work) is 2.8
times smaller than the global motional rate, the overall tumbling
(see Figs. 5–7 of Ref. [188]) dominates the analysis. Thus, within
a good approximation one has C(t) � CC(t).

Skrynnikov, Reif and co-workers carried out conjoint analysis of
15N T1, T2 and 15N–{1H} NOE data from glycerol-containing solu-
tions and 15N T1 data from polycrystalline powders of the SH3 do-
main of a-spectrin to elucidate N–H bond dynamics [191]. The
analysis is based on the hypothesis that the motion in the solid-
state is the same as the local motion in solution. The return to equi-
librium of the magnetization in the T1 measurements in the solid
state was taken to be mono-exponential.

An enhanced form of the EMF formula, from which the global
motional term has been removed, was used [191]. As pointed out
in Section 3.2.3, this entails force-fitting. The conjoint analysis
yielded markedly unusual results which feature S2

s � 1;0:77 <
S2

f < 0:90;0 < sf < 31 ps, 0.7 <ss < 54 ns and 11.0 < sm < 17.4 ns.
S2

s is approximately 1 while ss ranges from 0.7 to 50 ns. Adjacent
residues are often associated with ss values that differ by factors
of 50. Mode-coupling is ignored; this is inappropriate when ss

and sm are comparable.
Fig. S2 of the Supporting Information of Ref. [191] shows that

the solid-state data dominate the analysis. If the solid-state data
are excluded, the remaining solution data will be amenable to
analysis with the original MF formula [191]. It is very likely that
separate analyses would have produced different results, especially
given that 15N T1 values in the solid state are on average 100 times
longer than 15N T1 values in solution. Motions of approximately
10�7 s or faster may affect the solid-state data; the liquid-state
data may be affected by motions of several ns or faster. It is unli-
kely that N–H motions slower than ns do not exist in the polycrys-
talline samples of the SH3 domain of a-spectrin (also, see the
results of Ref. [182]). It is more likely that the analysis conducted
did not detect them.

Methyl dynamics of the SH3 domain of a-spectrin was also
studied in solution and in the solid-state using 13C T1 relaxation
[192]. One of the valine and leucine methyl groups in deuterated
protein samples was labeled with 13C. New experimental
methodologies, which constitute a significant advance in the field,
were developed. The 13C T1 values measured in the solid state and
in solution were found to be similar [192]. The straightforward
implication was that methyl dynamics is the same in the two states
of matter; hence conjoint analysis was pursued.

The term (1 � S2)exp(�t/se), obtained by omitting the global
motional term from Eq. (34), was used as the time correlation func-
tion. This expression does not converge to the appropriate physical
limits: when se ? 0 then C(t) ? 0 and when S2? 1 then C(t) ? 0.
The time correlation function given by Eq. (34) does converge to
the appropriate physical limits: when se ? 0 then C(t) ? S2, and
when S2 ? 1 then C(t) ? 1. Eq. (34) represents the K = 0 compo-
nent of wobble-in-a-cone in a square-well potential. As pointed
out in Ref. [182], where the very same motional model was used,
not only the K = 0 component, but all three time correlation func-
tions corresponding to K = 0, 1 and 2 are required to properly ana-
lyze T1 relaxation times from polycrystalline powders.

The average local motional correlation time was determined to
be 50 ps. This value agrees with local motional correlation times
determined in solution for many proteins using Eq. (43) [6,8]. It
does not agree with other NMR studies of methyl dynamics in
the solid state. For example, surface-located methionine methyls
groups of the Streptomyces subtilisin inhibitor have been studied
with 2H NMR in the ligand-free protein, and in its complex with
subtilisin. Powder patterns and T1 relaxation parameters from
polycrystalline samples, and 2H spectra from single crystals, were
acquired from selectively labeled mutants. All the experimental
data were analyzed in concert. Asymmetric motions with
correlation times ranging from 100 ps to 10 ns have been detected
[193].

An important recent study focuses on a leucine residue of HP36
residing in the core of this protein. Its methyl groups were found to
exhibit complex dynamics in the solid state [76]. 2H line-shapes
from polycrystalline powders of 5,5,5-d3-leucine-69 of HP36 were
acquired in the temperature range of 233–298 K. 2H T1 and T1Q

(quadrupolar order) relaxation times were acquired in the temper-
ature range of 112–298 K. Combined analysis of all of these data
was carried out. The dynamic model determined includes the fol-
lowing components. (1) Woessner-type methyl rotation, with a
rate in the extreme motional narrowing limit, occurs about Cc�Cd.
(2) Motion of the Cc�Cd bond on an arc in the presence of a poten-
tial U(/) = �k/2 occurs at rates ranging from 1.5 � 103 rad/sec at
233.15 K to 7.3 � 104 rad/s at 298.15 K. (3) Rotamer jumps of the
Cb carbon occur at a temperature-independent rate of
4.0 � 104 s�1.

Based on Refs. [76,193], methyl groups do experience slow mo-
tions in the solid state. However, temperature-dependent relaxa-
tion parameters and temperature-dependent powder patterns
from polycrystalline proteins, and eventually NMR spectra from
single crystals, are required to elucidate them. A single 13C T1 data
point from a polycrystalline sample [192] does not suffice because
the primary motion is still rotation about the C–CH3 axis, which
partially averages effectively the quadrupolar interaction. All the
other motions occur in addition to this motional mode; detecting
them requires more extensive experimental evidence and appro-
priate analysis. Reaching general conclusions about methyl
dynamics in the solid state based on scarce data and problematic
analysis [192] is premature.

We mentioned above the MOMD approach [183] as a general
method of NMR lineshape analysis in the solid-state. MOMD was
developed for nitroxide ESR applications and applied successfully
to liposomes [194], proteins [18,43,45] and DNA fragments [44].
It can be adapted relatively easily to NMR spin relaxation in poly-
crystalline proteins. In its original form, MOMD treats diffusive
motion; specific jump-type or other restricted motional models
typically occurring in solids can be implemented as well. Experi-
mental methodologies for obtaining high-quality dynamic NMR
line-shapes in the solid state are in the course of being developed
[189,190,192]. With a large body of appropriate experimental data
available from both solution and solid-state samples, analyses
based on SRLS treatment of the former and MOMD treatment of
the latter are expected to be useful.

Appendix D. Residual dipolar couplings of nuclei in internally
mobile proteins

SRLS applied to anisotropic solvents is developed in Refs.
[15,17]. The contribution to the spin Hamiltonian from the dipolar
interaction between two nuclei, i an j, is given by the following
expression:
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Hij;D ¼
X
m;k

hD2
m;kðXLDÞiFð2;kÞ

�

ij;D Tð2;mÞij;L ; ð67Þ

where Fð2;kÞij;D denote the components of the magnetic dipolar tensor
in the D frame, and Tð2;mÞL denote the components of the relevant
spin operators in the space-fixed laboratory frame, L. We refer be-
low to the particular case in which the nuclei i and j represent
the 15N–1H pair; hence the indexes ij will be omitted. For uniaxial
media the liquid crystal director (LC) is parallel to the lab frame.
The global ordering frame, A, is typically taken the same as the glo-
bal diffusion frame, C.

In studies of small molecules dissolved in liquid crystals, the
emphasis is usually on determining both the ordering tensor and
the molecular geometry [161,162]. If the latter is known, i.e., one
knows the values of the Euler angles aCD and bCD, five RDCs (be-
tween pairs of dipolar-coupled NMR nuclei in the molecule) have
to be measured in the general case to determine the molecular
alignment tensor.

In the field of protein NMR one is interested primarily in the
geometry of the molecule, i.e., the angles aCD and bCD [195]. The fol-
lowing strategy is employed. The global diffusion frame, C, is taken
the same as the inertia frame (of the X-ray or NMR structure). The
global diffusion tensor, RC, determined predominantly by the
shape of the protein, is considered to be independent of the LC
medium. On the other hand, the global ordering tensor, A, is con-
sidered to depend on the medium (and to be affected primarily
by electrostatic interactions). Based on experience both RC and A
are rhombic tensors [66,173–176,195–198].

The situation is significantly more complex when the probe
experiences restricted local motion. Two additional frames have
to be considered: the local ordering/local diffusion frame, M, fixed
in the probe, and the local director, C

0
, fixed in the protein. C

0
is ta-

ken along the equilibrium orientation of the probe. Local order
parameters, S2

0 and S2
2, are defined in terms of a local potential,

uðXC0MÞ. Since the M frame is not necessarily the same as the D
frame the (time-independent) Euler angles XMD = (aMD, bMD, 0) also
enter the analysis; they can often be specified based on stereo-
chemical considerations.

Let us assume that all the conditions underlying Eq. (31) are va-
lid. In this case one may carry out separately the averaging over
XLA to yield a2

0 and a2
2, and the averaging over XC0M to yield S2

0

and S2
2. In this limit, the contribution to the spin Hamiltonian from

the dipolar interaction between two nuclei, i and j given by Eq.
(67), is now given as (cf. Fig. 1):

Hij;D ¼
X

p;q;r;s

D2
0;pðXLAÞ

D E
D2

p;qðXACÞD2
q;rðXCC0 Þ

� D2
r;sðXC0MÞ

D E
D2

s;0ðXMDÞFð2;0Þ�ij;D Tð2;0Þij;L : ð68Þ

Note that since the global ordering is very small one
may assume that Peq(XLA) = exp(�u(XLA))/hexp(�u(XLA))i �
1 � u(XLA)/hexp(�u(XLA))i.

For at least 2-fold symmetry around ZA and at least 3-fold
symmetry around ZLC the following expression represents the
measurable RDC when the moiety comprising the nuclei i and j is
attached rigidly to the protein [14,30–33,66]:

DDðXCDÞ ¼ ðl0=4pÞcicjh= 4p2r3
ij

� �
� a2

0P2ðcos bCDÞ þ ð3=2Þ1=2ða2
2 sin2ðbCDÞ cosð2aCDÞ

h i
: ð69Þ

l0 is the permeability of vacuum, ci and cj are the magneto-
gyric ratios of the nuclei i and j, h is Planck’s constant, and rij is
the distance between i and j. a2

0 ¼ D2
00ðXLAÞ

D E
and

a2
2 ¼ D2

02ðXLAÞþ
D

D2
0�2ðXLAÞ

E
are (in irreducible tensor notation)

the principal values of the molecular alignment tensor, A. These
parameters are defined in terms of the POMF, u(XLA), exerted by
the LC onto the protein. The form of this potential is usually gi-
ven by Eq. (52); the order parameters a2

0 and a2
2 are given by Eq.

(59) [32,33].
Let us denote the Euler angles that transform the Ai frame, asso-

ciated with medium i, into the C frame by (XAiC) = (ai, bi, ci). Meth-
ods for determining (a2

0Þi, (a2
2Þi;ai; bi and ci have been developed

[66]. Once this information is available the angles aCD and bCD

can be determined by measuring RDCs in two independent align-
ment media.

When the moiety comprising the nuclei i and j is engaged in lo-
cal motion one has to calculate averages over the trigonometric
functions P2(cosbCD) and (3/2)1/2(sin2(bCD)cos(2aCD) which appear
in Eq. (69) [66] (for non-spherical global diffusion tensors one
has to calculate averages over P2ðcos bC0DÞ and
ð3=2Þ1=2ðsin2ðbC0DÞ cosð2aC0DÞÞ. The averaging procedure can be de-
duced for specific cases from Eq. (68). The angles XCC0 in Eq. (68)
represent the ‘‘structural” information inherent in the RDC. It can
be seen that the parameters S2

0; S
2
2;aCC0 and bCC0 are common to

RDC – cf. Eq. (68), and SRLS spin relaxation analysis – cf. Eq. (58).
The eigenmodes cK,i which enter the functions jKK 0 ðXÞ of Eq. (58),
depend on c2

0 and c2
2; through Eqs. (59) and (52) they depend on

S2
0 an S2

2. For rhombic global diffusion tensors these eigenmodes
will also depend on aCC0 and bCC0 . The information on global
ordering only enters the RDC analysis, and not the NMR relaxation.
The latter is normally obtained in isotropic solution, so that the
information on global ordering is in principle irrelevant; relaxation
in a liquid crystalline medium with 0.001 ordering, as employed in
RDC studies, would be virtually the same.

Thus, one may combine the two analyses within the scope of
the same physically sound framework, as done in the past for small
molecules [14,21,32,33]. If the RDC analysis is carried out indepen-
dently then four different alignment media will be required to
determine aCC0 ; bCC0 ; S

2
0 and S2

2.
This paradigm applies to ‘‘rigid” N–H bond and methyl group

dynamics, which pertain to the large time scale separation limit.
For N–H bonds located in flexible chain regions, Eq. (69) is over-
simplified. For local motion much slower than the global tumbling
and much faster than the typical RDC (which is on the order of
10–20 Hz) the extra reduction in the RDC may be converted into
an order parameter provided that these motions can be replaced
by an effective axial motion.

A number of methods for calculating RDCs in the presence of lo-
cal motions have been developed [173–176,196–198]. They are
based, in principle, on the rationale outlined above. In practice they
differ significantly from the approach described above. Thus,
separate averaging over XLA and XC0M is considered appropriate
for ps – ms local motions. The RDC and MF spin relaxation analyses
are combined by using the generalized MF order parameter, S(MF).
The angle XMD is implicitly (0, 0, 0) in the MF spin relaxation anal-
ysis. It is (aMD, bMD, 0) in RDC analyses through the utilization of
concepts such as ‘‘amplitude of anisotropy” and ‘‘direction of
anisotropy” [173,174], which require a rhombic M frame. When
the M frame has rhombic symmetry, one should have two order
parameters, S2

0 and S2
2. Yet, only a single order parameter, S(MF),

is available. The angles XCC0 are (0, 0, 0) in the MF analysis because
in the present context the global diffusion frame, C, is taken as iso-
tropic. In the RDC analysis they are clearly ðaCC0 ; bCC0 ;0Þ, i.e., the C
frame is rhombic, to derive the desired structural information. Fi-
nally, a generalized order parameter, S(RDC), analogous to the
generalized MF order parameter, S(MF), is used. S(RDC) < S(MF) is
interpreted as prevalence of local motions slower than the global
motion.

Clearly, there are inconsistencies, and the validity limits of MF-
type equations formally analogous to Eq. (68) are exceeded. The
RDC-derived dynamic information of interest pertains to the
ls–ns time scale, which is outside the scope of both spin relaxation
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and chemical exchange scenarios. In this time-regime RL� RC is
not fullfilled, and the validity of RL� RC with on average axial
ordering can only be assumed but not proven; hence one cannot
ascertain that the conditions that underlie Eq. (68) are fulfilled.
Therefore the value of S(RDC), derived by ignoring these
considerations, using equations formally analogous to Eq. (68),
might be inaccurate. For example, the large distributions of
structural ensembles based on RDC analysis [170,175] might be
over-rated.
0 10 20 30 40 500

0.2

c   2
0

Fig. 3. Squared order parameter, S2
0

� �2
, as a function of the potential coefficient, c2

0

(see Eqs. (52) and (59)).
Appendix E. 15N–1H bond dynamics

E.1. Geometric effects

In the extreme motional narrowing limit for the local motion,
the only difference between SRLS and MF for axial local potentials
is the relative orientation of the 15N–1H dipolar and the 15N CSA
frames. We utilized a 17� tilt [149]; this angle is implicitly zero
in MF. Based on published 15N spin relaxation data of the villin
headpiece helical subdomain (VHHS) fitted with the MF model 1
[199], where the local motion is in the extreme motional narrow-
ing limit, we found that MF S2 underestimates SRLS S2

0

� �2
on

average by 4.5% [20]. This should be compared with reported S2

precision of 1% [200], and in some cases 0.2% [201].
The error in S2 has significant implications for the accuracy of

conformational entropy derived from it. For high ordering typical
of N–H bonds located in the protein core, 4.5% error in S2 implies
over 20% error in the coefficient, c2

0, of a Legendre polynomial of
rank 2 potential [20] (Table 3). This is due to the functional form
of the S2

0

� �2
versus c2

0 dependence for high S2
0

� �2
, illustrated in

Fig. 3.
A previous report maintains that the tilt XD�CSA = (0, bD�CSA, 0)

between the axial D and CSA frames has a negligible effect on
the analysis [36]. However, to evaluate this effect one has to calcu-
late JCC(x) from JDD(x), or assemble it directly from the jKK 0 ðxÞ
functions. In both cases the functions j11(x) and j22(x), which
are not provided in MF, are required. Hence, the effect under con-
sideration cannot be evaluated within the scope of MF.
E.2. Local motional effects

15N relaxation data of some VHHS residues were analyzed in
Ref. [199] with MF model 2 which utilizes Eq. (2). Fifteen such
residues were also subjected to SRLS analysis using the spectral
density formally analogous to model 2 MF [20]. The average SRLS
and MF results are shown in Table 3 (along with the model 1 data
discussed above).

SRLS yielded hs/smi = 0.1 whereas MF yielded hse/smi = 0.02
(data not shown). Using for SRLS sren with c2

0 ¼ 7:5, which corre-
sponds to S2

0

� �2
¼ 0:73, yielded hsren/smi = 0.027, which is signifi-
Table 3
Average best-fit values, c2

0, and corresponding values, S2
0

� �2
, obtained with

SRLS-based fitting [20] of the 15N spin relaxation data of relatively rigid residues
of VHHS [199]. Average best-fit values, S2, and corresponding values, c2

0, obtained
with MF analysis of the same experimental data [96]. %diff. represents 100 �
[(MF parameter) � (SRLS parameter)]/(SRLS parameter) [20]. ‘‘Model 1” refers to
calculations where S2 is allowed to vary in MF; in analogy, c2

0 is allowed to vary in
SRLS. ‘‘Model 2” refers to calculations where S2 and se are allowed to vary in MF; in
analogy, c2

0 and s/sm are allowed to vary in SRLS (sm taken from Ref. [199]).

Model 1 Model 2

SRLS MF %diff. SRLS MF %diff.

S2
0

� �2 0.87 0.83 �4.5 0.73 0.78 +6.8

c2
0

15.4 11.7 �23 7.5 9.0 +20
cantly different from hse/smi determined by MF. S2 overestimates

S2
0

� �2
by nearly 7% in model 2 and underestimates it by approxi-

mately 4.5% in model 1 (first row of Table 3). c2
0(MF) overestimates

c2
0(SRLS) by 20% in model 2 and underestimates it by 23% in model

1 (second row of Table 3).
For hs/smi = 0.1, but also for hsren/smi = 0.027, mode-coupling is

important [16]. This leads to an actual SRLS spectral density that is
significantly more complex than Eq. (2). Ample comparison be-
tween SRLS and MF, illustrating the various aspects with regard
to which these approaches differ, appears in Ref. [20]. Note that
the actual local ordering is rhombic rather than axial [20,48,50].
Therefore, the data shown in Table 3, based on axial potentials,
should be considered as merely illustrative. If the asymmetry of
the local potential had been accounted for, the differences between
SRLS and MF would have been much larger.
E.3. Global diffusion

In the extreme motional narrowing limit for the local motion
one may determine sm from 15N T1/T2 ratios [202,203]. N–H bonds
located in elements of secondary structure approach this limit at
low magnetic fields. Precision can be estimated by scanning the
vicinity of sm to determine the range in which the v2 value is
largely preserved. With this strategy, we evaluated the precision
of sm to be on the order of 5–6%. For VHHS the accuracy of sm

was increased by approximately 4% when SRLS was used instead
of MF (Fig. 9 of Ref. [20]).

In MF analyses the global diffusion tensor, RC, is determined
from filtered (to eliminate local motional effects) 15N T1/T2 data.
Different methods for determining RC have been developed. Tradi-
tional approaches are described in Refs. [202,203]. An effective
approximate approach is described in Refs. [166,204]. Recently
MF fitting schemes have been integrated with hydrodynamics-
based approaches for calculating RC from 3D structures
[205,206]. A separate hydrodynamics-based method for
calculating RC was also developed [207]. Our recently developed
fitting scheme for SRLS [90] has been integrated with the hydro-
dynamics-based approach of Barone et al. [98], which determines
RC from 3D structures and can also account for internal torsions.

15N T1/T2 data sets considered free of local motional effects
according to MF might comprise significant local motional effects
according to SRLS [20]. Unaccounted for local motional effects, in
particular the asymmetry of the local ordering, can be absorbed
by an apparently axial global diffusion tensor (see below). To
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ascertain that RC is a genuine axial tensor the methods outlined in
Ref. [204,208,209] are useful (see below).

E.4. Asymmetry of the local motion

In the literature, this term refers usually to axial or rhombic
symmetry of the local diffusion, or to jumps among unequally
populated sites (e.g., Ref. [54]). Yet, the symmetry of a restricted
local motion is determined by the symmetry of the local potential,
or the local ordering tensor [32,33]. We found that the rhombicity
of the local potential has a dominant effect on the analysis
[20,48,90]. The effect of potential rhombicity versus global diffu-
sion axiality on the 15N relaxation parameters is illustrated below.

Table 4 illustrates the high sensitivity of the analysis to the
asymmetry of the local potential. It can be seen that the
15N–{1H} NOE value is affected to a particularly large extent when
the local potential is rhombic rather than axial. This is most likely
due to the NOE representing a ratio of two relaxation rates [28],
each depending intricately (through the jKK 0 ðxÞ functions and their
coefficients in the expressions for JDD(x)) on the local ordering.
Note that in MF the local ordering enters the calculation through
the factor S2. In the extreme motional narrowing limit S2 cancels
out in the expression for the NOE; for fast local motion its effect
on the NOE is expected to be small [20].

The rhombicity of the local ordering, which affects the NOE to
such a large extent, is quite limited. This can be appreciated by cal-
culating the Cartesian ordering tensor components from c2

0 ¼ 8 and
c2

2 ¼ 4. These components are given by Sxx = �0.382, Syy = �0.454
and Szz = 0.836, yielding (Sxx � Syy)/Szz = 0.09 on a scale extending
from �1 to +1.

Table 5 illustrates limited sensitivity of the analysis to small
global diffusion axiality, given by NC ¼ RC

k=RC
? ¼ 1:2, as one would

expect (we show the results of calculations carried out for the ex-
treme values of the angle between the equilibrium N–H orienta-
tion and the principal axis of the global diffusion tensor). This is
inconsistent with the large effect NC = 1.18 has on the MF analysis
of 15N spin relaxation data from DHFR [208]. Fifty percent of the
residues of this protein require substantial conformational ex-
change contributions, Rex, when an isotropic RC is used instead of
an axial RC with NC = 1.18 [208]. If, however, RC is allowed to be
axial, then the Rex contributions disappear, and the unaccounted
Table 4
Percent difference [var(axial) � var(rhombic)]/var(axial) � 100, where ‘‘var” denotes
‘‘variable”, between 15N T1, T2 (ms) and 15N–{1H} NOE values calculated with sm = 15
ns, RC = 0.01, and an axial potential with c2

0 ¼ 8 and c2
2 ¼ 0 or a rhombic potential with

c2
0 ¼ 8 and c2

2 ¼ 4. Calculations are shown for magnetic fields of 11.7, 14.1 and 18.8 T
[20].

11.7 T 14.1 T 18.8 T

T1 �2.4 �1.0 +1.5
T2 �7.6 �7.5 �7.6
NOE +31.6 +39.3 +46.3

Table 5
Percent difference ½varðbCC0 ¼ 0�Þ � varðbCC0 ¼ 90�Þ	=½varðbCC0 ¼ 0�Þ	 � 100 between
15N T1, T2 (ms) and 15N–{1H} NOE values calculated with sm = 15 ns, an axial potential
given by c2

0 ¼ 8, and an axial global diffusion tensor. The latter is given by
RCðeffÞ ¼ 0:01;RC

k =RC
? ¼ 1:2, and bCC0 (the angle between the equilibrium orientation

of the N–H bond and the principal axis of the RC tensor) set equal to 0� or 90�.
Calculations are shown for magnetic fields of 11.7, 14.1 and 18.8 T [20].

11.7 T 14.1 T 18.8 T

T1 +7.4 +7.1 +6.1
T2 �9.0 �9.0 �9.2
NOE �2.7 �3.5 �4.0
for rhombicity of the S tensor is absorbed by an apparent axiality
of the RC tensor [48].

Strong evidence that Rex can also absorb unaccounted for asym-
metry of the local potential/local ordering is provided in Ref. [48],
where ribonuclease H (RNase H) and AKeco have been studied in
this context. It is also shown in that study that using axial poten-
tials instead of the actual rhombic potentials, and an axial global
diffusion tensor instead of the actual isotropic global diffusion ten-
sor, imply inaccurate best-fit order parameters obtained with data
fitting. The findings of Ref. [48] are based on extensive predictive
calculations, and back-calculations of experimental data, carried
out in the context of a conjoint analysis of the auto-correlated
relaxation parameters 15N T1, T2 and 15N–{1H} NOE, and the trans-
verse 15N–1H dipolar/15N CSA cross-correlated relaxation rate, gxy.
The fact that the experimental value of 1/T2 depends on Rex, while
gxy does not, is a key element in the analysis.

That 15N spin relaxation is sensitive to the asymmetry of the lo-
cal ordering was also demonstrated by the 3D GAF model [65,78],
an elaborate RDC study which provided anisotropic probability
density functions of N–H orientations [210], and MD simulations
which revealed asymmetric N–H fluctuations [131].
E.5. Applications

E.5.1. E. coli adenylate kinase: domain motion
E.5.1.1. Background. The 23.6 kDa enzyme E. coli adenylate kinase
catalyzes the reaction ATP*Mg+2 + AMP M ADP*Mg+2 + ADP [211].
AKeco is made of a single chain intertwined into the domains AMP-
bd, LID and CORE [212]. The domain AMPbd is associated with the
binding of the AMP substrate. The domain LID ‘‘folds over” the
binding site for the ATP*Mg+2 substrate, so that the two-substrate
binding site becomes sequestered, and the catalytic reaction can
take place.

The ligand-free enzyme was crystallized into the ‘‘open” confor-
mation 4ake (Fig. 4a). A two-substrate-mimic inhibitor, AP5A,
where AMP and ATP are linked by a fifth phosphate group, was pre-
pared. The complex AKeco*AP5A was shown to be a transition state
mimic [213,214]. The crystal structure of the ‘‘closed” AKeco*AP5A
form is 1ake [215] (Fig. 4b). There are clear indications that in the
ligand free form (AKeco) the domains AMPbd and LID execute
large-amplitude motions, which come to a halt upon substrate
binding. These mechanical movements are thought to be associ-
ated, in a more or less direct manner by different research groups,
with the catalytic event. On the other hand, the CORE domain is
preserved structurally in this process [212,216].

The AKeco/AKeco*AP5A system is considered as paradigm for
correlation between dynamic structure, in particular domain mo-
tion, and biological function [216]. AKeco and AKeco*AP5A have
been studied extensively with many methods and in many con-
texts. Straightforward MD [218,219], weighted masses MD [220],
the exploration of the roles of the various AKeco domains for sta-
bility and catalysis [221], MD/PCA [222], a 100 ns molecular
dynamics study of subdomain motion and mechanics [223], hydro-
gel-mediated translation of substrate recognition into macroscopic
motion [224] were used. Graph theory [255], in-parallel SRLS and
GNM analysis [226], a plastic network model exploring large-
amplitude conformational changes [227], a coarse-grained model
that considers ligand interactions approximately [228], various
elaborate coarse-grained methods [229–232], and an MD-based
method exploring the pathways between the ‘‘open” and ‘‘closed”
states of AKeco at atomic detail [233] have also been employed. Fi-
nally, optical methods [234,235], single molecule fluorescence res-
onance energy transfer [236], 15N relaxation dispersion [237],
studies associated with protein folding [238,239] and 15N spin
relaxation [20,46,47,240–242] have been used.



Fig. 4. Ribbon diagrams of the molecular structures from X-ray crystallography of (a) AKeco [212] and (b) AKeco in complex with the two-substrate-mimic inhibitor AP5A
[215]. The diagrams were drawn with the program Molscript [217] using the PDB coordinate files 4ake for AKeco and 1ake (complex II) for AKeco*AP5A.
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From the NMR point-of-view, ligand-free AKeco prevails in
solution as a conformational ensemble inter-converting rapidly
on the chemical shift time scale [241]. This is consistent with the
energy landscape of ligand-free AKeco shown by the dotted bar-
rier-less curve in Fig. 5. According to this picture, conformational
interconversion should be detected with spin relaxation methods
provided its rate is faster than the global tumbling.

Experimental 15N T1, T2 and 15N–{1H} NOE data acquired at 14.1
and 18.8 T and 303 K [46] are shown in Fig. 6. It can be seen that
the experimental values of the 15N–{1H} NOE are significantly low-
er within the AMPbd and LID domains as compared to the CORE
domain. This is clear indication that AMPbd and LID, but not CORE,
are engaged in ns local motions [13]. We focus below on the study
of these motions with NMR spin relaxation, which we have pur-
sued for several years [46–50,241].
E.5.1.2. MF analysis. In our first attempt, we used the model-free
method [11] to analyze the experimental data acquired at 14.1 T,
303 K [241]. The traditional 15N R2/R1-based (R1 � 1/T1, R2 � 1/T2)
analysis [202,203] for determining the global diffusion tensor
yielded RC

k=RC
? ¼ 1:25 and RC(eff) = 15.05 ± 0.5 ns. As expected
Fig. 5. (a) The one-dimensional free-energy profile along the DDrmsd reaction
coordinate in the ligand-free (dotted line) and AP5A-bound (solid line) adenylate
kinase pathways. The intersection region of the two profiles locates the transition
state of the conformational transition, which is associated with a free-energy
barrier of 12.5 (kcal/mol). The stabilities of the open unbound and closed bound
states are assumed to be the same. (Fig. 6 of Ref. [233], reproduced with
permission.)
based on the large experimental 15N–{1H} NOE values, the N–H
bonds of the CORE domain could be analyzed with the MF spectral
density of Ref. [11], which is usually used to analyze ‘‘rigid” N–H
bonds. The latter are typically associated with large S2 values and
small se values. Based on the 15N–{1H} NOE pattern shown in
Fig. 6, and previous results obtained for flexible loops in proteins
[6,8], we expected the N–H bonds of the AMPbd and LID domains
to be amenable to analysis with the EMF spectral density of Ref.
[13], which is usually used to analyze ‘‘flexible” N–H bond. The lat-
ter are typically associated with smaller S2 and S2

s values, and ss

values of several ns.
The expectation concerning the ‘‘flexible” N–H bond was not

borne out, as shown by the empty circles in Fig. 7. The squared or-
der parameters S2, obtained mostly with the MF formula, are high
throughout the protein backbone; they do not discriminate be-
tween AMPbd/LID and CORE. In a few cases, the EMF formula
yielded ss mostly below 1 ns, not necessarily associated with
N–H bonds located within the AMPbd and LID domains. A rela-
tively small number of conformational exchange terms, Rex, was
also obtained.

Similar results were obtained for the local motional parameters
using combined 14.1 and 18.8 T data and taking the global diffu-
sion to be isotropic [46,47]. In this case additional conformational
exchange terms, Rex, were obtained. N–H bond dynamics of AKeco
and a thermophylic variant of this enzyme were studied recently
with the MF method [240]. The overall picture obtained for the lo-
cal motion is very similar to the picture obtained by us [241]. In-
stead of RC

k=RC
? ¼ 1:25 and quite a few Rex contributions

determined by [241], the authors of Ref. [240] determined
RC
k=RC

? ¼ 1:41 with very few Rex contributions. This scenario is
similar to the one described earlier for DHFR [90]. Namely, unac-
counted for rhombicity of the local ordering can be absorbed by
artificial RC axiality, and/or artificial Rex terms.

Let us consider the global diffusion tensor from a physical
point-of-view. In the absence of rigorous methods for determining
RC in the presence of slow internal motions of large chain seg-
ments, taking it to be on average isotropic appears to be a good
approximation. Evidence that this is a better approximation than
taking the solution structure the same as the crystal structure
[240] is given in Ref. [46].

That RC axiality, as well as Rex terms, can absorb unaccounted
for rhombicity of the local potential has been shown not only for
DHFR [90], but also for the rigid parts of AKeco and RNase [48].
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Fig. 6. Experimental relaxation parameters (a) 15N T1 (s), (b) 15N T2 (s), and (c) 15N–{1H} NOE of AKeco acquired at 14.1 T (filled circles) and 18.79 T (empty circles) and 303 K,
as a function of residue number. The black bars denote the mobile domains AMPbd and LID [46].
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Fig. 7. Best-fit parameters obtained with SRLS-based fitting (filled circles) and MF-
based fitting (empty circles) of the experimental data of AKeco shown in Fig. 6 [46].
The SRLS analysis used the fitting scheme described in Ref. [19], and the MF analysis
used the program DYNAMICS [97]. The parameters on the ordinate of Fig. 7a

represent the SRLS squared axial order parameter, S2
0

� �2
(filled circles), and the MF

squared generalized order parameter, S2 (empty circles). In Fig. 7b the SRLS
parameter, s\ (filled circles), represents the perpendicular correlation time for local
motion, and the MF parameter, ss (empty circles), represents the effective
correlation time for slow local motion. Further details are given in Ref. [46].
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For the mobile domains of AKeco an additional important factor
enters the scene. The experimental 15N–{1H} NOE profiles shown
in Fig. 6c indicate than the AMPbd and LID domains experience
ns internal motion. MF does not even single out the domains
AMPbd/LID (Fig. 7) because it does not account for mode-coupling,
implied by ns internal motions, in addition to not accounting for
potential rhombicity. The various MF-based analyses of AKeco dif-
fer by these important factors having been absorbed by RC axiality
[240], Rex contributions [46,47], or both [241]. The results of these
studies differ because differently filtered 15N R2/R1 data sets were
used to determine RC. When RC tensors that are nearly isotropic
are analyzed as if they were significantly axial, the analysis is very
sensitive to the filtering of the 15N R2/R1 data [50,90].

With large intertwined chain segments not treated properly
(note that common globular proteins have a small number of rela-
tively short flexible loops), severe force-fitting occurs within AMP-
bd and LID. For isotropic (axial) RC the statistics are good but the S2

values are too high, the ss value are too small, and an artificial con-
formational exchange contribution [241] (apparent global diffu-
sion axiality [240]) is obtained. We considered these results
unacceptable. To improve the analysis we developed SRLS [19].
The analysis of the experimental data of Fig. 6 with SRLS is dis-
cussed in Appendices E.5.1.3 and E.5.1.4.

In contrast to our approach, the authors of Ref. [240] accepted
the MF analysis. We show in Fig. 8 their experimental data along
with their S2 values. Both the experimental 15N–{1H} NOE profiles
(Fig. 8a) and the calculated S2 profile (Fig. 8b) are very similar to
our corresponding data (relevant parts of Figs. 6 and 7). Literal
interpretation of the force-fitted S2 profile led to the conclusion
that AKeco does not experience domain motion on the ns time
scale [240]. Somewhat lower than average S2 values at some of
the hinges of the crystal structure [212] were taken to represent
ps fluctuations which facilitate catalysis-controlling ms domain
motion in the system where AKeco is Mg2+/nucleotide-saturated
and substrate-saturated [237].

The free-energy profile of co-existing AKeco and AKeco*AP5A
(which is a transition state mimic [213,214]) is shown by the solid
curve in Fig. 5. It comprises a 12.5 kcal/mol barrier consistent with
ms domain motion detected with 15N relaxation dispersion from
Mg2+/nucleotide-saturated and substrate-saturated AKeco [237],
where both AKeco and the transition state co-exist. The free-
energy profile of ligand-free AKeco is shown by the dashed curve
in Fig. 5. It consists of a barrier-less curve consistent with ns



Fig. 8. (a) Fig. S1C of the supplementary information of Ref. [240] (reproduced with permission). The blue circles represent experimental 15N–{1H} NOEs obtained from AKeco
at 11.7 T, 293 K. (b) Fig. 3a of the supplementary information of Ref. [240] (reproduced with permission). The blue circles represent S 2 values obtained by analyzing with MF
the experimental data shown in Fig. 8a. The error bars represent standard deviations. The solid blue curve represents the profile of the squared order parameter obtained with
straightforward MD [240].
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domain motion detected with SRLS-based 15N spin relaxation of li-
gand-free AKeco [46,47].
E.5.1.3. SRLS analysis using axial potentials. The fitting scheme for
SRLS developed in Ref. [19], based on pre-calculated 2D grids of
spectral densities, features (for practical reasons) axial local poten-
tials and assumes that RL

k � RL
?. By applying it to the data shown in

Fig. 6 we obtained the S2
0

� �2
and s\ values shown in Fig. 7 (filled

circles) [46]. The corresponding MF parameters obtained with the
program DYNAMICS [97] are also shown (empty circles). The s\
values are on average 8 times larger than the corresponding ss val-
ues; sk SRLS (not shown) is on average 4 times larger than sf MF.
The average value of S2

0

� �2
is 0.3 whereas the average value of S2

s

is 0.97. The local geometry is given by 10� < bMD < 20�, i.e.,
0.9 > [P2(cosbMD)]2 > 0.76, which corresponds to 0:9 > S2

f > 0:85
ðS2

f ! ½P2ðcos bMDÞ	
2Þ. Clearly, the SRLS and MF results differ

substantially.
SRLS detected ns s\ values for all the N–H bonds within AMPbd

and LID. The average value is hs\i = 8.2 ± 1.3 ns, to be compared
with sm = 15.1 ± 0.5 ns. Practically all the N–H bonds within CORE
move locally with correlation times below 130 ps, in agreement
with the large values of the 15N–{1H} NOE shown in Fig. 6. It may
be concluded (see Ref. [46] for details) that the ns correlation time
s\ represents domain motion. With mode-coupling accounted for,
the analysis bears out the information imprinted in the experimen-
tal 15N–{1H} NOE profile (Figs. 6 and 7).

However, several features of the SRLS results are problematic
from a physical point-of-view. S2

0

� �2
values between 0.2 and

0.45, and a local ordering/local diffusion axis tilted at 10–20� from

the N–H bond, were obtained for AMPbd and LID. The S2
0

� �2
values

are unduly low, representing a broad distribution of N–H bond vec-
Table 6
Best-fit parameters obtained with SRLS-based fitting of the 15N spin relaxation data from A
varied include c2

0 ; c
2
2 ; s?=sm; sk and bMD, with sm = 15.1 ns [20]. For residue L35 the param

components of the Cartesian ordering tensor corresponding to the best-fit values of c2
0 an

Residue c2
0 c2

2
RC s\ or s (ns)a

G46 5.7 10.5 0.82 12.4
K47 4.3 10.3 0.73 11.0
L35 7.8 22.3 0.43 6.5

a s\corresponds to G46 and K47 [20]; s corresponds to L35 [50].
tor orientations, unlikely to prevail in tightly packed protein cores.
An axis tilted at 10–20� from the N–H bond does not correspond to
a structural element that might serve as main local ordering/local
diffusion axis. Clearly important effects are not accounted for. We
proceeded by further improving the analysis as follows.

E.5.1.4. SRLS analysis using rhombic potentials. Semi-quantitative
analysis showed that rhombic potentials prevail at N–H sites in
proteins and affect the analysis significantly [48]. To allow for
rhombic potentials we developed a fitting scheme for SRLS where
the spectral densities are calculated at each iteration. The restric-
tion that RL

k � RL
? was also removed [20]. In applying this fitting

scheme to the experimental data shown in Fig. 6 we varied the po-
tential coefficients c2

0; c
2
2, the angle bMD, the time-scale separation

RC = s\/sm, and the local diffusion anisotropy, N = sk/s\. This
parameter combination is formally analogous to the parameter
combination features by the Extended Model Free formula, except
for the extra parameter, c2

2.
In Table 6 we show the results obtained for residues G46 and

K47 of the AMPbd domain. The components of the Cartesian order-
ing tensor, Sxx, Syy and Szz, calculated from the potential coefficients
c2

0 and c2
2, are also shown. Let us analyze these parameters in terms

of the physical picture they provide.
The principal values of a physical ordering tensor specify the ex-

tent to which the axes of the coordinate frame in which the order-
ing tensor is diagonal orient preferentially with respect to the local
director frame, C

0
. As originally defined, the main ordering axis lies

along the axial dipolar frame, i.e., ZM is parallel to ZD (hence to the
instantaneous N–H orientation). It can be seen that the M frame is
highly rhombic, and that XM is the main ordering axis.

This information can also be deduced from the magnitudes and
signs of the potential coefficients c2

0 and c2
2 [14]; based on details

specified in Ref. [14], we determined XM as the main ordering axis.
Keco acquired at 14.1 and 18.8 T, and 303 K. For residues G46 and K47 the parameters
eters varied include c2

0 ; c
2
2; s and bMD, with sm = 14.9 ns [50]. Sxx, Syy and Szz are the

d c2
2. The axiality of the local diffusion tensor is given by N = sk/s\.

Sxx Syy Szz b
�

MD
N

0.827 �0.465 �0.361 101.4 9.6
0.761 �0.470 �0.291 100.7 6.3
0.940 �0.490 �0.450 99.0 1.0
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The best-fit value of bMD is approximately 100�, while the theoret-
ical value of the tilt angle between Ca

i�1 � Ca
i and N–H is 101.3� [65].

It may be concluded that XM lies along Ca
i�1 � Ca

i , as illustrated in
Fig. 9. The Sxx values are relatively high, indicating that the order-
ing is high about Ca

i�1 � Ca
i , in agreement with the high c2

2 values.
N ¼ RL

k=RL
? estimates the degree of axiality of the local diffusion

tensor. Attempts to derive activation energies from the tempera-
ture-dependences of RL

k and RL
? were made. They were mostly
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recast by permuting twice the labels of the M frame so that XM becomes the main orde
function of bCM and cCM given in radians.
unsuccessful. On the other hand, well-defined activation energies
were obtained from RL ¼ RL

k ¼ RL
?. Also, the fitting process was very

tedious for N – 1, and significantly more robust for N = 1. We inter-
preted these results to indicate that N – 1 causes over-fitting and
proceeded by setting N equal to 1.

Table 6 presents results obtained with N = 1 for the representa-
tive residue L35 of AMPbd. Results obtained for all the residues
within AMPbd and LID are reported in Ref. [50]; the average value
of sm/s is 2.5. The absolute values of the parameters differ for the
N = 1 and N – 1 scenarios. However, the overall picture is similar.
Thus, high and moderately rhombic ordering prevails about
Ca

i�1 � Ca
i , and the domains move on the ns time scale. This descrip-

tion is compatible with the sensitivity of the experimental data
used.

The asymmetry of the local ordering plays an important role in
various aspects of NMR spin relaxation in proteins. Further insight
into this important property is provided by the probability of the
main ordering axis having an orientation in the infinitesimal range
bCM ± DbCM and cCM ± DcCM for any aCM (since the C

0
frame is

uniaxial). It is conveniently given by a relative (or unnormalized)
probability as Prel = exp(�u)sinbCMDbCMDcCM [243], plotted as a
function of the spherical coordinates (bCM, cCM). Note, u is the ac-
tual potential divided by kBT, rendering u dimensionless.

The average rhombic local N–H potential within AMPbd and LID
at 302 K is

u¼�1:5�ð�4:57Þ�ðcos2 bCM�0:5Þ�
ffiffiffiffiffiffiffiffiffi
3=2

p
�16:11� sin2 bCM�cosð2cCMÞ.

This potential is depicted in Fig. 10c as a function of the coordi-
nates bCM and cCM in units of radians. Its rhombic symmetry is
borne out by the significant difference between the extreme values
along the cCM coordinate. In Fig. 11c we show a representation of
the function Prel(bCM,cCM), by plotting ZC = RcosbCM versus
XC = RsinbCMcoscCM, YC = RsinbCMsincCM, where R = exp(�u)sinbCM.
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ring axis [243]; u = �22.0 � (3/2cos2bCM � 1/2) + 5.21 � (3/2)1/2sin2bCMcos2cCM as a



Fig. 11. (a) The relative probability Prel of the N–H bond having an orientation in the infinitesimal range bCM ± DbCM, for any a and c, given by
exp[4.74 � (3/2cos2bCM � 1/2)] sinbCMDbCM, as a function of the spherical coordinates (bCM, cCM). (b) The relative probability of the N–H bond having an
orientation in the infinitesimal range bCM ± DbCM, for any a and c, given by exp[16.1 � (3/2cos2bCM � 1/2)]sinbCMDb CM as a function of the spherical coordinates (bCM,
cCM). (c) The relative probability of the Ca

i�1 � Ca
i axis having an orientation in the infinitesimal range bCM ± DbCM and cCM ± DcCM, for any a, given by

{exp[�4.57 � (3/2cos2bCM � 1/2)] + 16.11 � (3/2)1/2 sin2bCMcos2cCM]}sinbCMDbCMDcCM as a function of the spherical coordinates (bCM, cCM). (d) The relative
probability of the Ca

i�1 � Ca
i axis having an orientation in the infinitesimal range bCM ± DbCM and cCM ± DcCM, for any a, given by

{exp[22.0 � (3/2cos2bCM � 1/2)] � 5.21 � (3/2)1/2 sin2bCMcos2cCM}sinbCMDbCMDcCM as a function of the spherical coordinates (bCM, cCM). The principal axes of the uniaxial
local director frame are XC, YC and ZC, with ZC parallel to the equilibrium N–H orientation, and XC = YC.

390 E. Meirovitch et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 56 (2010) 360–405
The figure axes have been scaled as indicated by the attached la-
bels to make possible the illustration of this highly peaked drawing
(consistent axes scaling in Fig. 11 enables comparison among its
various drawings). Fig. 11c exhibits peaks along XC, in accordance
with XM orienting preferentially perpendicular to ZC (both exp(�u)
and the solid angle (sinbCMDbCMDcCM) are large for this type of
ordering).

We show in Fig. 10a the average potential, u = �4.74 �
(1.5cos2bCM � 0.5), obtained with SRLS for AMPbd and LID at
302 K using axial potentials (c2

2 ¼ 0). This potential is weak, as
shown by its shape, given by a shallow well. The corresponding Prel

function is shown in Fig. 11a. While the ratio between the scaling
of the XC axis and the scaling of the YC and ZC axes is 10 in Fig. 11c,
the ratio between the scaling of the ZC axis and the scaling of the XC

and YCaxes is 2 in Fig. 11a. It can be seen that the axial potential is
associated with a broad distribution of instantaneous N–H orienta-
tions about the equilibrium N–H orientation whereas the rhombic
potential is associated with a narrow distribution of instantaneous
N–H orientations about Ca

i�1 � Ca
i , which is approximately perpen-

dicular to the equilibrium N–H orientation. The solid angle
sinbCMDbCM is small for bCM values close to zero. This creates the
void in the middle of the Prel function shown in Fig. 11a. Obviously,
the rhombic scenario (Figs. 10c and 11c) is very different from the
axial scenario (Figs. 10a and 11a). Detailed information on data fit-
ting based on rhombic potentials appears in Ref. [50].

If the labels of the M frame axes are permuted twice counter-
clockwise (upon each permutation the potential coefficients
change according to the relations ĉ2

0 ¼ �1=2c2
0 � ð3=2Þ1=2c2

2 and
ĉ2

2 ¼ 1=2 ð3=2Þ1=2c2
0 � c2

2

h i
(see Ref. [243]) to render XM the main

ordering axis, one obtains a potential with an axial coefficient of
ĉ2

0 ¼ 22, and a rhombic coefficient of ĉ2
2 ¼ �5, shown in Fig. 10d.

The associated Prel function is shown in Fig. 11d; the latter illus-
trates relatively narrow slightly rhombic distribution of instanta-
neous N–H orientations about Ca

i�1 � Ca
i . Obviously, the physical

scenario underlying Figs. 10d and 11d is the same as the physical
scenario underlying Figs. 10c and 11c, only the geometric perspec-
tive is different.

The average S2 MF value obtained in Ref. [240] for AKeco at
20 �C is 0.88 (Fig. 3a of Ref. [240]). This corresponds to c2

0 ¼ 16:1
and c2

2 ¼ 0, yielding the potential shown in Fig. 10b. This is a strong
axial potential along N–H. The associated Prel function is shown in
Fig. 11b. Limited excursion from ZC, as shown by the small ampli-
tudes along XC and YC, are illustrated. This N–H distribution is
inconsistent with the dashed curve in Fig. 5.

E.5.2. Ribonuclease H: loop dynamics
Ribonuclease H (RNase H) is a single-domain enzyme comprising

155 residues. It features the flexible loop aD/b5. 15N spin relaxation
data have been analyzed previously with MF [96,244,245] and by
us with SRLS [20,48]. Similar to AKeco, it was necessary to allow
for rhombic symmetry of the local potentials to obtain physically
meaningful results. The main difference between the flexible loop
of RNase H and the mobile domains of AKeco is the magnitude of
the time-scale separation. We obtained s/sm = 0.23 for residue
H124 pertaining to the loop aD/b5 of RNase H as compared to
s/sm � 0.5 for N–H bonds within the mobile domains of AKeco.
Further details appear in Ref. [20].

E.5.3. Xenopus Ca2+-calmodulin: SRLS versus MF analyses
Ca2+-ligated calmodulin (Ca2+–CaM) is made of an N-terminal

domain and a C-terminal domain connected by a helical linker,
which is flexible in the middle. In the crystal Ca2+–CaM adopts
an elongated dumb-bell structure with the N-, and C-terminal re-
gions of the helical linker parallel to one another (Fig. 12). Since
the middle linker region is flexible, the N-, and C-terminal domains
may adopt various relative orientations in solution. The helical tar-
get peptide, essential for Ca2+–CaM recognition and regulation,
binds in-between the domains. Hence molecular shape, linker
flexibility, and domain mobility are related to function, and deriv-
ing a reliable dynamic picture is important.



Fig. 12. Ribbon diagram of Ca2+–CaM reproduced from Ref. [248]. The data depicted
describe the global diffusion tensor as determined in Ref. [248]. ‘N’ and ‘C’ denote
the N-, and C-terminal domains of Ca2+–CaM.
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15N spin relaxation analyzed with MF was used to study back-
bone dynamics of Ca2+–CaM. The first study of Ca2+-saturated Dro-
sophila CaM used data acquired at 11.7 T, 35 �C [246]. These data
have been analyzed with the MF spectral density of Ref. [11], which
considers the global diffusion tensor to be isotropic. This assump-
tion is consistent with a nearly uniform 15N T1/T2 profile, corrobo-
rated by comparing N–H orientations in the solution and crystal
structures. Isotropic correlation times on the order of 6–8 ns were
assigned to the N-, and C-terminal domains. Except for the flexible
residues D78–S81 of the central linker and two loops, the
Ca2+–CaM backbone was found to be ‘‘rigid”, with S2 � 0.85 and
se < 100 ps.

At low magnetic fields, the local motion makes a relatively
small contribution to the MF formula; hence, some features might
have been missed in view of low sensitivity. If the MF spectral den-
sity is appropriate, the addition of higher field data will increase
accuracy and precision. If it is oversimplified, then inconsistencies
will arise. The Ca2+-free Xenopus calmodulin study of Tjandra et al.
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Fig. 13. Experimental 15N T1/T2 ratios based on 15N T1 and T2 from Ca2+–CaM acquired a
[204] was used to obtain the global diffusion correlation time, sm, at the various tempe
[247] identified such inconsistencies when 11.7 and 14.1 T data
were analyzed in concert. They were reconciled by using the re-
duced EMF formula [13]. With S2

f fixed at 0.85, sf set equal to zero,
and uniform parameters within the N-, and C-terminal domains,
the fitting yielded sm = 12 ns, S2

s � 0:7 and ss � 3 ns. Unlike previ-
ously reported [246], the local motions appear to be slow in
Ca2+–CaM. The parameters S2

s and ss were interpreted to represent
wobble-in-a-cone in the presence of a square-well potential. The
half-cone angle was determined to be approximately 30� (this an-
gle can be calculated from S2

s ; ss and an estimated value of the wob-
bling rate, Dw [11]).

15N spin relaxation data of Ca2+-saturated Xenopus CaM were
acquired by Baber et al. [248] at 8.5, 14.1 and 18.8 T, 308 K. The
model used was similar to the model of Tjandra et al. [247]. New
aspects included removal of the restrictions that sf = 0 and
S2

f ¼ 0:85, and the determination of an axial global diffusion tensor,
RC. The analysis of the local motion has been enhanced in this
study; this may be ascribed to the contribution of the 18.8 T data.
However, the global diffusion tensor is field-independent. There-
fore, adding data acquired at additional magnetic fields is not ex-
pected to change significantly the analysis of the RC tensor.
However, as shown in the next section, a substantially axial RC ten-
sor was determined using the combined data set.

Chang et al. [249] acquired additional experimental data. The
ultimate data set included 15N T1, T2 and 15N–{1H} NOEs at 8.5,
14.1 and 18.8 T, at 294, 300, 308 and 316 K. These data were com-
bined and analyzed using the EMF formula, assuming that (1) S2

f ; sf

and N ¼ RC
k=RC

? are the same for all the residues within a given do-
main and are independent of temperature, and (2) the temperature
dependence of 1=ð6smðappÞÞ � 1=3 2RC

? þ RC
k

� �
is given by the

Stokes–Einstein formula. With this analysis a sudden decrease (in-
crease) in S2

s ðssÞ was observed upon increasing the temperature
from 308 to 316 K. This was interpreted as ‘melting’ of residues
R74–K77 of the central linker (which are actually not present in
the experimental data), which is considered important from a bio-
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logical point-of-view. We focus below on the process that led to
these conclusions.

E.5.3.1. Global diffusion. The global diffusion tensor, RC, was deter-
mined from a combined multi-field multi-temperature 15N T1/T2

data set, which is supposed to be free of local motional effects.
Since the analysis of the local motion was based on using the
EMF formula that detected slow local motions throughout the pro-
tein, this assumption cannot be valid.

Based on the coordinates of the crystal structure [250], the
analysis yielded RC

k=RC
? ¼ 1:6 and a tilt angle of H = 67� (69�) be-

tween ZC (the principal axis of RC) and ZI (the principal value of
the inertia tensor of the crystal structure), for the C-terminal (N-
terminal) domain (Fig. 12). The extent of axiality, RC

k=RC
?, is the

same in the crystal and in solution. The effective correlation time,
1/(6sm(app)), was found to be 10.1 ns at 308 K.

Since the 15N T1/T2 data contain local motional effects, one may
suspect force-fitting. This is supported by the experimental 15N
T1/T2 data (filtered according to traditional criteria [202,203])
shown in Fig. 13. The width of the distribution in 15N T1/T2 divided
by the average error is an empirical estimate of the extent to which
the global diffusion tensor is axially symmetric. The value of this
parameter is 6.0, 8.5 and 13.0 for 8.5, 14.1 and 18.8 T, respectively,
at 294 K, and 4.0, 9.0 and 14.0 for 8.5, 14.1 and 18.8 T, respectively,
at 316 K. It can be seen that the shape of this distribution is
temperature-dependent although RC was assumed to be tempera-
ture-independent (the temperature-dependent sm values do not
affect the shape of the 15N T1/T2 profile). It is also strongly field-
dependent, although it definitely should not change with the exter-
nal field.

If the combined multi-field multi-temperature analysis de-
scribed above is appropriate, it should agree with single-field sin-
gle-temperature analyses. Using the filtered 15N T1/T2 data shown
in Fig. 13 we determined (using the program QUADRIC [204]) the
axial global diffusion tensor, RC, for each magnetic field and tem-
perature separately, using a simplified method appropriate for
RC
k=RC

? 6 2 developed in Ref. [166]. This method provides local dif-
fusion constants, RC(hi) (hi is the angle between the bond vector
(N–H)i and ZC). If RC is axially symmetric RC(hi) will depend linearly
on P2(coshi) [204,208,209].

We show in Fig. 14 RC(hi) as a function of P2(coshi) for 8.5, 14.1
and 18.8 T, 294 and 316 K. The expected linear dependence is not
borne out. The largest distribution of points is obtained for 8.5 T,
316 K, although in this case v2 assumes the smallest value
(v2 = 2). This is not expected for models matching the data to which
they are applied, but can occur when force-fitting is in effect. All
four parameters defining the global diffusion tensor are field-
dependent. In all the cases except for 8.5 T, 316 K, the angle H of
the individual analyses is much closer to 0� than to 67� or 69�, ob-
tained with the combined multi-field multi-temperature analysis.

It can be concluded that the axiality of RC has absorbed unac-
counted for factors. Based on experience acquired with AKeco,
which also comprises internally mobile domains, these factors
are mode-coupling and the anisotropy of the local potential, which
are not accounted for in the EMF formula. The EMF spectral density
is based on C(t) = CC(t) � CL(t). In this section we examined CC(t); in
the next section we focus on CL(t).

E.5.3.2. Local motion: MF analysis. Fig. 15 shows the S2
s and ss tem-

perature-dependent profiles obtained by Chang et al. [249]. The
squared generalized order parameter S2

s exhibits very limited tem-
perature-dependence between 294 and 308 K and decreases
abruptly upon increasing the temperature from 308 to 316 K. The
slow local motional correlation time, ss, is temperature-indepen-
dent between 294 and 308 K and increases abruptly upon
increasing the temperature from 308 to 316 K. Within the scope
of the cone model ss depends analytically on S2

s and Dw. The respec-
tive expression is used to show that the abrupt increase in ss is due
to the abrupt decrease in S2

s , while Dw increases with temperature,
as expected. However, inspection of the absolute values of Dw
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shows that 1/(6Dw) is equal at 316 K to 8.3 (6.8) ns for the N-termi-
nal (C-terminal) domain, while the apparent global-motional cor-
relation time is 6.88 ns. Within the scope of spin relaxation, local
motions may not be slower than the global motion.

The discontinuities in S2
s and ss between 308 and 316 K in

Fig. 15 are likely to result from the 15N T2 values changing signifi-
cantly between 308 K and 316 K at 8.5 T (Fig. 16), while all the
other experimental parameters change moderately [20]. This
implies a different parameterizing scenario at 316 K, evidenced
by sm being outstandingly small and the angle H outstandingly
large for 8.5 T, 316 K (Fig. 14).

The local motional parameters obtained with MF are likely to be
also force-fitted. To test this assumption we analyzed the 15N spin
relaxation data from Ca2+–CaM with the SRLS model.
E.5.3.3. Local motion: SRLS analysis. Separate analyses were carried
out for each temperature and magnetic field using our fitting
Fig. 16. Experimental 15N T2 relaxation times of Ca2+–CaM acquired at 294 K (black), 30
between the vertical dashed lines represents the central linker (residues 74–78).
scheme for SRLS based on axial potentials [19]. In view of the
large-amplitude motions executed by the N-terminal and C-termi-
nal domains we assumed that RC is (similar to the global diffusion
tensor of AKeco) on average isotropic. This is consistent with the
15N relaxation analyses of Ca2+–CaM in Ref. [246], AKeco in Ref.
[46], and the ribonuclease binase in Ref. [251].

The 15N relaxation data from Ref. [249] were analyzed in SRLS
with the parameter combination including c2

0; bMD and s\/sm. This

corresponds formally to ‘‘model 5” MF [96,97]. The SRLS parameter

S2
0

� �2
(obtained from c2

0Þ and s\ are shown in Fig. 17 as a function

of temperature for magnetic fields of 8.5, 14.1 and 18.8 T. The cor-
relation time s\ decreases monotonically from approximately 6 ns
at 294 K to roughly 3 ns at 316 K. The value of s\ is on average

twice larger than ss, and S2
0

� �2
SRLS is approximately half of S2

s

MF; unlike S2
s , it decreases monotonically with increasing temper-

ature. No sudden change is observed between 308 and 316 K in

either S2
0

� �2
or s\. The fact that S2

0

� �2
and s\ are field-dependent,

and the unduly small value of S2
0

� �2
, are ascribed to the utilization

of axial potentials. These inappropriate features are expected to be
eliminated in future work, where rhombic potentials will be used.
E.5.3.4. The MF picture. In the crystal Ca2+–CaM prevails as an elon-
gated dumb-bell shaped molecule comprising an N-terminal do-
main and a C-terminal domain. Its shape is preserved in solution
but the molecular symmetry axes are tilted with respect to one an-
other by 67–69�.

In solution, the Ca2+–CaM domains experience ns wobbling mo-
tions in the temperature range of 294–308 K. These motions occur
within cones with constant half-cone angles of 22.5� for the N-ter-
minal domain and 27� for the C-terminal (calculated from S2

s ; ss

and Dw [11]). The wobbling rates, Dw, are very close to, and in some
cases slower than, the rate for global diffusion. Nevertheless, the
motions are assumed to be decoupled.

Between 308 and 316 K the half-cone angles change abruptly
from 22.5� to 27� for the N-terminal domain and from 27� to 37�
for the C-terminal domain. This reflects ‘melting’ of the residues
R74–K77. The process detected has biological implications for tar-
get peptide binding by prolonging the flexible part of the central
linker by 50%.
0 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1 and 18.8 T [249]. The region
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E.5.3.5. The SRLS picture. Ca2+–CaM comprises two domains con-
nected through a central linker flexible in the middle. In the crystal,
the central linker is extended rendering the overall shape cylindri-
cal. In solution, the domains move with respect to one another,
rendering the molecular shape on average spherical. This agrees
with a nearly constant experimental 15N T1/T2 profile at 11.7 T.
AKeco and the ribonuclease binase, which experience extensive
internal mobility as well, exhibit similar scenarios.

The perpendicular component for local N–H motion, s\, is
6.2–2.2 times faster than the correlation time for global tumbling
and decreases monotonically with increasing temperature. Based
on its geometric context the correlation time, s\, may be associ-
ated with domain motion. Based on its absolute value of
6 P s\ P 3 ns in the temperature range of 294–316 K, while
11.6 P sm P 6.9 ns in this temperature range, s\ must be coupled
dynamically to sm; SRLS accounts for this factor.

The squared axial order parameter, S2
0

� �2
, is 0.2–0.35 in the

294–316 K temperature range, and S2
0

� �2
decreases monotonically

with increasing temperature. The form of the local potential (hence
of the local ordering tensor) is oversimplified because axial sym-
metry was imposed. An improved analysis allowing for rhombic lo-
cal potentials is expected to yield the realistic picture of high local
ordering about the Ca

i�1 � Ca
i axis with different extent of rhombic-

ity at the various N–H sites [20,50]. Despite the simplified poten-
tials used, the SRLS analysis of 15N spin relaxation from
Ca2+–CaM is significantly better than the MF analysis.
E.6. Domain motion

E.6.1. Mode-coupling
We presented above SRLS analysis of domain motion in AKeco

and in Ca2+–CaM. Let us consider in general slow internal motions
in proteins that occur on the same (ns) time scale as the global mo-
tion. The body engaged in global motion exerts spatial restrictions
on the body engaged in the somewhat faster internal motion. Con-
sequently, their rotational degrees or freedom become statistically
inter-dependent. We call this ‘‘mode- coupling”.

In SRLS ‘‘mode-coupling” is brought into effect by a local poten-
tial [16]. In its absence, the protein and the probe would be freely
reorienting rotators. Each (axial) rotator is associated with three
degrees of freedom or modes, with decay constants given by
(sm,K)�1 for the protein and (sK)�1 for the probe, both given by
Eq. (60). The solution of the two-body SRLS Smoluchowski
equation leads to an eigenvalue spectrum, (si)�1, i = 1, . . .1. Each
eigenvalue is associated with a weighting factor or ‘‘eigenmode”,
which represents the relative contribution of the corresponding
eigenfunction to the time correlation function. The eigenmodes
are determined by the parameter set considered, e.g., RC/RL = s/sm

(in full notation s0/sm,0) and the coefficients of the coupling poten-
tial, c2

0 and c2
2.

Each degree of freedom is represented by a set of basis vectors
that span the (infinite dimensional) vector space. The complete set
of degrees of freedom is represented in the product space of these
basis vectors. The eigenmodes are linear combinations of the vec-
tors in the product space representation. The basic degrees of free-
dom, or modes, are thereby ‘‘mixed” by the potential giving rise to
coupled modes, i.e., ‘‘eigenmodes” [16]. The tensors RC and RL ob-
tained by data fitting may represent more complex global and local
rotators, and not just simple rotators [45].

A Smoluchowski equation of the form of Eq. (49), where the
SRLS diffusion operator bC is written in two equivalent forms given
by Eq. (50) or Eq. (51), is solved. In Eq. (50) the orientation of each
body is referred to the lab (inertial) frame, in the presence of a po-
tential coupling them, which depends on their relative orientation.
Simple products of basis functions of the two rotators are utilized
to provide a matrix representation of the operator bC. This is a con-
venient basis set when the potential is relatively small, i.e., the
coupling is weak. In Eq. (51) only the global motion of the protein
is referred to the lab frame, whereas the local motion of the probe
is referred to the local director frame fixed in the protein. The
product basis functions for the overall motion and the relative
internal motion are used to provide the matrix representation of



Table 7
Average best-fit potential coefficients c2

0 and c2
2 obtained with SRLS-based fitting of

the 15N relaxation data from the AMPbd and LID domains of AKeco acquired at 14.1
and 18.8 T at the temperatures depicted in the table. The parameters varied include
c2

0 ; c
2
2; bMD and s/sm. The average best-fit value of bMD is on the order of 100�; the

average best-fit value of s/sm is on the order of 0.25. The errors in the order
parameters are estimated at 10%, and the errors in the potential coefficients, at 20%
[50].

Temperature
(K)

c2
0 c2

2
Sxx Syy Szz S2

0 S2
2

AMPbd
288 �4.45 19.10 0.954 �0.484 �0.471 �0.471 1.174
296.5 �0.52 18.90 0.947 �0.483 �0.463 �0.464 1.168
302 �4.80 15.79 0.941 �0.480 �0.461 �0.461 1.160

LID
288 �4.05 18.54 0.955 �0.483 �0.472 �0.472 1.174
296.5 �1.50 18.20 0.949 �0.483 �0.467 �0.467 1.169
302 �4.35 16.43 0.948 �0.481 �0.467 �0.467 1.166
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the operator bC. This is a more natural choice when the coupling
potential is large. Since these two approaches are mathematically
equivalent, one may use either choice. In our past work we have
utilized Eq. (50) [19,40,46–50] whereas in recent work we utilized
Eq. (51) [20,34,35,90].

According to the Eq. (50) perspective on mixed-modes, as a
coupling potential is added, the eigenmodes of bC become linear
combinations of the product functions of the two free rotors. This
is a point-of-view where there are two types of ‘‘mixed-modes”.
The first type results from the coupling between the two rotors
so that the motion of the internal rotor becomes more that of its
motion relative to the protein. This is a feature that exists even
when there is time-scale separation, i.e., RC/RL� 1. The second
type of ‘‘mixed-modes” arises when there is no longer a significant
time-scale separation. In that case the diffusive reorientation of the
internal rotor becomes a mixture of the global and local motions.

When Eq. (51) and its convenient basis set are used, the intui-
tive picture changes somewhat, but the final analyses are equiva-
lent. In simple mathematical terms this means that the
eigenvalues of bC are unchanged, but the eigenmodes are repre-
sented in (or referred to) different basis sets. For very high axial
ordering and RC/RL� 1 there are, within a good approximation,
two eigenmodes that represent the overall motion and the relative
internal motion. The eigenvalues are 1/sm and c2

0=2s, respectively,
and the eigenfunctions are given in Refs. [14,31]. As the coupling
potential is reduced (but RC/RL� 1), the time correlation functions
for the relative motion (i.e., for the D2

MKðXCMÞÞ become more com-
plex, involving several eigenmodes of this motion. As RC/RL in-
creases, there will be ‘‘mixed-modes” of the two coupled
dynamic processes.

The notion of ‘‘mode-coupling” has its origin in theoretical ap-
proaches for treating deviations from Brownian motion of Debye
particles in solution. A summary of early theories addressing this
problem appears in the Introduction of Ref. [16]. Thus, coupling be-
tween the degrees of freedom of a particle engaged in restricted
motion, and the degrees of freedom of the entity that imposes
the restrictions, is a general concept.

The ‘‘diffusive mode-coupling” theories [121,122] do not belong
to the category discussed in the previous paragraph. These are sin-
gle-body theories that treat the effect of fast local bond-vector fluc-
tuations on the eigenfunctions of the global diffusion tensor, in the
context of a numerical solution of the diffusion equation. Here
‘‘mode-coupling” is conceived as a change in the global diffusion
tensor by fast local motions.

It was pointed out in an earlier MD study that macromolecular
tumbling and side-chain motions are ‘‘coupled” when the internal
motions change significantly the dimensions or size of the protein
[252]. A similar comment appears in Ref. [26] in the context of
NMR spin relaxation in proteins. This perception of ‘‘mode-
coupling” is in the spirit of ‘‘diffusive mode-coupling”; it differs
in essence from the conceptualization of ‘‘mode-coupling” in liquid
dynamics theories, including SRLS, which was outlined above. In
practice, it implies a change in sm on the part of se. In this case
sm� se is no longer valid; neither are C(t) = CC(t) � CL(t) and
1=sje ¼ 1=sm þ 1=se � 1=se. This is not always realized – for
example, see Ref. [120]. Similarly the parameters sc2 and sc3

in the relations 1/sc2 = 1/sc1 + 1/sc and 1/sc3 = 1/sc1 + 4/sc in
Woessner’s model have been considered in some cases to repre-
sent a change in the shape of the protein, sc1, by the local motion,
sc. This is inconsistent with sc1� sc, which underlies Woessner’s
model.

We found with SRLS calculations that as long as s 6 sm/2, the
value of sm does not change as compared to its input value, i.e.,
the ‘‘diffusive-mode-coupling” effect is small.

‘‘Non-separability” between the global and local motions is in-
voked in Refs. [25,26]. This geometric parameter does not repre-
sent correlation between the rotational degrees of freedom of the
protein and the probe.
E.6.2. SRLS analysis: activation energies
We consider the rate for domain motion in AKeco, RL, obtained

with rhombic local potentials for the N–H bonds located within
AMPbd and LID and examine its temperature-dependence [50].
For completeness, we also examine the temperature-dependence
of the potential coefficients and related order parameters obtained
with the calculations that yielded RL. Average values of these quan-
tities, obtained at 288, 296.5 and 302 K for the AMPbd and LID do-
mains, are shown Table 7.

Except for c2
0 the general trend is a decrease in parameter mag-

nitude with increasing temperature. The non-monotonic change in
c2

0 is assigned to its value being very sensitive to changes in the lo-
cal ordering in the high ordering regime – see Fig. 3. Since various
potential forms can lead to the same order parameter components,
we consider Sxx, Syy and Szz as the principal descriptors of the local
spatial restrictions. It can be seen that the order parameters are
very similar within AMPbd and LID, and their temperature-depen-
dence is small.

The local motional correlation times within AMPbd and LID,
s = 1/(6RL), are shown in Fig. 18d-f. As expected, s decreases with
increasing temperature. This parameter discriminates among
secondary structure elements and loops. The correlation time for
local motion is, on average, larger for the helices a2 and a3 of the
AMPbd domain than for the loops a2/a3 and a3/a4 of this domain.
Based on comparable s values the ‘‘block” comprising b7, loop
b7/b8, b8 and loop b8/a7 appears to be engaged in collective motion
not necessarily identical to the motion of the entire LID domain.
Fig. 18a-c show the analogous results obtained with axial poten-
tials. The absolute values are not the same, and the discrimination
among secondary structure elements is reduced significantly.

Activation energies, Ea, were calculated with the Arrhenius
equation, RL = A exp(�Ea/RT) (Table 8). They are nearly twice as
large as their counterparts obtained with axial potentials. This
indicates that rhombic potentials are required to obtain accurate
activation energies. Allowing for potential asymmetry led to
activation energies for domain motion of 63.8 ± 7.0 and
53.0 ± 9.1 kJ/mol for AMPbd and LID, respectively (Table 8). These
values are approximately 1.5 times smaller than typical activation
energies of reactions catalyzed by multidomain enzymes, which
are on the order of 80–90 kJ/mol [253,254]. The activation energies
obtained for several elements of secondary structure within AMP-
bd (helix a3) and LID (strands b5, b6 and the b7/b8 block) are close to
80–90 kJ/mol.
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Fig. 18. Best-fit correlation times for domain motion, s\, obtained with axial-potential-based fitting for (a) the P-loop (residues G7–A13), (b) the AMPbd domain and (c) the
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Table 8
Average activation energies and pre-exponential factors for domain motion obtained
from the rate constant RL = 1/(6s) using the Arrhenius equation. Data for the domains
AMPbd and LID, and the P-loop (residues G7–A13) of AKeco, are shown. RL was
obtained with SRLS-based fitting of the 15N relaxation parameters from these
domains. The parameters varied in these calculations include c2

0 ; c2
2 ; bMD and s/sm;

the correlation time sm was determined independently [50]. Results obtained using
axial potentials, where the parameters varied in the data fitting process include
c2

0 ; bMD ; s?=sm and sk, are also shown [49].

Domain Ea (kJ/mol) ln A Correlation coefficient

Axial local potential [49]
P-loop 30.4 ± 4.3 29.1 ± 1.7 �0.981
AMPbd 29.7 ± 3.3 29.0 ± 1.3 �0.989
LID 32.1 ± 4.3 29.9 ± 1.7 �0.984

Rhombic local potential [50]
P-loop 16.5 ± 6.4 23.5 ± 2.6 �0.930
AMPbd 63.8 ± 7.0 43.8 ± 2.9 �0.987
LID 53.0 ± 9.1 39.3 ± 3.7 �0.966
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Note that deriving activation energies for internal motion in
proteins from 15N spin relaxation is not trivial. To our knowledge,
there are very few, if any, reports in the literature on this important
physical quantity because in many cases the temperature-depen-
dence of the MF parameter se is qualitatively inconsistent with
the Arrhenius equation [200,255].
E.6.3. MF analysis
The MF treatment of domain motion in Ca2+–CaM has been out-

lined in Appendix E.
In Refs. [256] and [257] monomer motion in di-ubiquitin is

modeled as two-site exchange which is decoupled from the global
motion. A mode-decoupling-type time correlation function is used.
Data fitting yielded exchange rates that are comparable to 1/(6sm)
at pH 6.8 and on average 3.5 times slower than 1/(6sm) at pH 4.5.
Within the scope of spin relaxation, local motions may not be
slower than the global motion.

In Ref. [258] a model that involves jumps between discrete con-
formers with different overall diffusion tensors, and a master (rate)
equation to describe the transitions between these conformers, is
presented. For two conformers the time correlation function is for-
mally analogous to Eq. (2), with the parameters keff, Deff and S2 for-
mally analogous to se, 1/(6sm) and S2, respectively. The quantities
keff and Deff are given by algebraic expressions of the physical ex-
change rates, k1 and k2, from site 1 to site 2 and vice-versa, and
the overall diffusion constants of the two sites, D1 and D2. The
quantity S2 depends in addition on P2(n1 � n2), where n1 and n2 de-
note the orientations of the exchanging vectors with respect to
similarly oriented global diffusion axes.

This represents a more intricate change in protein shape on the
part of internal motions. The time correlation function is of the
C(t) = CC(t) � CL(t) type, i.e., the global and internal motions are sta-
tistically independent. It is pointed out that the model developed
in Refs. [256,257] is a limiting case of this model.

In Ref. [259] stochastic simulations were performed on a dual
vector system ‘‘to drive hydrodynamics and domain coupling”.
Two vectors, A and B, with common origin, reorient with respect
to the vector A–B. The motions of A and B are correlated via a po-
tential, u, which is either a squared-well potential, kcosh, �kcosh2

or kcosh3, where h is the inter-vector angle. The equilibrium orien-
tation of h is 180�, and its minimum allowed value is 90�; this re-
sults in wobbling motions of A and B within opposite cones with
common tip.

A Langevin equation is solved for this system. An order
parameter S is defined in terms of the potential u. The correlation
time for the correlated motions of A and B (the motion of A–B) is
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denoted ss (sm). When S = 1 then the vectors A and B reorient with
correlation time s0 = 10 ns, and the vector A–B reorients with cor-
relation time 2s0. The time-scale separation, ss/sm, is restrained to
lie within the range of 0.25–1.

The Langevin trajectory is reproduced by one exponent
when S ? 1 and by two exponents otherwise within the scope of
the reduced EMF formula. The order parameter is given by
S � hP2cos (p/2 � h/2)i. This model has CL(t) given by wobble-
in-a-cone in the presence of the potential u; C(t) is given by
exp(�t/sm) � CL(t). The vector A–B is the local director, C

0
, fixed

in the protein with respect to which the local ordering frame
M � A and M � B (by cone duplication) are moving. The rotational
degrees of freedom of the probe, XC0M , defining CL(t), are indepen-
dent of the rotational degrees of freedom of the protein, XLC, defin-
ing CC(t) = exp(�t/sm).
E.6.4. RNA elongation
When the local and global motions occur at comparable rates,

one can no longer distinguish between them. Al-Hashimi and co-
workers [260,261] developed a strategy whereby the global motion
of an internally mobile RNA molecule is slowed down selectively
by elongating it with an NMR invisible segment. The implied in-
crease in time-scale separation renders detectable previously
undetected slow internal motions.

This method has been applied to a particular RNA fragment
[260]. NMR peak intensities and 13C R2/R1 ratios measured for this
molecule were uniform. Upon elongation they became non-uni-
form, singling out segments expected to experience slow internal
motions.

The qualitative evidence is unambiguous. However, the quanti-
tative analysis, which is based on 15N imino [260] and 13C base and
sugar [261] relaxation data analyzed with the EMF formula, can be
improved significantly. The deficiencies of the EMF formula have
been pointed out above. Furthermore, merely increasing the
time-scale separation between the global and local motions does
not render MF-type treatments valid. One must also account for
the effect of the local potential on the eigenfunctions of the uncou-
pled diffusion operators, the rhombicity of the local potential, and
realistic local geometry.

An effort was made in Ref. [261] to account for the asymmetry
of the nucleobase 13C CSA interaction, and the non-collinearity be-
tween the 13C CSA tensor frame and the frames of the 13C–13C and
13C–1H dipolar tensors. To account for these aspects one has to cal-
culate JCC(x) and JDC(x). This requires the spectral density compo-
nents j00(x), j11(x) and j22(x) for axial 13C CSA tensors and also
cross-terms, jKK0 ðxÞ, for rhombic 13C CSA tensors (see paragraphs
after Eqs. (57) and (58)). MF provides only j00(x). Hence, it is not
possible to account adequately for these aspects of the analysis
within the scope of MF.
3 The Euler angles XMQ have been defined as 0; bMQ ; cMQ

� �
in the fitting scheme

developed in Ref. [20], and as aMQ ; bMQ ; 0
� �

in the fitting scheme developed in Ref
[90]. The calculations presented in Sections F.2–F.5 of Appendix F were carried ou
with the fitting scheme of Ref. [20].
Appendix F. Methyl dynamics by SRLS

F.1. The SRLS model

The probe considered in this article is 13CDH2, with the 2H nu-
cleus being observed. Typical experimental data sets comprise 2H
T1 and T2 acquired at two magnetic fields. The only anisotropic
interaction causing spin relaxation is the quadrupolar interaction.
The linewidths are large, with 1/T2 being often quite similar at dif-
ferent magnetic fields. Only jKK0 ð0Þ; jKK 0 ðxDÞ and jKK 0 ð2xDÞ ðxD is
the 2H Larmor frequency) enter the expressions for T1 and T2. The
experimentally accessible region of the jKK 0 ðxÞ functions is limited
even when data acquired at several magnetic fields are combined,
and/or rank 2 coherences are included in the experimental data set
used [35]. For N–H bonds the spectral density functions are better
defined due to the presence of the dipolar interaction with the pro-
ton which render accessible experimentally high-frequency values
of the jKK0 ðxÞ functions.

Methyl dynamics is intrinsically more complex than N–H bond
dynamics because of the flexibility of the side chain to which all
the methyl groups except for alanine are attached. Therefore one
has to conceive of a model that is simple enough not to overfit
the experimental data, but elaborate enough to capture the domi-
nant factors that determine methyl dynamics.

We found that the parameter combination that is necessary but
still compatible with the sensitivity of typical data sets consists of
c2

0; c
2
2, and RC = s/sm. A rhombic POMF which is given by c2

0 and c2
2,

accounts simply and economically for the effect of the dynamic lo-
cal structure on the manner in which the methyl group occupies
the conformational space while moving locally. In this scenario,
one has only one additional free variable c2

2

� �
as compared to Eq.

(43), with the benefit of analyzing the experimental data with a
physical model.

The local geometry, i.e., the relative orientation of the local
ordering/local diffusion frame (M) and the magnetic frame (Q), is
treated as follows. We assume that the main ordering axis lies
along the C–CH3 bond; this implies bMQ = 110.5�. Setting
aMQ = 90� [90] leads to a physical picture in which XM lies along
C-CDH2 and ZM lies relatively close to the C–D bond. This is as close
as one can get without invoking additional parameters to the M
frame being consistent with the tetrahedral carbon geometry. In
most cases we fixed XMQ at (90�, 110.5�, 0�); in some cases we al-
lowed bMQ to vary in the vicinity of 110.5� to account empirically
for the complexity of methyl dynamics.

We present below SRLS analyses of methyl dynamics in the
complex of Ca2+–calmodulin (CaM) with a peptide smMLCKp cor-
responding to the calmodulin-binding domain of the smooth mus-
cle myosin light chain kinase (Ca2+–CaM*smMLCKp) [262], and in
the B1 immunoglobulin binding domain of Peptostreptococcal pro-
tein L (in short, protein L) [24]. Appendices F.2–F.4 illustrate gen-
eral features; Section F.5 presents SRLS analysis of all the
experimentally accessible methyl groups of protein L.

The following comment is in order. The statistical measure used
in our calculation is the percentile value for a v2 distribution. For
two degrees of freedom v2 has to be below 5.99, and for one degree
of freedom v2 has to be below 3.84, for a commonly used 5%
threshold [150]. In most cases our results have complied with this
requirement. We also require physical viability of the best-fit
parameters. In the present case, we required the temperature-
dependence of RL to be given by the Arrhenius equation. To ascer-
tain that over-fitting is not occurring we typically check the effect
of lowering the symmetry of the various physical quantities in-
volved. For methyl dynamics we found that allowing the tensor
RL to be axially symmetric led in many cases to over-fitting; there-
fore we used isotropic local diffusion. This is justified in the large
time-scale separation limit.

F.2. Typical spectral densities

SRLS spectral densities calculated for typical rhombic potentials
at methyl sites in proteins are illustrated in Figs. 19–21 [35]. Fig. 19
shows the jKK 0 ðxÞ functions calculated using the best-fit parame-
ters obtained for methyl T23 of protein L using combined 2H T1,
T2 and rank 2 coherence experimental data acquired at 11.7 and
14.1 T, 25 �C [24], and setting bMQ = 110.5� and cMQ = 90�.3 These
parameters are c2

0 ¼ 1:82, c2
2 ¼ �0:67 and RC = 0.017.
.
t



0

0.5

1

1.5

0

0.5

1

1.5

j
(

)
K

K
’

ω

ω  / MHz

0.0

76.7

245.6153.4

92.1
122.8 184.2

61.4
1000 2000 3000

Fig. 19. jKK 0 ðxÞ functions for KK
0
= (0, 0) – solid line, (1, 1) – dashed line,

(2, 2) – dotted/dashed line, (2, 0) – dotted line, (2, -2) – double-dotted/dashed line,
and (1, �1) – dotted/double-dashed line, calculated using Eq. (55a). These
calculations used c2

0 ¼ 1:82; c2
2 ¼ �0:67 and RC = 0.017, obtained as best-fit param-

eters with SRLS-based fitting of the experimental 2H T1 and T 2 data from methyl
T23 of protein L acquired at 11.8 and 14.1 T, 298 K [24]. The inset shows a
compressed x range extending from 0 to 4000 MHz. jKK 0 ðxÞ is given in units of 1/RL

and x is given in units of RL. The first four values above the dashed vertical lines are
the 2H Larmor frequencies (x values) at 9.36, 11.7, 14.1 and 18.8 T, i.e., x = 400,
500, 600, 800 MHz. The last four values are 2x values at 9.36, 11.7, 14.1 and 18.8 T,
i.e., 800, 1000, 1200 and 1600 MHz.

0

0.1

0.2

0.3

0.4

0.5

j K
K

’(
)

ω

ω

92.1

61.4
76.7

122.8
184.2153.4

245.6

 / MHz

0.0

Fig. 20. jKK 0 ðxÞ functions for KK
0
= (0, 0) – solid line, (1, 1) – dashed line,

(2, 2) – dotted/dashed line, (2, 0) – dotted line, (2, �2) – double-dotted/dashed line,
and (1, �1) – dotted/double-dashed line, calculated using Eq. (55a). The parameter
combination including c2

0 ¼ 1:5; c2
2 ¼ �0:5 and RC = 0.05 was used as input to these

calculations. The first four values above the dashed vertical lines are the 2H Larmor
frequencies at 9.36, 11.7, 14.1 and 18.8 T, i.e., x = 400, 500, 600, 800 MHz. The last
four values are 2x at 9.36, 11.7, 14.1 and 18.8 T, i.e., 800, 1000, 1200 and 1600 MHz.
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The insert shows a compressed x-range extending from zero to
4000 MHz. It can be seen that the portion of the jKK 0 ðxÞ functions
sampled consists of a relatively narrow region outside of which
these functions are not defined experimentally. Note that the mag-
netic field range scanned is almost as large as feasible with cur-
rently available technology. Fig. 20 shows the jKK 0 ðxÞ functions
calculated for c2

0 ¼ 1:5, c2
2 ¼ �0:5 and RC = 0.05, and Fig. 21 shows

the jKK 0 ðxÞ functions of Fig. 20 assembled into the measurable
spectral density JQQ(x) for bMQ = 110.5� and cMQ = 90�.

The following important point is illustrated in Figs. 20 and 21.
Let us assume that the six jKK 0 ðxÞ simulated functions shown in
Fig. 20 represent an actual scenario. Using SRLS one can reproduce
them with c2

0 ¼ 1:5, c2
2 ¼ �0:5 and RC = 0.05. The JQQ(x) function

comprising the jKK 0 ðxÞ functions will also be reproduced if bMQ
and cMQ are supplied. 2H T1 and T2 will also be reproduced if the
magnetic interactions are supplied.

Let us now consider analyzing this scenario with MF. The func-
tions jKK 0 ðxÞ cannot be reproduced because such functions do not
exist in MF. However, Eq. (43) might reproduce the function JQQ(x)
with good statistics, obviously with different best-fit parameters,
which are perforce physically vague. Quite a few variants of Eq.
(43) might also parameterize JQQ(x) – see, for example, Refs.
[24,192]. Similarly quite a few simple functions can parameterize
MD time correlation functions (e.g., see Ref. [132,157,159]). This
situation generates ambiguity and leads to inaccurate parameters.
F.3. Conformational entropy

The squared order parameter, S2
axis, has been used extensively to

calculate conformational entropy [55–57]. This calculation re-
quires an equilibrium probability density function (Boltzmann fac-
tor), which is obtained in MF as follows. It is assumed that S2

axis

(obtained with data fitting) is an axial physical order parameter de-
fined in terms of a local potential, u(c). The form of this potential is
guessed, and it is assumed that it depends exclusively on the rota-
tional degrees of freedom of the probe [55,57]. The coefficient of
the potential, c, is derived based on the axial form of Eq. (59),
determining thereby the Boltzmann factor.

In SRLS the local potential, u c2
0; c

2
2

� �
, hence the Boltzmann factor,

are available at the completion of the fitting process which deter-
mines c2

0 and c2
2. The form of u c2

0; c
2
2

� �
is intrinsic to the theory (Eq.

(50)). By definition this potential depends only on the rotational
coordinates of the probe relative to the protein, XC0M .

We calculated the conformational entropy for 45 methyl groups
of Ca2+–CaM*smMLCKp. The expression Sp=kB ¼ �

R
m pðqÞ ln½pðqÞ	dm,

as defined in Ref. [57], was used. The parameter q denotes coordi-
nates of the probe, kB is the Boltzmann constant, and p(q) is the
equilibrium probability density function.

The coefficients c2
0 and c2

2 (and local motional rates, RL) were ob-
tained by fitting with SRLS 2H T1 and T2 data acquired at 14.1 and
17.6 T, 295 K. We obtained 0 6 c2

0 6 2:5 and c2
2 in the range of

�0.26 to �0.94 for the 45 methyl groups studied (with bMQ and
cMQ set equal to 110.5� and 90�, respectively). These data were
used to calculate Sp/kB.

In Figs. 22c-e we show Sp/kB as a function of 0 6 c2
0 6 2:5; S2

0 and
S2

2 for c2
2 equal to �0.26, �0.51, �0.87 and �0.94. For comparison,

we show in Fig. 22a Sp/kB as a function of c2
0 with c2

2 � 0, as in
MF. In Fig. 22b we show Sp/kB as a function of the S2

0 values that
correspond to the c2

0 values shown in Fig. 22a. Since MF analyses
feature 0 < Saxis < 1 [6], we show in Fig. 22d Sp/kB as a function of



Fig. 23. (a) The potential u = �1.76 � (3/2cos2bCM � 1/2) + 0.59 � (3/2)1/2 sin2bCMcos2cCM as a function of bCM and cCM given in radians. The potential coefficients are best-fit
values obtained by fitting with SRLS the experimental data of methyl group A10 of Ca2+–CaM*smMLCKp (see text for details). (b) The relative probability Prel of the C–13CDH2 axis
having an orientation in the infinitesimal range bCM ± DbCM and cCM ± DcCM, for anya, given by {exp[1.76 � (3/2cos2bCM � 1/2)� 0.59 � (3/2)1/2sin2bCMcos2cCM]}sinbCMDbCMDcCM,
as a function of the spherical coordinates (bCM, cCM). The principal axes of the uniaxial local director frame are XC, YC and ZC, with ZC parallel to the equilibrium C–13CDH2

orientation, and XC = YC. (c) The potential u = �0.73� (3/2cos2bCM � 1/2) + 0.48 � (3/2)1/2sin2bCMcos2cCM as a function of bCM and cCM given in radians.
The potential coefficients are best-fit values obtained by fitting with SRLS the experimental data of methyl group I85c of Ca2+–CaM*smMLCKp (see text for
details). (d) The relative probability of the C–13CDH2 axis having an orientation in the infinitesimal range bCM ± DbCM and cCM ± DcCM, for any a, given by
{exp[0.73 � (3/2cos2bCM � 1/2)� 0.48 � (3/2)1/2sin2bCMcos2cCM]}sinbCMDbCMDcCM, as a function of the spherical coordinates (bCM, cCM).
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Fig. 22. Conformational entropy Sp=kB ¼ �
R

v pðqÞ ln½pðqÞ	dv [57]. The probability density function, p(q), is defined in terms of uðc2
0 ; c

2
2Þ, with c2

0 and c2
2 obtained with SRLS-

based fitting of the experimental data of Ca2+ – CaM*smMLCKp from Ref. [262]. (a and b) The functional dependence of Sp/kB on c2
0 and S2

0, for u ¼ �c2
0P2ðcos hÞ. (c–e) Sp/kB as a

function of c2
0; S

2
0 and S2

2, respectively, for c2
2 ¼ �0:26 (solid line), �0.51 (dashed line), �0.78 (dotted/dashed line) and �0.94 (dotted line).
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0 < S2
0 < 1, for the c2

2 values given above. In Fig. 22c we show Sp/kB

as a function of the c2
0 values corresponding to the S2

0 values shown
in Fig. 22d, for the c2

2 values given above.
In Fig. 22e we show Sp/kB as a function of S2

2 for the c2
2 values gi-

ven above. With this presentation (used to facilitate comparison
between the axial and rhombic potential scenarios), the variations
in Sp/kB as a function of c2

2 are suppressed in Figs. 22c and d. How-
ever, they are conspicuous in Fig. 22e, which does not have an axial
counterpart.

The following picture emerges. (1) The diversity of the experi-
mental data is interpreted in SRLS as variations in the shape of
the local potential. In MF it is interpreted as variations in the
amplitude of axial fluctuations presumably executed by the
C–CH3 bond. (2) The conformational entropy Sp/kB does not vary
much throughout the protein according to SRLS; it varies a great
deal according to MF [6]. This result has significant implications
for the characterization of methyl sites in proteins in terms of con-
formational entropy [6]. (3) Sp/kB from SRLS has a well-defined
physical meaning. No assumptions are made beyond the basic te-
nets of the SRLS model. Once the coefficients c2

0 and c2
2 have been

determined with fitting of the experimental data, one can readily
calculate Sp=kB; S

2
0 and S2

2. Several assumptions are made in the
MF scenario, and S2

axis is in itself problematic in nature.
Yang and Kay considered rhombic potentials in the context of

MF [57]. A new method for calculating conformational entropy
Table 10
Best-fit c2

0 ; c
2
2 and s values obtained with SRLS-based fitting of 2H T1, T2, and the three relaxa

L (Ref. [35]) acquired at 11.7 and 14.1 T, 298 K [24]. The best-fit value of the angle bMD is (69
from S2 using Eqs. (52) and (59). The penultimate and ultimate columns on the right show
in boldface letters required the utilization of the MF formula where sm was also allowed

Methyl MF SRLS

S2
axis c2

0
se (ps) RC c2

0

V2c1 0.73 1.22 54 0.013 1.7
T37 0.74 1.23 50 0.012 1.8
T55 0.98 1.41 51 0.012 1.8
T17 0.97 1.42 45 0.011 1.5
I9d 0.38 0.89 24 0.006 1.5
L8d1 0.30 0.79 35 0.009 �0.2
L8d2 0.30 0.79 41 0.010 �0.3
T15 0.57 1.09 69 0.017 1.7
L38d1 0.56 1.08 34 0.008 1.6
V47c1 0.57 1.09 55 0.014 1.5
I58d 0.58 1.10 17 0.004 1.8
V49c2 0.62 1.13 40 0.010 1.6
L56d1 0.61 1.12 70 0.017 1.8
L56d2 0.61 1.12 38 0.009 1.6
A61 0.60 1.11 46 0.011 1.6
T3 0.88 1.33 39 0.010 1.7
T28 0.88 1.33 41 0.010 1.8
I4c 0.87 1.32 24 0.006 1.8
A33 0.89 1.34 37 0.009 1.8
A11 0.82 1.29 49 0.012 1.9
A18 0.81 1.28 57 0.014 1.9
I58c 0.82 1.29 27 0.007 1.7
T46 0.69 1.20 63 0.016 1.8
V49c1 0.68 1.18 34 0.008 1.7
T23 0.84 1.31 39 0.010 1.8
A50 0.84 1.31 24 0.006 1.8
A31 0.83 1.30 77 0.019 1.9

Table 9
Potential coefficients, c2

0 and c2
2, obtained with SRLS-based fitting of the experimental

2H T1 and T2 relaxation parameters from the methyl groups A10 and I85c of
Ca2+–CaM*smMLCKp. Details are given in the text. The order parameters Sxx, Syy and
Szz were calculated from c2

0 and c2
2.

Methyl group c2
0 c2

2
Sxx Syy Szz (Sxx � Syy)/Szz

A10 +1.76 �0.59 �0.256 �0.116 +0.372 �0.38
I85c +0.74 �0.48 �0.164 +0.019 +0.144 �1.27
has been developed recently; it was associated with the
generalized MF order parameter [263].
F.4. Local potentials and relative probability distributions

To gain further insight into the local ordering at methyl sites in
proteins we present below local potentials, u c2

0; c
2
2

� �
, and associ-

ated relative probability, Prel, for typical potential shapes obtained
with SRLS analysis. The methyl groups of residues A10 and I85c of
Ca2+–CaM*smMLCKp have been selected as examples. The experi-
mental 2H T1 and T2 data acquired at 11.6 and 17.7 T, 295 K
[262], have been subjected to data fitting. The best-fit parameters
obtained in these calculations are c2

0 ¼ 1:76; c2
2 ¼ �0:59;bMQ ¼ 109�

and s/sm = 0.0054 for A10, and c2
0 ¼ 0:74; c2

2 ¼ �0:48; bMQ ¼ 112�

and s/sm = 0.01 for I85c. The errors in the various best-fit parame-
ters are estimated to be on the order of 10%.

The rhombic potential prevailing at the site of methyl A10, gi-
ven by c2

0 ¼ 1:76 and c2
2 ¼ �0:59, is shown in Fig. 23a; the

corresponding Prel function in shown in Fig. 23b. The Cartesian ten-
sor components given in Table 9 indicate that Z-ordering prevails
at this methyl site. The shape of Prel in Fig. 23b corresponds to
jSxxj > jSyyj; the depression in the center is due to small solid angles
close to ðbC0M ; cC0MÞ ¼ ð0;0Þ. The rhombicity of the potential may be
estimated by jc2

2=c2
0j that is equal to 0.36; this represents substan-

tial asymmetry.
The rhombic potential prevailing at the site of methyl I85c, gi-

ven by c2
0 ¼ 0:74 and c2

2 ¼ �0:48, is shown in Fig. 23c; the
corresponding Prel function is shown in Fig. 23d. The Cartesian ten-
sor components given in Table 9 show that X-ordering prevails at
this methyl site. The jc2

2=c2
0j ratio is 0.65. This represents very high

rhombicity.
The MF analysis gives values of S2

axis of the A10 methyl as 0.84
and the S2

axis value of the I85c methyl as 0.303 at 295 K [262]. Thus,
according to MF the C–CH3 bond of A10 is highly ordered; this is
tion rates associated with rank 2 coherences from the 13CDH2 methyl groups of protein
± 1.5)�. The data under the heading ‘‘MF” were taken from Ref. [24]; c2

0 was calculated
R c2

0

� �
¼ c2

0ðSRLSÞ=c2
0ðMFÞ and R(s) = s(SRLS)/se(MF), respectively. The residues marked

to vary [24].

c2
2

s (ps) RC R c2
0

� �
R(s)

7 �0.82 101 0.025 1.5 1.9
9 �0.92 97 0.024 1.5 1.9
3 �0.95 113 0.028 1.3 2.2
6 �0.82 117 0.029
7 �0.50 28 0.007 1.8 1.2
9 �0.50 53 0.013
5 �0.50 57 0.014
9 �0.95 105 0.026 1.6 1.5
8 �0.74 61 0.015 1.6 1.8
1 �0.58 93 0.023 1.4 1.7
6 �0.56 32 0.008 1.7 1.9
8 �0.82 61 0.015 1.5 1.5
9 �1.09 117 0.029 1.7 1.7
0 �0.68 65 0.016 1.4 1.7
8 �0.73 77 0.019 1.5 1.7
8 �0.89 85 0.021 1.3 2.2
2 �1.02 85 0.021 1.4 2.1
4 �0.78 73 0.018 1.4 3.1
7 �0.91 101 0.025 1.4 2.7
8 �1.02 134 0.033 1.5 2.7
0 �1.00 109 0.027 1.5 1.9
9 �0.96 53 0.013 1.4 2.0
9 �1.00 105 0.026 1.6 1.7
2 �0.68 69 0.017 1.5 2.0
4 �0.94 81 0.020 1.4 2.1
1 �0.93 53 0.013 1.4 2.2
4 �1.15 134 0.033 1.5 1.7
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expected. On the other hand, the C–CH3 bond of I85c is involved in
large-amplitude axial fluctuations. As pointed out above, this is
incompatible with the local stereochemistry and the packing
properties of protein cores.

According to SRLS the A10 and I85c methyl groups, and in
general all the methyl groups in proteins, reorient in the presence
of rhombic local potentials. Different methyl groups experience
different potential forms in agreement with the structural differ-
ences in their immediate surroundings. Correlations between the
SRLS potentials and the local structure will be established in future
work.

F.5. Protein L: application

Kay and co-workers studied 2H spin relaxation of 13CDH2 groups
in protein L with MF [24]. Auto-correlated relaxation rates and
relaxation rates associated with rank 2 coherences were acquired
at 9.4, 11.7, 14.1 and 18.8 T, in the temperature range of 288–
318 K. We analyzed these data, kindly provided by Prof. Lewis E.
Kay, with SRLS, and compared results with the MF analysis of
Ref. [24]. Detailed information appears in Ref. [35]. Selected results
are presented below.

Table 10 shows methyl groups ordered approximately
according to the S2

axis values obtained using Eq. (43) [24]. Data ob-
tained at 298 K were used in these calculations; se from Ref. [24]
was also used. The c2

0 values were calculated assuming that Saxis rep-
resents S2

0. The SRLS results shown in Table 10 were obtained from
the same experimental data by fixing bMQ at 110.5� and cMQ = 90�,
and allowing c2

0; c
2
2 and RC to vary in the data fitting process [35].

The penultimate and ultimate columns on the right show
R c2

0

� �
¼ c2

0ðSRLSÞ=c2
0(MF) and R(s) = s(SRLS)/se(MF), respectively. It

can be seen that these ratios are larger than unity and in many
cases vary considerably within a given group of similar S2

axis values.
For relatively small values of S2

axis, which are the most useful

ones in MF analyses, S2
axis taken as S2

0

� �2
is approximately linear

in c2
0 (Fig. 3). Therefore the qualitative disagreement between the

trends exhibited by c2
0 (SRLS) and c2

0 (MF) implies qualitative dis-
agreement between the trends exhibited by c2

0(SRLS) and S2
axis.

Since c2
0 (SRLS) is a physical parameter whereas S2

axis is a com-
posite parameter with a vague physical meaning, caution is to be
exerted in MF analyses in interpreting variations in S2

axis in terms
of biological phenomena. A new term called, ‘‘polar dynamics”,
based on relative S2

axis values, was set forth recently [264]. Small
differences in S2

axis and se have been used to elucidate communica-
tion pathways in proteins and detect manifestations of allostery
[265–267]. Such inferences should be based on physical
parameters.

The parameter se is problematic not only because of its mathe-
matical definition and the associated unspecified validity ranges,
but also because of its multiple inconsistent roles in Eq. (43). Such
a parameter typically does not obey physical laws, e.g., Arrhenius-
type temperature dependence. In quite a few temperature-depen-
dent studies, se values are not even reported (e.g., Ref. [262]). Occa-
sionally se might exhibit Arrhenius-type temperature-dependence
over narrow temperature ranges. Nevertheless, one should be cau-
tious in interpreting such trends in terms of physical activation
energies. This has been attempted in Ref. [268] for selected methyl
groups of the SH3 domain of a-spectrin for a temperature range of
17 K.

Appendix G. SRLS eigenmodes: methyl dynamics

The SRLS time correlation functions comprise sums of weighted
exponents with decay constants given by the eigenvalues of the
SRLS solution, and weighting factors, or ‘‘eigenmodes”, determined
by the eigenvectors of the SRLS solution. We depict below the
eigenmode composition of a hierarchy of SRLS time correlation
functions associated with methyl dynamics. Gradual enhancement
of relevant tensorial properties is carried out. Within the scope of
this scheme, we search for a physical scenario that Eq. (43) might
represent.

The 2H T1 and T2 relaxation times of the 13CDH2 methyl group of
alanine A10 of Ca2+– CaM*smMLCKp, acquired at 14.1 and 17.6 T,
and 295 K (Ref. [262]), have been selected as a representative
example. They were subjected to SRLS-based data fitting for
several different parameter combinations. The best-fit parameters
determined thereby, and those kept fixed in these calculations,
were used as input to calculate SRLS time correlation functions,
CKK 0 ðtÞ. The eigenmodes contributing to these functions are
delineated below, and the emerging picture is discussed.

The results of the MF analysis of methyl group A10 are illus-
trated in Fig. 24a. S2

axis is equal to 0.84; hence the weighting factor
of the global motional mode is S2 = 0.084 (circled point in Fig. 24a).
The decay constant associated with the effective local motion is not
available since se values are not reported in Ref. [262]. For example,
a value of 12 ps would yield RC = 0.006 (in units of RL), using
sm = 11.81 ns (taken from Ref. [262]). The eigenmode associated
with the effective local motion is (1 � S2) = 0.916; the correspond-
ing eigenvalue is 6 (in units of RL).

The generic MF spectral density used for methyl dynamics
analysis is Eq. (2), where S2 and se are varied; S2

axis is obtained as
S2/0.1. The formally analogous SRLS parameters are c2

0 and RC.
The best-fit values obtained for methyl A10 with a SRLS calculation
where these parameters were varied are c2

0 ¼ 0:87 (corresponding
to S2

0

� �2
¼ 0:036) and RC = 0.0015. These values were used as input

to the calculation of the functions CKK(t), KK = 00, 11, 22. The eigen-
modes comprising these functions are shown in Table 11. We com-
pare below Figs. 24a and b.

The angle bMQ is implicitly zero in MF and set equal to zero in
the SRLS calculation. Therefore only C00(t) (j00(x) in the frequency
domain) is relevant in the present context. The function C00(t) com-
prises three dominant local motional eigenmodes given by 0.350,
0.509 and 0.094, corresponding to eigenvalues of 5.96, 5.63 and
6.93, respectively. The global motional eigenmode is 0.0376 and
the corresponding eigenvalue is 0.0355. A large number of small
eigenmodes (not shown) makes the remaining fractional contribu-
tion of 0.0094. The eigenmodes contributing to C00(t) are shown in
Fig. 24b.

The eigenmode compositions shown in Figs. 24a and b differ
significantly. The spectral density underlying Fig. 24a is a simple
limit of the spectral density underlying Fig. 24b. The physical sce-
nario examined in these calculations is diffusive local motion in the
presence of a small axial potential in the large time-scale separa-
tion limit. Clearly, the spectral density given by Eq. (2) does not
represent this physical scenario properly; if it did, the results
shown in Figs. 24a and b would have been similar.

The calculation illustrated in Fig. 24b does not account for the
110.5� tilt between the magnetic and local ordering/local diffusion
axes, which is an important geometric feature in methyl dynamics;
hence, it must be enhanced to do this. We repeated the SRLS-based
fitting of the data of methyl group A10 with bMQ fixed at 110.5� in-
stead of 0�. The best-fit parameters obtained are c2

0 ¼ 2:97 (corre-

sponding to S2
0

� �2
¼ 0:36) and RC = 0.0009. Using these

parameters as input (with bMQ = 110.5�) we calculated the time
correlation functions C00(t), C11(t) and C22(t). Since bMQ = 110.5�
all of these functions contribute to C(t) with coefficients of 0.1,
0.323 and 0.577, respectively. The properly scaled (according to
the local geometry) eigenmodes contributing to the various CKK(t)
functions are shown in Fig. 24c; the unscaled eigenmodes are
shown in Table 12.



Table 12
Dominant eigenmodes, cKK 0 ;i , and corresponding eigenvalues, 1/si, which constitute
the time correlation functions C00(t), C11(t) and C22(t), calculated with
c2

0 ¼ 2:97; c2
2 ¼ 0; bMQ ¼ 110:5� and RC = 0.0009. The values of c2

0 and RC are the best-
fit parameters obtained with SRLS-based fitting of the same experimental data as
outlined in the title of Table 11. The fractional contributions of the corresponding
jKK(x) functions to JQQ(x) are also shown. The eigenvalues, 1/si, are given in units of
RL.

C00(t) C11(t) C22(t)

1/si c00, i 1/si c11, i 1/si c22, i

7.65 0.378 1.21 0.419 4.47 0.735
0.006 0.329 7.65 0.193 8.94 0.193
6.93 0.130 8.93 0.190 10.1 0.045

8.46 0.145

10% 32.3% 57.7%

Table 11
Dominant eigenmodes, cKK 0 ;i and corresponding eigenvalues, 1/si, which constitute
C00(t), C11(t) and C22(t), calculated with c2

0 ¼ 0:87; c2
2 ¼ 0; bMQ ¼ 0� and RC = 0.0015.

The values of c2
0 and RC are best-fit parameters obtained with SRLS-based fitting of the

2H T1 and T2 data from the A10 methyl of Ca2+– CaM*smMLCKp acquired at 14.1 and
17.6 T, and 295 K. The experimental data and sm = 11.81 ns were taken from Ref.
[262]. The fractional contributions of the jKK(x) functions to JQQ(x), and the MF data
from Ref. [262] obtained with Eq. (2), are also shown. The eigenvalues, 1/si, are given
in units of RL.

C00(t) C11(t) C22(t)

1/si c00, i 1/si c11, i 1/si c22, i

5.96 0.350 5.96 0.330 5.34 0.527
5.63 0.328 6.22 0.302 6.57 0.374
5.63 0.181 6.54 0.292 6.98 0.096
6.93 0.094 1.73 0.069
0.0355 0.0376
1.0 0.0 0.0
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The (scaled) global motional eigenmode is 0.0329 and c2
0 is 2.97

when bMQ = 110.5� (Fig. 24c). The (scaled) global motional eigen-
mode is 0.0376 and c2

0 is 0.87 when bMQ = 0� (Fig. 24b). Instead of
three dominant (unscaled) eigenmodes of 0.350, 0.509 and 0.094
in C00(t) (j00(x)), corresponding to eigenvalues of 5.96, 5.63 and
6.93, respectively, for bMQ = 0 (Table 11), one has two (unscaled) lo-
cal motional eigenmodes of 0.378 and 0.130, corresponding to
eigenvalues of 7.65 and 6.93, respectively, for bMQ = 110.5� (Ta-
ble 12). Eigenmodes of C11(t) (j11(x)) and C22(t) (j22(x)) dominate
JQQ(x) for bMQ = 110.5�; they do not contribute to JQQ(x) for
bMQ = 0�. The very large differences in eigenmode composition, im-
plied by different local geometries, are associated with very
different best-fit parameters. Clearly the bMQ = 110.5� geometry is
correct.

We compare these parameters with their counterparts in Eq.
(47), which is the physical representation of Eq. (43). Eq. (47) fea-
tures S2

0

� �2
¼ 0:84. The K = 0 term of this equation (Eq. (46a)) com-

prises a global motional eigenmode of 0:1� S2
0

� �2
with eigenvalue

of 6RC, and a local motional eigenmode of 0:1� 1� S2
0

� �2
	 


with

eigenvalue of 6. The CðtÞ11(t) and C22(t) functions contribute eigen-
modes of 0.323 and 0.577, respectively, both with eigenvalue of 6.

The actual case features S2
0

� �2
¼ 0:329. Table 12 shows that the

dominant eigenmodes are 0.419 with eigenvalue of 1.21
contributed by CðtÞ11(t), and 0.735 with eigenvalue of 4.47 contrib-
uted by C22(t). Additional eigenmodes with eigenvalues in the
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range of 6–10 are contributed by all the CKK(t) functions. The differ-
ence between the eigenmode composition of Fig. 24c (Table 12)
and the eigenmode composition of Eq. (47) is large.

The physical scenario examined in the latter comparison is dif-
fusive local motion in the presence of an axial potential with a ‘‘dif-
fusion tilt” of 110.5� in the large time-scale separation limit.
Clearly, the spectral density given by Eq. (47) does not represent
this physical scenario either.

We showed in previous work that SRLS analysis of methyl
dynamics based on axial potentials yields results which have
several problematic aspects [34,35]. Many of these problems could
be resolved by allowing for rhombic potentials. We therefore pro-
ceeded by subjecting the experimental data of A10 to SRLS analysis
where rhombic potentials were allowed for.

The parameter combination including c2
0; c

2
2; bMQ and RC was

used in this calculation. The best-fit parameters obtained are
c2

0 ¼ 1:76; c2
2 ¼ �0:59;RC ¼ 0:0054 and bMQ = 109� (similar results

were obtained by fixing bMQ at 110.5�). Note that for rhombic
potentials the functions j00(x), j11(x), j22(x), j20(x), j1�1(x) and
j2�2(x) contribute to JQQ(x) with coefficients of 0.14, 0.354,
0.474,�0.095, 0.045 and 0.082, respectively. For simplicity we only
display in Fig. 24d the dominant eigenmodes of C00(t), C11(t) and
C22(t) (which correspond to j00(x), j11(x) and j22(x), respectively).

Let us compare the rhombic and axial potential scenarios. C00(t)
of Table 13 (Table 12) comprises a global motional eigenmode of
0.079 (0.329) corresponding to an eigenvalue of 0.042 (0.006).
The local motional eigenmodes contributing to C00(t) of Table 13
correspond to eigenvalues spanning the range of 5.20–8.93. This
should be compared to the eigenvalues of 7.65 and 6.93 shown
in Table 12. C11(t) of Table 13 (Table 12) comprises ‘‘faster” local
motional eigenmodes corresponding to eigenvalues in the range
of 5.23–8.00 (7.65–8.93) and two ‘‘slower” local motional eigen-
modes (one ‘‘slower” eigenmode) corresponding to eigenvalues
Table 13
Dominant eigenmodes, cKK 0 ;i , and corresponding eigenvalues, 1/si, comprising the
time correlation functions C00(t), C11(t) and C22(t) calculated with
c2

0 ¼ 1:76; c2
2 ¼ �0:59; bMQ ¼ 109:5� and RC = 0.054. The values of c2

0 ; c
2
2; bMQ and RC

are the best-fit parameters obtained with SRLS-based fitting of the same experimental
data as outlined in the title of Table 11. The fractional contributions of the
corresponding jKK (x) functions to JQQ(x) are also shown. The eigenvalues, 1/si, are
given in units of RL.

C00(t) C11(t) C22(t)

1/si c00, i 1/si c11, i 1/si c22, i

5.81 0.317 6.24 0.187 5.12 0.280
5.20 0.265 5.85 0.182 4.90 0.274
7.74 0.201 5.23 0.164 7.92 0.134
0.042 0.079 1.82 0.122 7.90 0.109
7.90 0.064 7.61 0.118 2.93 0.05
4.90 0.041 7.65 0.109 5.81 0.04
8.93 0.013 8.00 0.07 8.22 0.03

1.37 0.03 8.93 0.03
5.20 0.03

C02(t) C1�1(t) C2�2(t)

1/si c02, i 1/si c1�1, i 1/si c2�2, i

5.81 0.286 5.85 0.363 4.90 0.546
5.20 0.232 5.23 0.328 7.90 0.218
7.74 0.148 7.61 0.237 5.81 0.075
5.12 0.137 1.37 0.057 8.93 0.056
7.92 0.07 5.20 0.056
4.90 0.05 7.74 0.019
2.93 0.025 0.042 0.018
0.042 0.017
8.22 0.015

KK
0

0, 0 1, 1 2, 2 0, 2 1, �1 2, �2
% 13.95 35.43 47.42 �9.5 4.46 8.23
(an eigenvalue) of 1.82 and 1.37 (1.21). C22(t) of Table 13 comprises
quite a few local motional eigenmodes corresponding to eigen-
values in the range of 2.93–8.93. C22(t) of Table 12 comprises only
three local motional eigenmodes corresponding to eigenvalues of
4.47, 8.94 and 10.1.

The eigenmode/eigenvalue patterns for the axial and rhombic
potential cases are very different. The time-scale separation is
6-fold smaller in the rhombic potential case due primarily to a lar-
ger number of ‘‘slower” eigenmodes (corresponding to smaller
eigenvalues). Such eigenmodes are also missing in MF calculations
yielding inaccurate se values. There are reports in the literature
that se MF is often too small [269].

All the calculations illustrated in Fig. 24 are associated with suf-
ficiently low v2 values [150]. Only the calculation illustrated in
Fig. 24d, featuring a rhombic potential, is appropriate from a phys-
ical point-of-view. Ample evidence that rhombic potentials under-
lie methyl dynamics in proteins appear in Refs.
[34,35,38,71,76,193]. Fig. 24d indicates that the mixed modes im-
plied by rhombic potentials make comparable contributions to C(t).
Axial potentials generate a dominant eigenmode contributed by
the C22(t) function – cf. Fig. 24c. A uniform eigenmode distribution
agrees better with a potential representing non-specifically the
complexity of methyl dynamics.

Note that mode-coupling has a small effect on methyl dynamics
because the local motion of the methyl group is much faster than
the global tumbling of the protein. The analysis presented above
illustrates the importance of allowing for rhombic symmetry and
arbitrary orientation of the local ordering tensor. It also illustrates
that Eq. (43) does not represent a physical scenario. S2

axis is physi-
cally vague, as pointed out in Section 3.2.3. As already shown,
trends in S2

axis may be misleading. As an additional example we

note that for methyl group A10 S2
0

� �2
¼ 0:36 whereas

S2
axis ¼ 0:84; for methyl group M76 S2

0

� �2
¼ 0:14 where

S2
axis ¼ 0:11. Based on extensive calculations we found that the

parameterizing values, S2
axis, span a significantly larger range than

the physical values, S2
0

� �2
. The relation between S2

0

� �2
and S2

axis is
not linear.
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