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I. INTRODUCTION

In this chapter we develop thetheory for slow tumbling in ESR spectros-
copy, with specific application to nitroxide free radical spectra. The slow
tumbling region is that range of rotational reorientation times for which the
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ESR spectrum can no longer be described as a simple superposition of
Lorentzian lines, characteristic of the fast motional or motional narrowing
region, for which the theory developed in the previous chapter applies. In
this chapter we further take it to be the region for which the ESR spectrum
still shows effects of the motion; i.e., the motion is not so slow as to yield a
proper rigid-limit spectrum. For nitroxide free radicals, this usually means
we are considering the range of rotational correlation times 107 sec £
g < 1076 sec. This is an important range for nitroxide probes in viscous
media or for nitroxide spin labels attached to large macromolecules.

In this region, the spectra are affected in a complicated way by both the
motions and the magnetic spin interactions. As a result, a theory which can
deal rigorously with describing this region must be both powerful and
general. It is our objective to set forth this theory, which has been developed
in the last few years, and to emphasize its general foundations. The general
theory is presented in Section ILA. It is a characteristic of the slow motional
region that it requires that we ask more intricate questions about the
detailed nature of the molecular motions in order to properly analyze the
spectra than is true for studies in the motional narrowing region. Thus in
much of the remainder of Section II the dynamics of molecular motions is
developed to an extent concomitant with the need to explain actual slow
tumbling experiments.

It has also been our objective to demonstrate how the general theory can
be applied to actual cases. Thus in Section IIT we give a detailed discussion
of comparisons between the theoretical predictions and recent experimental
studies. Wherever it appears reasonable, we have tried to indicate simplified
approaches in the analysis of slow tumbling spectra short of running
detailed computer simulations. Nevertheless, there are many cases where the
researcher will need detailed simulations tailored to his specific needs. For
that reason, we have, in Appendix B, supplied the computer program that is
applicable to isotropic liquids.

The development of the theory and the specific examples given here draw
most heavily on the recent work of the Cornell group, with which the author
is most familiar. Detailed references to other work can be found in a recent
review article (Freed, 1972b). Recently, Polnaszek (1975b) has reviewed our
methods and compared them with the other approaches. It should be
emphasized that the slow tumbling theory is in many ways based on a
generalization of stochastic theories of jump models for magnetic resonance
(Abragam, 1962; Kubo, 1962, 1969; Johnson, 1965) and we sometimes
make use of the analogies when appropriate. A familiarity with motional
narrowing theory, such as is discussed in Chapter 2, would be useful
preparation for this chapter, and a familiarity with quantum mechanics and
some statistical mechanics is assumed in Section 1.
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1I. THEORY

A. General Method

A quantum mechanical wave function ¥ can be expanded in a complete
set of orthonormal functions U, as

\P(l) = Z C"(I)U,, (1)
The density matrix is defined to be
Pumlt) = c,(t)cn(t) ()

where the bar indicates an average over a statistical ensemble. A useful

property of the density matrix is the calculation of the expectation value of

an operator O for a system described by the wave function V. Thus
CYLO|Y) = Y (¥ | UndXUn [O|UXXU, |¥) = 3 cy(t)eh(t)Opm

(3a)
and for an average expectation value of an ensemble of such systems we have
CFIOTFS = T punOpn = Tr pO (3b)

where Tr is the trace. The trace is invariant to the choice of the complete
orthonormal basis set. Thus all the information for calculating observable
quantities is contained in the density matrix.

Since the wave function ‘¥ will vary with time, the coefficients c,(t) will be
functions of time, and this time dependence can be obtained from the time-
dependent Schrédinger equation. Then the density matrix equation of
motion, assuming the same Hamiltonian #(t) for all members of the
ensemble, is given by the quantum mechanical Liouville equation

dp/or = ~i[H(t), p] 4

Now assume that the time dependence of the spin Hamiltonian #(t) for
a free radical arises from interactions with its environment such that J#(t) is
fully determined by a complete set of random variables Q. Also assume that
this time dependence of Q is described by a stationary Markov process, so
that the probability of being in a state Q, at time ¢, if in state Q, at time
t — At, is (a) independent of the value of Q at any time earlier than ¢t — At
and (b) depends only on At and not on t. A stationary Markov process can
be described by a differential equation

OP(Q, 1)/or = ~TaP(Q, 1) (5)
where P(€, t) is the probability of the free radical being in a state Q at time ¢.
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Since the process is assumed stationary, Iy, is independent of time. The
evolution operator I'y, is an operator only on the random variables Q and is
independent of spin space. T’ a includes such general Markov operators as
the diffusion operators given by the Fokker-Planck equations and transi-
tion rate matrices among discrete states Q,, Q,, ..., Q,. In this discussion,
Q = a, B, y will represent Euler angles specifying orientation and I' qWillbe a
rotational diffusion operator.

It is also assumed that the stochastic process has a unique equilibrium
distribution P,(Q) characterized by

FaPy() =0 (6)

We can show (Kubo, 1969; Freed et al,, 1971 ; Freed, 1972a) that Egs. (4)-(6)
lead to the stochastic Liouville equation of motion

0p(Q, 1)jor = —i[#(Q), p(Q, 1)] ~ Tup(Q, 1) (7)

where p(Q, 1) is now understood to be the value of p associated with a
particular value of Q, hence of #(Q). Thus, instead of looking at the explicit
time dependence of the spin Hamiltonian H#(t) involving the interaction
with its environment, the spin Hamiltonian is written in terms of random
angle variables Q and its modulation (due to rotational motions) is ex-
pressed by the time dependence of Q.

The steady-state spectrum in the presence of a single rotating microwave
frequency field is determined by the power absorbed from this field. We find
for the Ath hyperfine line at an orientation specified by Q

P,(Q) = 2Nhwd, Z{¥(@Q) ®)

where P, is the power absorbed, N is the concentration of electron spins, d,
is a “transition moment” given by d, = 4y, H,(i" |S_ |A*> (where §_ is
the electron spin-lowering operator and 1* are the Mg = +1 states of the
electron spin for the Ath transition), and Z{" is defined by the series of
equations

(P —pohi =1, 9)
Xa= Y [exp(inwt)jz (10)
"=
and
Zp =z 4 izor (11

(Actually, the experimentally observed signal is proportional to Z¢"" and
not to d, Z{'"")
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In Eq. (9), po(Q) is the equilibrium spin density matrix. Equation .(8)
displays the fact that it is the n = 1 harmonic, i.., the component rotating
with the microwave field, that is directly observed. In the case of simple lines
we can identify Z%'” and Z{"”" with the magnetization components M, and
M, for the Ath line in the rotating frame. ‘

The notation for a matrix element of an operator O is

0u = <a]O|b) (12a)
0,=<CA"|0]|a") (12b)
0,: =<A*|0]2*) (12c)

where a, b are eigenstates and 1%, 1~ are, respectively, the upper and lower
electron spin states between which the Ath ESR transition occurs. For a
nitroxide there are three allowed ESR transitions.

The total absorption is then obtained as the equilibrium average of
Eq. (8) over all Q. Thus averages are introduced such as

ZP = [ dZP(@)Py(Q) (13)
so that
P, = 2Nhwd, ZD" (14)

where d, has been taken to be independent of orientation. The total spin
Hamiltonian #(t), expressed in angular frequency units, is now separated
into three components,

HQ) = Ho + #,(Q) + &t) (15)
In the high-field approximation
h"?o = g:ﬂcHOSz —h Z yiiz‘HO - h)’e Z ais;zizi (16)

yields the zeroth-order energy levels and transition frequencies (cf. Chapter
2). o#,(Q) is the perturbation depending on the orientation angles Q, and,
being a scalar, can be expressed as the scalar product of two tensors. That is,
in general, we write 5, (Q) as [in the notation of Freed and Fraenkel (1963)]

K@= T 2L, (QFEmAL (17)

Lmm, u,i
where the Fi';™ and A{"™ are irreducible tensor components of rank L
and component m, with the F’ being spatial functions in molecule-fixed

coordinates, while 4 consists only of spin operators quantized in the labora-
tory axis system. The subscripts y and i refer to the type of perturbation and
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to the different nuclei, respectively. The Wigner rotation matrix elements
29, w(Q) include the transformation from the molecule-fixed axis system

(x', ¥, Z) into the laboratory axis system (x, ¥, ). We shall be concerned
with the A and g tensors, for which L = 2. [1t has been found that effects of -

the "N quadrupole tensor is negligible (Goldman et al., 1972a; Goldman,
1973).] In addition,

&) = 4y H\[S, exp(—iwt) + §_ exp(iwt)] (18)

is the interaction of the electron spin with the oscillating magnetic radiation
field. [When more than one oscillating field, e.g. ELDOR or ENDOR, is
present and/or when field modulation effects are to be explicitly incorporated
then Eq. (18) may be appropriately modified to include these effects.)

When we take the (1™ | |1*) matrix elements of Eq. (7) and utilize
Egs. (9)-(11), we find the steady-state equation for Z{ to be

(nw ~ ,)ZPAQ) + [#,(Q), ZM(Q)]; — i[TaZ), + d [0V — yo= 1]
= qu,d, (19)
[The superscripts to x;, refer to harmonics in the sense of Eq. (10). The
harmonic components of any other oscillating fields present may be
introduced in a similar manner.] For reasonable temperatures and typical
ESR field strengths we may write p, = N'~! — g o, where N’ is the number
of spin eigenstates of ' and q = h/N'kT. Also, hw,=E,, —E,_ and

the Z{”(Q) are spin matrices defined by Eqs. (9)-(11), and the E,, are
the eigenenergies of &, for the At states.

It is convenient at this point to introduce a “ symmetrizing ” transforma-
tion for the evolution operator. It is not needed for isotropic liquids but

becomes useful for anisotropic liquids.
Thus

Fq = Pg'1r, PY? (20)
and similarly

Z9(Q) = Py M Z0(Q)P) (21)

This transformation usually renders I';, Hermitian. Now, Egs. (6) and (20)
combine to give

TPy =0 (22)
Equations (21) and (13) yield

ZP = [ dapyizp@) (23)

N
=}
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and Eq. (19) with Egs. (20)-(21) becomes
(no — wA)ZS\")(Q) + [#,(), Z(")(Q)]A - i[rnz(”)]l + 3TN -
= qu,d, Py (24)

In order to solve for the absorption, Eq. (23), we first solve the difquion
equation (5). As in quantum mechanics, the solution of such a partial differ-
ential equation can be expressed in terms of a complete orthonormal set of
eigenfunctions, call them G,,(€2), such that

fEﬂGm(gl) = T; le(Q) (25)

~ where 7., ! is the mth “eigenvalue.” We generally find

Go(Q) = Py’? (25a)

Then we expand matrix elements of Z{(Q) in the complete orthonormal set
G..(Q):

ZPQ) = 3 [CR()):Gnl) (26)

where the coefficient C%(w) is an operator in spin space and is a function of
w, but is independent of Q. '

Substituting Eq. (26) into Eq. (24), premultiplying the resulting equation
by G*(Q2), and then integrating over 2 and taking advantage of the ortho-
normal properties of G,,(Q), we obtain

[(neo — ;) — iz JCWL: + ¥ [ dRGHQA 1 (Q), C), Cor()

+ d‘([Cf,'.'_ ”]H - [CL'."”]») = qu,d; &(m, 0) é(n, 1) (27)

Since the absorption, Eq. (14), depends only on Z'Y, then §olving Eq. (27)
for [CH], for all allowed transitions will give the spectral line shapes..

In the absence of saturation we can set d; = 0 on thc? left-hand side of
Eq. (27) and then let n = 1, to obtain the needed expression. ' .

A rotationally invariant Lorentzian linewidth T3 ' can be included in
Eq. (19) or Eq. (27) by letting

w,»w, +iT3! (28)

In the near-rigid limit, this linewidth corresponds to the linewidth in a single
crystal, or more precisely to a residual linewidth in a powder spectrum.

More generally, an angular variation of the width can be introduced. For
simplicity, this variation is allowed to take the form

T;'(0) = o + Bcos® b (29}

-
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wl?erc 0 is the angle between the magnetic field axis and the molecular z
axis.

The above equations yield coupled complex algebraic equations for the
coefficients [CY],, and we attempt to solve for these equations utilizing only
a finite number of coefficients. (The complete orthonormal set includes an
infinite number of such eigenfunctions.) The convergence depends essen-
tially on the ratio |#,(Q)| /7. The larger the value of this ratio of off-
diagonal to diagonal terms, the more terms [C%, that are needed. The
results obtained by relaxation theory valid in the fast motional limit (cf.
Chapter 2) are recovered when only one order beyond [C{"], is included.

B. Rotational Modulation in Isotropic Liquids

When the general method of the previous section is applied to rotational
modulation, Q refers to the Euler angles for a tumbling molecular axis with
respect to a fixed laboratory axis system. For a molecule undergoing many
collisions, causing small random angular reorientations, the resulting iso-
tropic Brownian rotational motion is a Markoy process, which can be

dgeflczr;be)d by the rotational diffusion equation (Freed et al., 1971; Freed,
1 b

dP(Q, 1)/at = R VAP(Q, 1) (30)

where V3 is the Laplacian operator on the surface of a unit sphere and R is
the rotational diffusion coefficient. If the molecule is approximated by a rigid
sphere of radius a rotating in a medium of viscosity #, then a rotational
Stokes-Einstein relationship yields :

R = kT/8na®n (31)

In an isotropic liquid, the equilibrium probability Py(Q) of Eq. (6) will be
equal for all orientations, so that Py(Q) = 1/8n2. Here the Markov operator
Fq. Eq. (5), for isotropic Brownian rotation, Eq. (30), is —RV3, which is
formally the Hamiltonian for a spherical top whose orthonormal eigenfunc-

tions are the normalized Wigner rotation matrices or generalized spherical
harmonics:

G~ dxu(Q) = [2L + 1)82%)'22% ,,(Q) (32)

with eigenvalues RL(L + 1) (Freed, 1964, 1972a). Note that for K = 0,
Doula, B, v) = [4n/(2L + 1)) Yiu(B, v), where Y., is the well-known
spherical harmonic (Rose, 1954; Edmonds, 1957).

Similarly, the Markov operator for axially symmetric Brownian rotation
about a molecule-fixed z axis is formally the Hamiltonian for a symmetric

~
-
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top whose symmetry axis is the z axis. The orthonormal eigenfunctions are

again the normalized Wigner rotation matrices with eigenvalues given by
Fadkm = [RLLIL + 1) + (Ry — R )K*)dkss (33)

where R, and R, are the rotational diffusion constants about the x, y axes
and z axis, respectively (Freed, 1964; Favro, 1965). The “quantum num-
bers” K and M of the Wigner rotation matrices refer to projections along
the body-fixed symmetry axis and along a space-fixed axis, respectively.

For completely asymmetric Brownian rotation (Freed, 1964, 1972a;
Favro, 1965) R, # R, # R,, where R, R, and R, are the respective rota-
tional diffusion constants about the x, y, and z axes, the Markov operator I,
has more complex solutions (see below). Also, for fast rotation about one
axis (e.g., the z axis, so that R, » R,, R,), the completely asymmetric rota-
tion can be treated as axially symmetric with eigenvalues R, L(L + 1) +
(R, — R,)K? where R, =4(R, + R).

In the fast rotational motion region, all rotational reorientation
processes yield the same ESR line shapes, which, as predicted by earlier
relaxation theories, yields Lorentzian lines (Abragam, 1961; Freed and
Fraenkel, 1963). Naturally, in the very slow rotational motion region all
models should tend to the rigid-limit powder line shape of the equilibrium
distribution. However, in the intermediate slow rotational region
| #,(t) ] ta S 1, the ESR line shapes are found to be sensitive to the details
of the molecular reorientation process.

A number of different models for rotational reorientation can be
proposed. Some useful ones are: (a) Brownian rotational diffusion; (b) free
diffusion in which a molecule rotates freely for time 7 (i.e., inertial motion
with T = I/B, with I the moment ef inertia and B the friction coefficient) and
then reorients instantaneously; and (c) jump diffusion in which a molecule
has a fixed orientation for time 7 and then * jumps ” instantaneously to a new
orientation (Goldman et al., 1972; Egelstaff, 1970). For isotropic reorienta-
tion, we can summarize the results for these models as

(a) ' =L({L+ )R | (34)

(b) 1! = L(L + 1)R/[1 + L(L + 1)Rz]'? (35)
and

© 1l= t-.{ 1— QL+ 1) .[o" deW (e)[sin(L + $essin(le)]]  (36)

where W(e) is the distribution function for diffusive steps by angle € and is
normalized so that

[n Wi(e) de = 1 (37
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One convenient form for W(e) is

W(e) = A sin(3¢) exp(—¢/0) (38)
where 4 is a normalization constant. For 6 < =, we obtain
1! = L(L + DR/[1 + RtL(L + 1)] (39)
and
(€)avg = 662 (40)

where Rt is proportional to the size of a mean diffusive step when the
diffusion coefficient is defined as

R = (e)u /67 (41)

Other possible choices for W (e) are summarized elsewhere (Goldman et al,,
1972). A good formal theoretical discussion of jump diffusion as has been
employed here is given by Cukier and Lakatos-Lindenberg (1972); also
the basic work of Ivanov on jump diffusion has recently been reviewed by
Valiev and Ivanov (1973).

It should be noted that Eq. (35) is only an approximate expression for
free diffusion. Since free diffusion includes inertial effects, the orientation of
the molecule is not properly described as a simple Markovian process. A
more accurate treatment of free diffusion must include angular momentum
as well as orientational degrees of freedom, but recent work by Bruno and
Freed (1974b) shows that the results for the more complete formulation of
free diffusion are similar to those obtained using the simple model.

A comparison of Eqgs. (34)-(36) shows that the L dependence of 7,
depends on the choice of reorientational model. Thus in the slow motional
region, where the line shape is simulated in terms of an expansion in Dk u
with eigenvalues 17 %, the ESR spectra will be model sensitive. We can
summarize these equations with the simple expression

1t =B, L(L + )R (42)

with the “model parameter” B, =1 for Brownian motion;
B, =[1+L(L+1)]"! for strong jump diffusion with Rt =1; and
B, =[1 + L(L + 1)]7"2 for free diffusion and Rt = 1. For purposes of
comparison, the definition of 7 is generalized to ’

1, = (6B,R)™! (43)

where B, is the appropriate model parameter for L = 2. Thus in the mo-
tionally narrowed region, where only the L = 2 term is important, it follows
from Eqs. (42) and (43) that all models yield the same Lorentzian width for
the same value of ;.
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For anisotropic rotational diffusion, there are no convenient solutions
for the jump and free diffusion models. The most straightforward course
then is to generalize the equations for spherically symmetric rotation. Thus
we let

1k = (Bu/R)R.LIL + 1)+ (R) — R, )K? (44)

where B, is the same model parameter as in Eq. (42). In effect, it is assumed
in Eq. (44) that although the L dependence of 7/ | is model dependent, the
“quantum number” K plays the same role in all models (Goldman et al.,
1972a). Other interpretations of the model dependence in terms of more
fundamental analyses of microscopic molecular dynamics have been dis-
cussed by Hwang et al. (1975).

C. Anisotropic Liquids

Suppose now that the liquid has a preferred axis of orientation, i.e., the
director axis (cf. Chapter 8). We now write the perturbing Hamiltonian (17)
as (Polnaszek. et al., 1973) [with the (—1)* which was included into the
Fi% % of Eq. (17) now explicitly displayed):

H Q) = Z (- I)Kgllxw(n)-@'ihu(\y)}::},‘?K)AL‘:%M) (45)
pn

Equation (45) is based on two sets of rotations of the coordinate systems:
first from the molecular axis system (x', ', z') into the director axis system
(x", ", 2") with Euler angles Q = (afy); and then into the laboratory axis
system (x, y, z) with Euler angles \P. The orientation of the director relative
to the laboratory frame can be specified by the two polar angles 0’ and ¢’
such that ¥ = (0, &, ¢’). More precisely, one means by the molecular coor-
dinate system (x’, ’, z') the principal axis system for the orientation of the
molecule in the mesophase. It may also be necessary to transform from the
principal axis system of the magnetic interactions (x”, y™, z") to the
(x', ¥, 2') system with Euler angles ©, according to

F459 =¥ 2% (@FFF) (46)
K’

where © = (o, 8, 7).
The diffusion equation for a particle undergoing Brownian rotational
diffusion in the presence of a potential V is given by (Favro, 1965; Polnaszek
and Freed, 1975; Polnaszek, 1975a)
oP(Q, 1) _av(Q)

X2 T . H|R M

5 gt RH(PQ 0 = ~TaP(©Q,1) (47)
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where V(Q) can be taken to be the orienting pseudopotential for a liquid
crystal, . # is the vector operator, which generates an infinitesimal rotation,
and is identified with the quantum mechanical angular momentum operator
for a rigid rotator, and R is the diffusion tensor of the molecule. Both R and
-# are defined in the (x', y, z) molecular coordinate system. The angular
momentum operator . # is defined by

HPiu(Q) =L(L + 1)¢3(Q) (48a)
H s 5u@) = [(L F K)L £ K + 1))"*¢k 11, (@) (48b)
A Piu(Q) = K¢iu(Q) (48c)

where the ¢,,(R2) are the eigenfunctions of .#2 and .4, given by Eq. (32),
and

M= M. tiM, (49)

When V = 0, Eq. (47) is simply the equation for (asymmetric) Brownian
rotational diffusion in isotropic liquids. [Simpler expressions have been
given for special cases by Nordio and Busolin (1971), Nordio et al. (1972),
and Polnaszek et al. (1973).] Equation (47) is based on the assumption that
the external torque T is derived from the potential V(Q):

T =—iuv(Q) (50)
[CI. Eq. (30), where we have set V2 = —.4 2] The equilibrium solution to
Eq. (47) is given by
§ dQ exp[ - V(Q)/kT]

When the symmetrized forms of Eqs. (20)-(22) are used, we obtain the
diffusion equation

Py(Q) =

oPQ, t)jor= ~T,B(Q, 1) (52)
where
(# R-V) T R-F
2kT (2kT)?

The restoring potential for liquid crystals can be written in its most general
form as

Fo=#tR-.#t+ (53)

V(@) = . ;M‘:ku 7 (2 B.7) (54)

The assumption of cylindrical symmetry about the director axis n implies
that all averages taken over the angle y vanish unless M = 0 (Glarum and
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Marshall, 1966, 1967). The uniaxial property of nematic liquid crystals (i.e.
= —n) implies that L must be even. It is useful to use the linear combina
tions of the 2%,, that are of definite parity, i.e., the real linear combinatio:

@

Y= 3 (59500 + 5 ckloki@ s at) s

even L

These have simpler properties for molecular symmetries less thar |
cylindrical. §

Usually we consider only the leading term €5 2%0(Q), ie., the Meier- -
Saupe (1958) potential. The cylindrically symmetric case when &2 # 0 has ‘
also been considered (Polnaszek et al., 1973) and it was shown that typica’
ESR spectral predictions are not very sensitive to having e§ # 0. In general
however, we expect the terms for L > 2 to be less important than those for
L = 2, and we can approximate

2
V(Q) ~ £§230(Q) + KZOEL[%O(Q) + 22 40(Q)] (56)
The €3 and &, = e + £2 , (with the upper sign for K > 0, and the lower
sign for K < 0) are themselves second-rank irreducible tensor components,
so that, in the principal axis of molecular orientation system (x', y', ) their
Cartesian components ¢}, are diagonalized, with Tr; &} = 0, and complete
specification is given by just &2 and £3 . . [Equation (56) can be thought of as

the scalar product of second-rank irreducible tensors.] The ordering tensor
is defined by

(Diu( @) = [ dQUP (25, (Q) (57)

where L = 2 and M = 0. It is also a second-rank irreducible tensor whose
symmetry properties are related to those of the ¢k+ - Thus from Egs. (51)
and (56) and the orthogonality of the 9%,,(Q) terms it follows that in the
(x', ¥, 2') system only (@23,(Q)> and (D30 + 9%, are nonzero, ie.,
(Dn(Q)) is also diagonalized. Thus the “diagonalized " potential (retain-
ing only L = 2 terms) becomes

V(Q) = e3256(Q) + £3.[930(Q) + 22 ,0(Q)] (58)
or equivalently
Ve, B) = y; cos? B + ¢ sin? B cos 2 (58)

where ¢§ = 2y, 3and 2, = 2¢(6)~ */2. For molecules in which the molecu-
lar x’ and y’ axes are aligned to different extents, ¢ is nonzero. If we choose
the orientation coordinate system such that the z' axis tends to align to 4
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greater degree cither parallel or perpendicular to the director than does the
x' axis or the y’ axis, we have |y,| > |e|. The case ¢ < 0 corresponds to
the y’ axis being ordered preferential to the x’ axis along the direction of n
and/or to the x’ axis being ordered to a greater degree perpendicular to the n
than is the y axis.

We can utilize Egs. (50), (48b) and (48c) to obtain 7 from the potential in
Eq. (58) in terms of its components in the (x', y, z’) coordinate system:

Ty =T tiT = ti(sin 2f)(ee™ — y,e*") (59a)
T, = ~2¢sin? B sin 2 (59b)

We assume axially symmetric rotation about 2’ such that R,,, = R,,,, = R,
and R, = R, . Further, we introduce the definitions

= —p, kT (60a)
and
p= —¢/kT (60b)

Then the symmetrized Markov operator defined in Eq. (52) becomes (Pol-
naszek and Freed, 1975; Polnaszek, 1975a)

P=uR-u—f(R Ry, pQ) (61a)

where

f(RL!R"»A’ P Q)= ozz [XI(;O'@60+ Z XkO(‘@ll(‘O'*'@l“KO)]
L=0,2,4

0<KsL
(61b)

with
X00 = —(2/15)}[R.(A* + p*) + 2R, p?] (62a)
X3o = AR, A — [R,(A* + p?) — 4R p?)21) (62b)
XG0 = 42R, (A% + p?) — R p*)/35 (62c)
X30=6"2p[4(R, + 2R;) + %R 4] (62d)
X%0 = 4(10)'2R, pA/35 (62¢)
X3 = (8/35)”2R o’ (62f)

and . # - R - . #is just the I, of Eq. (33) with its associated eigenvalues.
We can also write the diffusion equation in terms of the general angular
momentum operator A" referred to the director frame (Favro, 1965). This is
appropriate when R is diagonal in this frame, i.e., one has anisotropic viscos-
ity. We then generate an analogous set of expressions (Polnaszek, 1975a;
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Polnaszek and Freed, 1975). It is now assumed that R, = R
R,, = R“ The result is

=1

yy

Fe=A"R, -V —R, f(4p Q) ‘ (
where
fAp.Q) = ) Xbo D50(Q) + Y Xkol2ko(Q) + 2 4o(Q)
L=0,2,4 0<KslL |
with »
X% = —2(A* + 3p?)/15 (6
X3o =204 - (2 - 3p?)21] (6:
Xdo = 4(22* +p?)/35 (6
X% = 6'"2p[1 + (24/7)) . (6:
‘40 = 4(10)*21p/35 (6
X% = (8/35)'%p (6
and

N R A iy = [RLLIL + 1) + (R — R )Mk t

It is shown in Appendix A how the slow tumbling equations for isotro
liquids can be simply modified to deal with anisotropic liquids in the sim

‘case of a Meier-Saupe potential and with ¥ = (0, 0,0) and © = (0, 0,

(except that permutation of the labeling of the molecular axis system
permitted). The more complex expressions for the general cases are given
Polnaszek (1975a).
Fmally, note that when ]A] » 1, and the eigenfunction expansion
%,,(Q) is only slowly convergent for solutions of the diffusion equati
then there are other types of eigenfunction expansions, specifically tailos
to these limiting cases, which become very useful (Polnaszek et al., 197;

D. Exchange and Slow Tumbling

In cases where the concentration of nitroxide spin probes is high, we a
have to consider the effects of Heisenberg spin exchange. This phenomer
involves bimolecular collisions of radicals during which time an exchai
integral J is turned on, and, because of the Pauli principle, can be written
an added term in the spin Hamiltonian:

Hss =J(1)S, + S, i
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where J = 2J’ and is time dependent due to the relative motion of the
radical pairs. Its effect (viewed from an ESR point of view) is to cause the
electron spins to exchange their nuclear environments.

A rigorous analysis of exchange (cf. Freed, 1967; Eastman et al., 1969)

shows that we can add to the left side of Eq. (19) for the allowed
transitions 4, the terms:

) 2D . 2D

—lwss(l ot _N_’é)ZA + mss"*“N—'"Z" (68)
where D, and D, are the degeneracies of the Ath and nth allowed ESR
transitions, respectively. That is, for nitroxides D, = D,=1and N' =6.
The sum in Eq. (68) is over all allowed transitions 5 not equal to A. Also, the
effective exchange frequency wsg obeys

wss = 73 '[J33/(1 + J*})) (69)

where 1, is the mean time between successive new bimolecular encounters of
radicals, and 7, is the lifetime of the interacting pair. In the case of simple
Brownian diffusion of uncharged radicals in solution we can write (Eastman
et al,, 1969; Pedersen and Freed, 1973a, b):

17! = 4zdDN (70)
17 ! = D/dAr, (71)

where N is the density of radicals, d is the “interaction distance” for
J(r) which is nonzero (and equal to J) only in the range of d < r < d + Ar 7
and the diffusion coefficient in a Stokes-Einstein model is

D = kT /6nan (72)

Expression (68) is only appropriate for the allowed transitions, which then
couple together by this mechanism. For each forbidden ESR transition (see
below), we have instead of (68) to add the term to the left side of Eq. (19)

—iwgsZ, (73)

If we make the simplifying assumption that wgg is independent of any orien-
tational effects [i.c., J(r) is taken as a function only of the relative internu-
clear separation of the radical pair], then (68) and (73) can be added to the
LHS of Eq. (27), where we let Z,(Q) —» [C™],, etc.

Expressions (69) and (70) are based on a simple contact-exchange model
(Eastman et al., 1969). More complex models of the motional modulation of
J(ry, v;) can also be dealt with (Pedersen and Freed, 1973a,b). Effects of
radical charge and/or electrolyte concentration on Egs. (70) and (71) must
also be considered (Eastman et al., 1970). Expressions (68) and (73) are also
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useful for two-dimensional motions, but Egs. (69)-(72) would have to

modified. Also, in general, effects of intermolecular electron-spin dipc
interactions become important at higher concentrations as the motions sk
down (Eastman et al., 1969).

E. Nitroxides

For nitroxides, there are three allowed ESR transitions and six forbidd
transitions which must be considered in a rigorous solution of Eq. (27). Th
are illustrated in Fig. 1a. The asymmetric g tensor g and the hyperfine tens
A yield an J#,(Q) given by

#1(Q) = 23, o(Q)[F, + DL)S, + [22,.0) + 23 0(Q)]
X (FZ + D(z)'iz)gz + [93, I(Q)i+ - -@5 - I(Q)i—]Dgz
+[22,,.(Q) + 23 ,(Q)D?], S,

~[2%,, _.(Q) + 2% _,(Q)DPI_S, 7
where
Fi= /34" '8.H, (75
g% = 6729, - (g, + g,)] (s
g* = g, — g,] (75
D= (|1]2/6)(Ae + 4, - 24,) (76
D® = ily. (4, — 4,) (76

with D' = —(8/3)'2D and D®" = —(8/3)"/2D'*). The forbidden transitio;
4-9 of Fig. 1a are coupled into the expressions for the allowed transitios
because of the pseudosecular terms in Eq. (74), i.e., the terms involving I, .
(where I, are the nuclear spin raising and lowering operators). The Eul
angles Q = a, f, y define the rotation between the laboratory coordins
system (x, y, z) and the principal axis system in the molecular frame

which the g and hyperfine tensors are diagonal. We assume they are dia
onal in the same axis system [which is rigorously the x”, y”, 2" system, b

1e, 0> fo,->
1 3
> T —_tm>

Fig. 1a. Energy levels and transitions for a nitroxide in high fields. Here S = and 1 =
and the notation is | Mg, M,).
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Egs. (75a)-(75¢) and (76a) and (76b) are written as though they correspond
to the x', y, 2’ system].

It can be shown that the nuclear Zeeman term (which appears in the
resonance frequencies of the forbidden transitions) makes a negligible
contribution, so one can neglect it. Then it is only necessary to consider
forbidden transitions 4 and 5, 6 and 7, and 8 and 9 in pairs, and this
simplifies the expressions (see Appendix A).

We can now evaluate Eq. (27) (for n = 1) and the resulting expressions,
neglecting saturation [i.e., set d; = 0 on the LHS of Eq. (27)}, are given in
Appendix A. They define an infinite set of coupled algebraic equations coup-
ling the allowed and forbidden transitions. Only even values of the “quan-
tum number” L appear for the allowed transitions for which M = 0. Also,
one has the general restriction

0sKsL withKeven (77)

while M = 1 for the coefficients Ck,, representing the “single forbidden”
transition pairs (4, 5) and (6, 7) and M = 2 for the “ doubly forbidden ” pair
(8, 9).

Approximations to the complete solution can be obtained by termina-
ting the coupled equations at some finite limit by letting Ck, (i) = 0 for all
L > n,. While the number of equations needed to obtain a satisfactory
convergent solution depends on the value of 7, (the larger is 1, the greater is
the value of n, needed) the convergence also depends on the rotational
reorientation model. The model that yields eigenvalues with the greatest
dependence on L value in Egs. (34)-(40) will have the fastest convergence.
Therefore, in general, the convergence becomes poorer as one progresses
from Brownian to simple free and intermediate jump, to strong collisional
jump diffusion. For Brownian rotational diffusion with 1z ~ 2 x 1078 sec,
n, = 6 is sufficient; with t; ~ 2 x 10”7 sec, n, = 12 is sufficient; and with
¢ ~ 2 x 107 sec, n, = 24 is sufficient. However, for simple free diffusion
and 1, ~ 2 x 107 ® sec, n, = 10 is needed and for a strong jump model
n, = 16 is needed. It is also often useful to terminate K at some value
considerably less than n, (i.e., for ny < n.). This would be especially applic-
able for isotropic or for axially symmetric reorientation about an axis paral-
lel to the 2p = orbital of nitrogen, because in such a principal axis system, the
A tensor is almost axially symmetric. Typical values for the nitroxide radical
in this coordinate frame (cf. Table I)are | Fy | ~ 4.8 Gand |D| ~ 104 G,
while the asymmetric values are |F, | =~ 1.6 G and |D®| = 0.4 G. These
smaller terms are the coefficients for coupling the variable Ck, (i) with
K # 0 into the problem, so their smallness guarantees faster convergence
(cf. Appendix A). Also, if R » R, or R, then this will greatly improve
the convergence in K relative to that in L.
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The computer program in Appehdix B has provision for separate termi
ating values for K and L. The number of coupled equations is then found
be

r=3+3n —dng+ Ong +3n,,  nozng, ng=2 (78
or

r=9+3mn;—-2) ifng=0 and n 22 (78

A further reduction in the number of equations can be made by disti
guishing between the allowed and forbidden transition coefficients. That is.
the coefficients for the allowed transitions Cq(i) are terminated at L = r
then the coefficients for the singly forbidden transitions Ck,(j, k) are
minated at L = n’ and the doubly forbidden Cj,(8, 9) at L = n”, whe
n', n” < n;. We have found that for convergence usually n’ >~ n, or n, —
but n" may be truncated at values significantly below n, (e.g, wh
n, = n' = 16 was needed, n” = 8 was sufficient). Also the terms of odd
which exist only for the forbidden transitions, may be truncated at vah

of L < n,. The computer program in Appendix B also provides for the
truncations.

III. APPLICATIONS

A. Isotropic Liquids: Experiments

The validity of the slow tumbling theory has now been carefu
confirmed in studies on model systems of PADS (peroxylamine disulfona
and PD-TEMPONE (perdeuterated 2,2,6,6-tetramethyl-4-piperidone
oxyl) (cf. Fig. 1b) in viscous media (Goldman et al., 1972a; Goldman, 19’
Hwang et al., 1975). ’

One of the most important requirements in analyzing a slow tumbli
spectrum is to have accurate values for the magnetic tensors A and g. The
are best obtained from viscous solutions in the same solvent as is the sl
tumbling spectrum. This is because, in general, nitroxides will exhibit me
netic parameters which are rather solvent dependent. Figure 2 shows o

S0; D 0

3 D

I ON < I cpy 2o,
s0; N

CO;, ' CD,
0

Fig. 1b. (I) Peroxylamine disulfonate anion (PADS). (1I) Perdeuterated 2,2
tetramethyl-4-piperidone-1-oxyl (PD-TEMPONE). "

-
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Vel

Pty
10 GAUSS

2As;

Fig. 2. Rigid limit spectrum (——) and simulations using Lorentizan (---) and Gaussian
(- -=-) line shapes to the very well-resolved spectrum for PD-TEMPONE (cf. Fig. 1b) in
toluenc-dy. See Table I for magnetic parameters. [Reprinted with permission from Hwang
et al, J. Phys. Chem. 19, 489-511 (1975). Copyright by the American Chemical Society.]

such rigid-limit spectrum from PD-TEMPONE in toluene-dg (Hwang et al.,
1975). This is a convenient case, where the solution can be cooled
sufficiently without any changes in phase until a rigid-limit spectrum is
achieved. This is a particularly well-resolved spectrum because the effects of
magnetic interactions of intra- and intermolecular protons on the ESR have
been replaced with much weaker deuteron interactions. Note that while A,
and g, can be read from the spectrum, accurate determination of the other
principal values of the hyperfine tensor requires careful computer simula-
tion. The rigid-limit computer simulations were performed according to
standard methods; a program listing for nitroxides appears in Polnaszek’s
thesis (1975a). Note that a Lorentzian line shape gives an overall better fit in
this case. (Other cases show line shapes ranging from near Lorentzian to
intermediate between Lorentzian and Gaussian.)

Table I gives accurate sets of magnetic parameters determined for PD-
TEMPONE and PADS in a variety of solvents, as well as other nitroxide
magnetic parameters.t In Table I the x axis is taken as being along the
N-O bond, the z axis along the 2p = orbital of the nitrogen, and the y

1 Editor’s note: See also Appendix II (page 564) and Chapter 6, Table Il (p. 247) for
additional g and A data.

&
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TABLE 1

MAGNETIC PARAMETERS®

!0 PADS in 859
glycerol-H,0*

PADS in
glycerol-H,0* DTBN¢ (KSO,),NOH*

PADS in 85%

PADS in frozen D,0?

2.0094 + 0.0004
2.0055 + 0.0004
2.0026 + 0.0004

2.0058 + 0.0004

2.00872 + 0.00005
2.00616 + 0.00005
2.00270 + 0.00005
2.00586 + 0.00005

200785 + 0.0002
200590 + 0.0002
200265 + 0.0001

g

2.0081 + 0.0002
2.0057 + 0.0002
2.0025 + 0.0001

9

9:

2.00543 + 0.00017

@’

200547 + 0.00017
200548 + 0.00001

2.00545 + 0.00002
-361 £ 0.15 x 10~3
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~347 £+ 0.13 x 107?*

31+ 15 % 1074
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z
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axis perpendicular to the other two. [These axes should more rigorously be
written as x", y”, z, cf. Eq. (46), but the primes have been dropped for
convenience, since there should be no confusion with the laboratory axes.]
The x', y', 2’ axes are the principal axes of the diffusion tensor R and they
are assumed in Table I to be either the same as the x, y, z axes or else to
be a cyclic permutation of them. It should be clear from this tabulation
that (1) nitroxides do exhibit significant solvent dependences in their
magnetic parameters and (2) the different nitroxides will exhibit some
difference in their magnetic parameters. One interesting observation in this
context is the result for PD-TEMPONE (cf. Fig. 1b) in ethanol-dg. It
exhibits two distinct values of A,, the larger one characteristic of the
values in hydrogen-bonding solvents, while the smaller one is characteristic
of the values in non-hydrogen-bonding solvents. In general, one must
expect some variation in the magnetic parameters from site to site in a
given solvent, and this will be an important source of the [orientation-
dependent, cf. Eq. (29)] rigid-limit intrinsic width. These matters are
discussed elsewhere (Hwang et al., 1975).

Another source of valuable information for the analysis of the slow
tumbling spectrum is the relaxation results from the fast motional spectrum
in less viscous media, if it is at all available.

Figure 3 shows the results for PADS (cf. Fig. 1b) in D,0 (Goldman et
al., 1972a) where the derivative width 5(M) is plotted as

(M) = 4 + BM + CM? (79)

The analysis of motional narrowing spectra is discussed by Nordio in Chap-
ter 2. Suffice it to say here, that the motional narrowing theory, coupled with
experimental values of B and C and accurate values of the magnetic par-
ameters, is sufficient to determine R, and R, at each temperature. It is
important to note that in Fig. 3 the curves for B and C are very nearly
parallel. This fact and the temperature insensitivity of a, and g, provide
strong evidence against competing relaxation mechanisms affecting the
interpretation. Figures 4a and 4b are plots of C versus B for PADS in
glycerol-H,0 and for PD-TEMPONE in toluene-dg, respectively. These
results can be analyzed to yield .

1 = (6R)™! (80)

R = (R,R)'? (80')
and

N =R, /R, (81)

Y

3. THEORY OF SLOW TUMBLING ESR SPECTRA FOR NITROXIDES

Temperature (°C)
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Fig. 3. The linewidth parameters A, B, and C [cf. Eq. (79)) versus 1/T for PADS
Fig. 1b) in frozen water. [From Goldman et al. (1972a).]

It is found that the PADS system exhibits anisotropic rotational diffusi
(N = 4.7 in aqueous glycerol solvents) where the z axis for the rotatior
diffusion tensor is parallel to the line through the two sulfur atoms, while t
PD-TEMPONE system rotates isotropically (within experimental errg
An interesting sidelight to this result is that, if we were to interpret t
PD-TEMPONE motional narrowing results in glycerol solvent in terms
the magnetic parameters from toluene solvent, we would obtain N ~ 3
with fastest rotation about the molecular y axis, but when we use the corre
magnetic parameters for glycerol, we again obtain N = 1.

The value of these motional narrowing results for the slow tumbli
studies is that one can extrapolate the information obtained on Ty and
into the slow motional region. That is, log 1, is found to have a nearly line
dependence on 1/T, as expected for an activation process. More precise
for PD-TEMPONE in toluene, it is linear in 5/T, as shown in Fig. 5. This
expected from Eq. (31) for Stokes-Einstein-type behavior. Also, N is fou
to be temperature independent. Figure 6 shows one such comparison of ;
experimental spectrum with computer simulated results utilizing the valu
of 1 and N extrapolated from the motional narrowing region, This is t!
case of PADS in D,0, where N = 3, and is one of incipient slow tumblii
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' ' =i 3 g QAe '; (A) Brownian diffusion, (W) strong jump diffusion. (—)N = L,e = 54.(--- )N = L, ¢ =
* ] é o8 Reprinted with permission from Hwang et. al., J. Phys. Chem. 79, 489-511 (1975). Copyri
o . 8 n 2,
2 i 2 g T2~ by the American Chemical Society.]
- > ]
] guUb
Y 3w -
?O 1 58 § § - (tg = 4 x 1072 sec). A comparison is given for different values of N, an
X . .§ ol . clearly shows that the best fit is for N = 3. These simulations were p
i 2 g o 5 formed for a Brownian diffusion model, with the mode! parameter B, =
-4 4 . . - v
?o 1 _ 83 :; i When slower motional spectra were obtained (g 2 1078 sec), it was fou
3 = 1 4 g g £ 5 z that a Brownian motion model was not yielding good simulations for
= 1 8 Ef ’§' =T small spin probes PADS and PD-TEMPONE. Therefore other models w
~ ?o 1 @ 852 § 5 tried, i.e., the strong jump diffusion of Eq. (39) with Rt = 1 and the f
x 5 :_’5 L gav ~ diffusion of Eq. (35) also with Rt = 1. A typical comparison for the th
0 4o ° g - 3¢ " models is shown in Fig. 7, from which it is clear that the best experimenta
'g . : § ss8= is obtained with the free diffusion result. In this context, it is important
s yy O [ i d K3 . . . . .
- \ 1 ggxd M recognize that the values of B for this free diffusion model are not uniq
Q .. - N . . .
o Mg N\ E -g £0,» For 15 < 107%sec the simulated spectrum is determined mainly
'Ej - \ ~© :_-3 Lo coefficients of L = 2, 4, 6, and 8. Over this range of values of L, it is possi
o 3 —— . .
” | | g~ :E g § to reproduce the values of B, of the free diffusion case reasonably well by |
deoddd el 1 i [ - 1 1 Ado kol b i 1 haadd . . . . . -
S = 5 30 & @ao- jump diffusion models given by Eq. (36) [and the special case of Eq. (.
(557099 ° 3 $ 8 cmx with Rt = 0.13 corresponding to an rms jump angle of 50°]. In fact, co
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Fig. 6. A comparison of simulated and experimental spectra for PADS in frozen D,0 at
T = —50°C: (---) experimental spectrum, (—) calculated for Brownian diffusion with
ty =4 x107%sec, A' =02 G,and A, N = 1;B, N = 3;and C, N = 6. [From Goldman et al.
(1972a)]

puter simulations of such jump models do yield virtually identical rgsults.
Figure 8 shows the results for PADS in D, 0 in the model-sensitive region of
1, for free diffusion and a range of values of N. This is also a case where free
diffusion fits best.

Another way of testing the model dependence of the results is to extrapo-
late the 7; values obtained in the motional narrowing region and to compare
them with the “best ™ 7, values obtained for each model. (This is associated
with the S parameter discussed in Section III.B.) It is seen in Fig. 5 that the
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Fig. 7. A comparison of simulated (--~) and experimental (——) spectra for P
TEMPONE in toluene-dq at 7/T = 1.4 cP/°K. The simulations are for: (a) the free diffusi
model, 7, = 1.0 x 107 % sec, 4' = 0.6 G; (b) the strong jump diflusion model, 1, = 8.7 x 10
sec, A’ = 0.8 G; (c) the Brownian diffusion model, 1, = 1.4 x 10~ 2 sec, A’ = 0.4 G. [Reprint
with permission from Hwang et al, J. Phys. Chem. 79, 489-511 (1975). Copyright by 1t
American Chemical Society.]

free diffusion model gives good agreement, but the others do not, especial
for the slower values of 7, > 1078 sec.

The parameters 7, and N are not the only ones that can be extrapolate
from the motional narrowing region. Another is the parameter A’ in G (¢
Fig. 7), which is that part of 4 in Eq. (79) that is not attributable to g- ¢
A-tensor sources. (It is given as T; % = 4,/3 |y, | 4’ in sec™! in the con
puter programs.) The best A’ for free diffusion again falls closest to tt
values extrapolated from the motional narrowing region, although the di
tinction here is not so clear (cf. Mason et al., 1974).

An important point to emphasize at this stage is that the mode
dependent studies summarized above were greatly aided by the very wel
resolved spectra obtained from PADS and PD-TEMPONE in deuterate
solvents. In general, the added intrinsic widths of typical spin labels due t
the unresolved proton superhyperfine splitting will tend to obscure many ¢
the spectral details in the slow motional and rigid-limit spectra. The analysi
of the motional narrowing spectra would be particularly seriously affectec
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Fig. 8. A comparison of simulated (—) and experimental (- - -) spectra for PADS in
frozen D,0 at T = —60°C. The simulated spectra are calculated for free diffusion with
;,;22;]( 107%sec, ' =06 G,and A, N = I;B,N =3;and C, N = 6. (From Goldman et al,

1972a).

It is interesting to note, however, that the ESR spectra obtained by McCal-
ley er al (1972)f from spin-labeled oxyhemoglobin in H,O at
g = 2.6 x 107 % sec show many of the features that are characteristic of
Brownian diffusion (cf. Fig. 7). This is an important confirmation of the
theory, because one would expect that a macromolecule (unlike the small
spin probes) would obey simple Brownian motion.

t Editor’s note: Appendix I (p. 562) contains simulated spectra calculated by this model for
4 broad range of 1, values.
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B. Simplified Methods of Estimating 1,

An important characteristic of a typical nitroxide slow motional spec-
trum is that it has two well-separated outer hyperfine extrema with an
overlapped central region. It has been found that a useful parameter for
describing these spectra is S = 4, /A,, where A, has already been defined in
Fig. 2 as one-half the separation of the outer hyperfine extrema, and A4; is the
slow tumbling value for the same spectral feature (Goldman er al., 1972b).
McCalley et al. (1972) have discussed the separate deviations of high-field
and low-field positions from their rigid-limit values. Figure 9 compares the

—H——
10 GAUSS

Fig. 9. Superposition of computed rigid-limit nitroxide spectrum with a computed slow
tumbling spectrum at 1, = 5.0 x 107® sec, demonstrating the measurements required for th
parameters S = A,/A,, W, = A,/A}, and W, = A,/A}. In an actual experiment, it is ofte:
necessary to estimate the A¥" in place of the Af as described in the text. The magnetic parameter
utilized are & = 30G, g, =g, = 20075, g, = 20027, A, =A4,=60G, 4, = 320G, an
B, = 3.300 G. [Reprinted with permission from Mason and Freed, J. Phys. Chem. 78, 1321-132
(1974). Copyright by the American Chemical Society.}

quantities 4, and A4;. Note that A, decreases monotonically from its rigid
limit value of A, as the motion becomes more rapid. Thus S is a sensitive
monotonically increasing function of 1. Furthermore, simulations per
formed for axial and asymmetric A and g tensors show that for a given valu
of 4., the value of S is insensitive to changes in 4,, 4, and the g-tenso
components. Changes in the magnitude of 4., however, do affect the valu
of S. This is expected, of course, since, as can be seen from Fig. 2, 4,, 4, an
g only contribute to the central regions of the rigid limit spectrum. Fhi
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dependence can be approximately expressed in the functional form
S = S(tg 4,), where S is simply dependent on the product 1, 4, . This func-
tional dependence permits the scaling of results for one value of A, to the
range of values of A, typical for nitroxides (27-40 G) with an error of less
than 3%. Thus, if we know how S is affected by changes in the linewidth and
rotational diffusion model, then it is possible to estimate t, without the
necessity of making detailed line-shape calculations and comparisons. This
is particularly useful for nitroxides that are broadened by inhomogeneous
intramolecular or intermolecular (solvent) hyperfine and dipolar interac-
tions. As already noted, this line broadening decreases the spectral resolu-
tion and obscures other 7,-dependent line-shape changes.

The variation of S with 7, is shown in Fig. 10 for Brownian, free, and
strong jump diffusion models and isotropic diffusion, with 4, = 32 G and
peak-to-peak derivative Lorentzian linewidths [6 = (2/,/3) | 7171 T3L) of
0.3 and 3.0 G. It can be seen that S is model sensitive, and for an equivalent
value of g, S increases from a Brownian to a free to a jump reorientational
model. (This is consistent with the analysis we have already given for the

best 1, fit as a function of model; cf. Fig. 7.) These curves can be fit to the
expression

T =a(l - S) (82)
to within 2, 3, or 59 in the value of 1, for a given S for jump, Brownian, or
free diffusion, respectively, with the values of g and b given in Table II

TABLE 11

PARAMETERS® FOR FITTING 1, = a(l - S)

Diffusion model® Linewidth® (G) a b To(S = 0.99)(sec)

Brownian diffusion 0.3 25T x 10710 -1.78 9x 1077
kX 54 x 10710 -1.36 Ix 1077

50 8.52 x 1071° -1.16 2 x 1077

; 8.0 1.09 x 10~° -1.05 2 x 1077

Free diffusion 0.3 699 x 10~ ~1.20 3x 1077
30 110 x 10°* -1.01 1x10°7

Strong diffusion 0.3 246 x 10°° —-0.589 4 x 1078
30 255 x10°° ~0.615 5x 1078

“ These values are calculated for an axia!l nitroxide with 4 1=32G, A, =6G,g,
0.0041, and isotropic reorientation. (From Goldman et al., 1972b.)

* These models are discussed in detail in the text.

‘ Peak-to-peak derivative Lorentzian width: 8.

“ For this 1, value, | ~ § = 0.01.

4y =
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(Goldman er al., 1972b; Goldman, 1973). The parameters for Brownia.
diffusion with linewidths of 5 and 8 G are also given. It should be noted tha
for g < 7 x 107? sec, S is undefinable since the outer lines begin to con
verge to the motionally narrowed spectrum. For longer t’s than shown i
Fig. 10, the spectrum approaches the rigid limit, and the value of 1 — ¢
become comparable to experimental uncertainties. The value of 1, for whicl
1 — § = 001 is given in Table II. The least squares fit to Eq. (82) was cal
culated for 7 x 107° sec < 13 < 1x(S = 0.99).

The effect of linewidth on the value of S is also shown in Fig. 10. Fo

Brownian and free diffusion models, S increases with increasing linewidtt

while for jump diffusion a decrease in S is observed. The uncertainty i
estimating 7y due to an uncertainty in intrinsic linewidth, for a given value o
S, increases for longer g . Thus for a Brownian diffusion model and a 1.5 ¢
uncertainty in the intrinsic width, the uncertainty in calculating 1 for

given value of § increases from about 5% for 7, = 1 x 1078 sec to abou |

50% for Ty = 1 x 1077 sec to an order of magnitude for t; 2 1 x 10~ sec

Linear interpolations along the vertical line between the curves A and B (o

Y TTY T T T TTT ']l T 1 LR RAI I T
0.15 — —
- -
010 - -

{1-S)

00S— -
L 4

000 L1 1l !

10°® 1077 10°®
Trisec)

Fig. 10. Graph of 1 — S vs. 7,. A, B: Brownian diffusion and derivative width é = 0.3 anc
3.0 G, respectively; C, D: Free diffusion and 6 = 0.3 and 30 G, respectively; E, F: strong jumj
diffusion and & = 0.3 and 3.0 G, respectively. Values are calculated for-isotropic reorientatios
with A4, = 32 G. Sec also Table I1. [Reprinted with permission from Goldman et al, J. Phys
Chem. 76, 1858-1860 (1972b). Copyright by the American Chemical Society.]
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(Goldman et al., 1972b; Goldman, 1973). The parameters for Brownian
diffusion with linewidths of 5 and 8 G are also given. It should be noted that
for 1, < 7 x 1079 sec, S is undefinable since the outer lines begin to con-
verge to the motionally narrowed spectrum. For longer t¢’s than shown in
Fig. 10, the spectrum approaches the rigid limit, and the value of 1 - S
become comparable to experimental uncertainties. The value of 7 for which
1 — S = 001 is given in Table II. The least squares fit to Eq. (82) was cal-
culated for 7 x 1072 sec £ 13 < (S = 0.99).

The effect of linewidth on the value of § is also shown in Fig. 10. For
Brownian and free diffusion models, S increases with increasing linewidth,
while for jump diffusion a decrease in S is observed. The uncertainty in
estimating 7, due to an uncertainty in intrinsic linewidth, for a given value of
S, increases for longer 1z . Thus for a Brownian diffusion model and a 1.5 G
uncertainty in the intrinsic width, the uncertainty in calculating 7, for a
given value of S increases from about 5% for 1y = 1 X 108 sec to about
50 for 1, & 1 x 10~ 7 sec to an order of magnitude for 7, 2 1 x 107 ° sec.
Linear interpolations along the vertical line between the curves A and B (or
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w0t w07’ 1078
Trisec)

Fig. 10. Graph of 1 — S vs. 1,. A, B: Brownian diffusion and derivative width § = 0.3 and
30 G, respectively; C, D: Free diffusion and § = 0.3 and 3.0 G, respectively; E, F: strong jump
diffusion and & = 0.3 and 3.0 G, respectively. Values are calculated for isotropic reorientation
with 4, = 32 G. See also Table IL. [Reprinted with permission from Goldman et al., J. Phys.
Chem. 76, 1858-1860 (1972b). Copyright by the American Chemical Society.]
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which very simple equations exist (Johnson, 1965), we find that the separ
tion of the lines decreases by the factor [1 — 2(ts)72]'2 [~ 1 — (z5)" 2 wh
the line shifts are small], where t/2 and 2s are the lifetime in one state and t
separation between peaks, respectively. If we now draw the analogy betwe
the rotational motion (carrying the nitroxide radica! between different orie
tations corresponding to substantially different ESR frequencies) at a rate
the order of 77 ! and the t~! of the two jump model, and we use the furtl
analogy between A4, and s, then the result noted above, that § = S(1, 4,)
seen to follow. If we employ the two-jump expression for small shifts to |
present case, then we would predict the form of Eq.(82) w
a =178 x 1072 sec (for A, = 32 G) and b ~ —3. We see from Table
that these results are of the correct order for strong jump diffusion, where (
analogy is probably the best, but are substantially different than the Brov
ian diffusion results.

However, the analogy between 1z ! and t™ ! suggests that we examine
incipient line broadening of the outer hyperfine extrema, which should
roughly correspond to 7' and (2) be a more sensitive function of
motion than the shifts in position. Indeed, accurate computer simulatic
have confirmed these suggestions as being theoretically correct (Mason a
Freed, 1974). In fact, the residual width is found to be given by 7z ! to wit
a factor of ~ 2 (or}) over most of the range of interest. This is about as g¢
an agreement as we might hope for, when we recognize that the analog
incomplete, because in the slow tumbling case, the rotational motion
modulates the ESR frequency over a continuous range, (and not betw:
discrete values) and (b) induces nuclear spin flips as well because the qua:
zation axis of the nuclear spins is orientation dependent; this is known ¢
nonadiabatic effect (Freed, 1972a). However, a recent approximate tre
ment, for small pseudosecular terms in Eq. (74), has shown that this la:
effect is roughly proportional to 1z ' (Freed, 1974).

We give now a more quantitative discussion of this width effect (Ma:
and Freed, 1974). The average of the measured half-widths at half-heights
for the two outer extrema of a rigid-limit spectrum is found from simulati
to be equal, to a very good approximation, to /36 = |y.|7'T;}."
heights of the hyperfine extrema are measured from the true baseline
Fig. 9). More precisely, we have

247 = 1.596 (8
208 = 1815 (8

where the subscripts | and h refer to the low- and high-field lines, resy
tively, and the superscript r refers to the rigid-limit value. This result is for
to be independent of 4 over the range 1.0 <6 <40G and virtu
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independent of A, over the range 27 < A, < 40 G. Itis, of course, essentially
independent of variations in the other nitroxide rigid-limit parameters,
Equations (83a) and (83b) are valid for the assumption of Lorentzian inho-
mogeneous broadening. (No calculations for non-Lorentzian broadening
have yet been performed for the method discussed.)

In the slow motional region, near the rigid limit, the linewidth A for
Lorentzian line shapes can be decomposed into two contributions (cf. Abra-
gam, 1961): (1) the Lorentzian inhomogeneous component given by Egs.
(83a) and (83b) and (2) the excess motional width (of order of magnitude
tz !). (It is convenient to think in terms of this decomposition even though it
is not necessary for the method.) A useful dimensionless parameter for
describing these spectra is then

Wi=A/a, W —1=(A - A)/A; (84)

where i = |, h. In general, W, — 1 is about an order of magnitude larger than
I = § for a particular value of 1, (cf. Fig. 11), and furthermore, it can be
measured to at least comparable accuracy (~ 1%; cf. Fig. 9). The results in
Fig. 11 were calculated utilizing the computer program in Appendix B. A
study of how W is affected by changes in (1) the spin parameters, (2) line-
width, and (3) rotational diffusion model has been made. It was found that W,
like S, is insensitive to deviations from axial A and g tensors, as well as to
variations in 4, and g typical of a nitroxide. However, in contrast to S,
which is dependent on the product 1, 4,, W, is virtually independent of 4,
over the range 27 < A4, < 40 G; (we have used 4, = 32 G in obtaining the
results in Fig. 11), as expected from our simple analogy. However, W, is
found to depend on 4. Generally, a smaller § implies a larger A, — A} for a
given vy . In particular, 6 = 1 G yields values of A; — A} ranging from 1.3 to
2.5 times greater than those for 6 = 3 G. We can try to explain this observa-
tion qualitatively. The rigid-limit extrema of finite width Aj arise from those
nitroxide radicals whose 2p = N-atom orbitals lie within a cone of angle Q
about the applied field direction, and the size of the cone increases rapidly
with an increase in the rigid-limit § (McConnell and McFarland, 1970). If we
roughly identify the excess width A; — A} with the rate at which radicals
reorient out of the cone, then extrema from the larger cones (which result
from greater values of &) will be less broadened, since it takes longer for the
radicals to leave the cone. The observation that A, — A} is always
significantly larger than A, — A at a given 1, could be explained in a similar
manner. It is known that the high-field resonance for a single-crystal spec-
trum changes with angle more rapidly than the low-field resonance ; thus the
range of Q contained in the observed cone (from a polycrystalline sample)
must be smaller for the high-field line. Reorientations out of the high-field
cone thus occur at a more rapid rate, and, in general, W, is a more sensitive
function of 7, than is W, as can be seen from Fig. 11.
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ig. 11. Graph of W, — | (curves A-H); and 1 — S (curves ajd) Sy Tg for nuroxnde isC
lropif: fotational l:'c*,oricnt‘alion,( Curves a and b are fgr free diffusion and 6 = 3.0 and I:O ﬁ
respectively; curves c and d are for Brownian diffusion and é = 3.0. and 1.0 G, respectivel:
Curves A and B are for free diffusion, 6 = 3.0 G, and the low- and high-field extrema, respe
tively, and curves C and D arc the same as A and B, respectively, except 8 = 1.0 G. Curves E,. 1
G, and H correspond respectively to curves A, B, C, and D except that they are for Brownia
diffusion. See also Table I11. [Reprinted with permission from Ma§on and Freed, J. Phys. Cher.
78, 1321-1323 (1974). Copyright by the American Chemical Society.]

The choice of a proper § is clearly at the heart of the method. Near’ t‘
rigid limit, an appropriate estimate of 6 can bq deduced frpm the A;. T¢
narrowest rigid-limit & found in our laboratory is 1.5 G, which correspon.
to 2A; = 2.4 G. Hubbell and McConnell (1971) reported valu.es of 4.6 an
5.5 G for 2A; for pseudoaxial “ rigid-limit " spectra, corresponding to é of 2
and 3.5 G, respectively. The rigid limit spectrum of t
N-oxyl-4',4'-dimethyloxazolidine derivative of Sa-androstan-3-one appea
to have 2A; = 5.0 G, which corresponds to a § of I}.l G (McConn_ell an
McFarland, 1970). The motional broadening can easily double t}}e widths «
the outer extrema when the separation of the hyperfine extrema is not muc
different from the rigid-limit value (i.e., S > 0.95). Thus, very near the rig
limit, where & can be determined from the rigid-limit extrema widths, tw
independent determinations of 14 can be made using Fig. 11.
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As has been noted, the major contributions to the A are electron nuclear
hyperfine interactions between the electron and the protons of the spin
label and host, while heterogeneity of the environment also contributes to
A}. These interactions will be quickly averaged with the onset of molecular
motion, resulting in a decrease in the appropriate 8. When this is the case, it
becomes necessary to estimate a single 8 such that the rotational correlation
times obtained from Fig. 11 for both the low- and high-field extrema are
equal within experimental error. For this process we can define “effective
inhomogeneous widths™ A", which obey Eqs. (83a) and (83b) and which
generally obey the relation A" < Af. Then we should rewrite Eq. (84) as

W, = A, /A% (84')

with the W, given by Fig. 11. This procedure should then yield both 74 and 6.

As noted, the uncertainty in § can result in serious errors when 7,’s of
> 3 x 1078 sec are determined from S. Once 6 has been determined from
the W, another estimate of tz may (when feasible) be obtained from a
measurement of S. In other words, 13 and J could be obtained as a function
of three experimental parameters, S and the W,.

The model-dependent results shown in Fig. 11 were obtained for Brown-
ian diffusion and free diffusion, as before. The free diffusion model results in
a more nearly linear dependence (in a log-log plot) of W, — 1 versus 7, in
Fig. 11 than the Brownian motion model. The plots in Fig. 11 have been
fitted to the form

o= (W - 1) (85)

for the region W, — 1 > 0.01, and the coefficients are given in Table III. The
maximum variation between the curves and the results predicted from
Eq. (85) is also given. It is clear that the use of Eq. (85) is a less accurate
means of estimating 1, than the curves. However, the fact that b’ = 1 (except
for the anomalous curve F, which is presumably affected by overlap) is
consistent with the interpretation of A; — A} as a lifetime broadening,
When there is axially symmetric rotational diffusion about the molecular
z axis with R, > R, it should mean that Tg, is again obtained. Also, the
introduction of an angle-dependent rigid-limit width given by Eq. (29)
should have no effect on the outer hyperfine extrema, except that now

8= QA |y T+ Tih) = @A/3) v+ ) (86)

It is very important in the experimental application of this method to
avoid distortion of the true linewidth by overmodulation of the magnetic
field and/or power saturation. Experimental applications of this method
have not yet been reported.
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TABLE 11

PARAMETERS® FOR FITTING 1, = a'(W, — 1)*

Maximum deviation (%)® -

Curve a x 10® sec b’
A 1.29 1.033 3
B 1.96 1.062 6
C 5.32 1.076 18
D 197 1.125 18
E 1.15 0.943 5
F 2.12 0.778 I8
G 5.45 0,999 30
H 9.95 1.014 55

* Table is based on approximate fit of Fig. 11 data to Eq. (85) for
W, — 1 > 001. See Fig. 11 for explanation of the different curves.
[Reprinted with permission from Mason and Freed, J. Phys. Chem.
78, 1321-1323 (1974). Copyright by the American Chemical Society.}
* Based on comparing values in Fig. 11 with Eq. (85).

The simplified methods discussed above are based on the relatively
simple to analyze behavior of the outer extrema. While it is true that the
central region of the nitroxide spectrum is very sensitive to motional effects
it is also very sensitive to the deviations of the nitroxide magnetic par
ameters from cylindrical symmetry and this can vary considerably (ct
Table I). Thus it would be difficult to develop general methods based on the
central region; computer simulation with accurate magnetic parameters i
probably required.

C. Very Anisotropic Rotational Reorientation

The simplified methods discussed in the previous section have an impor
tant failing in that they are not really applicable to spectra arising fron
highly anisotropic motion, especially when the molecular z axis is not itself :
principal axis. The phenomenon of spin labels undergoing very rapid aniso
tropic rotational reorientation is a common one. In fact, the Stanford grouj
(Hubbell and McConnell, 1969a,b, 1971; McConnell and McFarland, 1970
McFarland and McConnell, 1971) have developed a simple analysis in term:
of an effective time-independent spin Hamiltonian # ., to account for rapic
anisotropic motion.

Suppose that there is very rapid motion about some molecular axis v
while motion perpendicular to that axis is very slow. This is the case, fo
example, if the nitroxide spin label rotates about a single bond while the
overall motion is that of the macromolecule to which it is attached. Then ‘we
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can introduce effective g’ and A’ tensors that are axially symmetric about v,
and this yields an effective rigid-limit Hamiltonian to predict the spectrum.
The use of such an effective Hamiltonian implies (1) a large enough R,
(representing rotational reorientation about v) that residual time-dependent
effects of the averaging process, which could lead to line broadening, are
negligible; and (2) motion about axes perpendicular to v, described by an
effective R, is so slow that its effects on the spectrum are negligible.

Suppose that either of these conditions is not fulfilled, and that motional
effects assert themselves in the spectrum. If condition 1 is fulfilled, but R,
becomes fast enough to affect the spectrum, then one can simulate spectra
using the program in Appendix B but with the effective axial tensors A’ and
g'. The tensor A’ is given in terms of the true A and the direction cosines «;
(i=x", y", or 2", but we drop the triple primes for convenience in this
section) of v, in the molecular principal axis system as

4 = L a4, (87)
A =33 (- A, (88)
i

The simplified methods of the previous section would only apply in modified
form if 4} and A are not much different from typical nitroxide values (see
below).

If, however, condition 1 is relaxed somewhat, then a motional narrowing
theory can be applied to consider how the motion represented by R, yields
line broadening, etc., from the deviations between ., and the true .
However, using our example above, the relaxation effects are a function of
the orientation of the macromolecule, and we would have to compute such
effects from R, for each orientation.

However, the general theory given here can be rigorously applied to this
example, including effects from both types of motion simultaneously. A
series of simulations in which R is just large enough to show incipient slow
motional effects, namely 15 = 5 x 1078 sec, were performed where 1 R, 18
allowed to vary from 5 x 107® to 6 x 10~ *! sec (Mason et al., 1974). This
series of simulations, shown in Fig. 12b, was motivated by experimental
results (cf. Fig. 12a) of Wee and Miller (1973) on a spin-labeled polybenzyl
glutamate in DMF solution (cf. Fig. 13). These simulations required that the
principal axes of R (i.e,, x', y', and z') be tilted relative to the principal axes of
the magnetic tensors (x”, y”, ). In this modified computer program, A and
g are expressed in the x', y/, 2’ coordinate system (cf. Polnaszek, 1975a). The
spectra were calculated for a spatially isotropic distribution of spin labels
with a tilt angle between respective z axes of 41.7°. The simulated spectra of
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Fig. 12. (a) ESR spectra of polybenzyl glutamate labeled with 2,2,6,6-tetramethyl
aminopiperidine-1-oxyl (TEMP-NH,) in DMF solutions of varying concentrations at roc
temperature. The polymer concentration (volume fraction) was A, 0.008; B, 0.0917;C, 0.128;
0.148; E, 0.200; F, 0.42 (0.5 weight fraction); and G, 1.0 (solid polymer). [Reprinted wi
permission from Wee and Miller, J. Phys. Chem. 77, 182-189 (1973). Copyright by the Americ
Chemical Society.] (b) Simulations computed with the magnetic parameters of the TEMP-NI
spin label: 4, = 308 G, 4, = 4, =58 G, g, = 2.0089, g, = 2.0058, g, = 2.0021. The sy
metry axis of the rotational diffusion tensor is defined in the molecular axis system by the ang
cos™ Yaf)? = 48.3°, cos™ ‘(;f)”’ = 90°, cos™ M(a? )2 = 41.7°, 14, i5 5.0 x 107 % sec and o1
Tg, is varied in this series, except for the rigid-limit simulation J. See Table 1V for values of 1
and J used. {Reprinted with permission from Mason er al., J. Phys. Chem., 78, 1324-13
(1974). Copyright by the American Chemical Society.]

Fig. 12b for 14, of the same order of magnitude as 7, appear similar to tl
isotropic and near-isotropic motional spectra already shown, and for whic
the simplified approaches already apply. But for tz < 7 there are marke
qualitative differences. (Note that this is an ideal case for K truncation, i.
ng < n,.) The general progression of spectra in Fig. 12b from A to I, whe
TR, Is increasing bears considerable resemblance to the progression of e
perimental spectra in Fig. 12a from A to G, where the polymer concentr
tion, and hence the solution viscosity, is increasing. Rather close agreeme
is found between pairs 12b-I and 12a-G (the near-rigid limit), 12b-B ar
12a-B (where 1, is very fast), and 12b-F and 12a-F (an intermediate cast
These results provide evidence that there is fast motion of the piperidine ri1
about the NH-CH bond, and no observable motion of the overall polym
(i.e., Tg > 1077 sec).
The question now remains of the range of validity of the effective t:

independent Hamiltonian in terms of g’ and A’. Its use by Hubbell ..
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A check on the validity of using o, for interpreting a spectrum in terms of
the “pseudoaxial” rigid limit is that one must have Tr 4 = Tr A4, which
follows directly from the rotational invariance of the trace of a tensor. The
simulated spectra of Fig. 12b have been analyzed just as though they were
experimental results from anisotropically immobilized spin labels, and the
results are summarized in Table IV (Mason et al., 1974). These results are
in fact very similar to those obtained by Wee and Miller (1973) and in spin
label studies in membrane models and membranes (Hubbell and McCon-
nell, 1969a,b, 1971; McConnell and McFarland, 1970; McFarland and
McConnell, 1971). Note that (1) A4, does vary slightly from 4, = 14.13 G
but (2) the apparent S, varies considerably even though the calculated
spectra were from a tilt angle of 41.7°, corresponding to a constant true value
of S, = 0.336. The results for A and B in Fig. 12b, where 74, is very fast, are
reasonable; the only discrepancy with the true results probably arises from
the residual motional effects on the spectrum of having 7z, = 5 x 1078 sec.
However, for spectra such as E and F, where 15, ~ 5-10 x 10~ 10 sec, the
motional effects for the fast motion about a single bond are already slow
enough for us to utilize the simple time-independent ;. Thus the invar-
iance of S, is a necessary but not really sufficient condition for the simple
approach.

Thus we note that a change in S, can arise from a real change in the angle
between vand z or a change in the rotational rate about v, as is the predom-
inant phenomenon in the spectra of Fig. 12a (the spectrum A, however,
has a shorter 1; than the other spectra) (Mason et al, 1974). In general,
these two phenomena cannot be distinguished unless the rotational rate
about v slows to where A, is clearly anomalous and/or the slowed motion
manifests itself in the other spectral characteristics shown in Fig. 12a.

Note that the analysis in terms of a single R, and R represents a
considerable simplification of the complex dynamics of polymer motion
including localized bond motions and internal rotations. However, (1) as
long as the internal rotation is much faster than the overall motion, it can be
treated as uncoupled from the latter, and (2) if the overall motion is only
showing marginal spectral effects, it would be difficult to obtain anything
more precise than an effective 7z, .

D. Anisotropic Liquids: Simulations

Some examples will now be given for nitroxides oriented in nematic
liquid crystals (Polnaszek et al.,, 1973; Polnaszek, 1975a). For convenience,
the Meier-Saupe potential, coincidence of the magnetic and orientation
principal axes, and axial magnetic parameters were used, unless otherwise

noted. In all cases the director was assumed parallel to the static magnetic
field.
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First, the effect of keeping the rotational correlation time 1z = (6R)™!
constant but varying the ordering by changing the potential parameter 1 is
considered. Figure 14 shows such a case for an oblate nitroxide, i.e., one thi;

—— R

et e o ———
TR e T
. -

-————mi @i
«

-,

Fig. 14. First derivative line shapes for a nitroxide as a function of A for Brownian diffu
sion. The different 4 values are (——)0, (---) —20, (--*) =35, (---) —=7.5. All correspond 1
T = 1.84 x 107% g, = 20027, g, =20075, 4, =334G, 4, = 542G, and 6 =01G
[From Polnaszek et al. (1973)]

tends to orient with its z axis perpendicular to the magnetic field. The
rotational correlation time was held constant at a value of 1.84 x 10~ * sec |
which is in the incipient slow motional region for nitroxides. One sees tha! |
the effect of increasing the absolute magnitude of the orienting potential i -
(1) to decrease linewidths considerably, and (2) to introduce larger shifts ir
the positions of the lines. The first effect is due to the fact that the effective
[ () — (o, )] is reduced as the sample is being ordered, while {#,, the
average part of the perturbation, which causes the line shifts, departs more
from its isotropic value of zero. It appears that the slow tumbling spectra
begin to resemble motional narrowing results as | 4| is increased at a con-
stant 7, although the shift of line positions is characteristic of liquid crystals
in the nematic range. However, the observed line shifts are not predicted
correctly by expressions appropriate for the motional narrowing region (cf
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(a) (b

(c) (d)

GAUSS GAUSS

Fig. 18, First derivative line shapes for a nitroxide in the case of low ordering as a function
of t, for Brownian diffusion: (a) ty = 3 x 107? sec, IF = 5.08 (IF is the intensity factor, a
measure of the relative integrated intensity); (b) 7, = 10~ 2 sec, IF = 3.48; (c)ra=3x10"8
sec, IF =4.38; (d) 13 =3 x 1077 sec, IF = 10.02; (---) rigid limit. Here gy = 2.0024,
g, = 20078, A, = 3375 G, A, = 534, and & = 1.0 G. All spectra are normalized to the same
total height. [From Poinaszek er al. (1973).]

Chapter 10). We can use these shifts as an indication of slow motion in the
mesophase. For 4 > 0 a prolate top (a nitroxide that tends to orient with its
z axis parallel to the field) similar linewidth behavior is observed, except that
the spectrum spreads out and shifts to higher fields. In Fig. 15, A is held
constant at a value of —0.975, corresponding to a low degree of ordering
typical of small nitroxides. Comparison with figures for isotropic liquids (cf.
Figs. 6-8) shows that the trends are quite similar in both cases, but that there
are distinct quantitative differences in the details of the line shapes at com-
parable tg's.

In Figs. 16a and b, 4 is held constant (at —7.5 and 8.5, respectively) for
large ordering parameters, with the correlation time varying over several
orders of magnitude. They correspond respectively to large disklike and
rodlike nitroxide molecules, which tend to be very well ordered. They show
that spectra with correlation times < 3 x 1078 sec will be fairly insensitive
to changes in 7; . In fact the observed ordering parameter for the oblate top
nitroxide is nearly equal to the theoretical value for 1, < 1078 sec, and it is
found that the rigid limit is not approached until , ~ 107 (cf. Fig. 16c),

3.. THEORY OF SLOW TUMBLING ESR SPECTRA FOR NITROXIDES . g

compared to 1, & 3 x 1077 for the low ordering case in Fig. 15. Thus fc
a very highly ordered nitroxide, we can extend the upper limit of rotation.
correlation times obtainable from the unsaturated slow motional line shape

For values of the potential parameter A that lead to intermediate orde
ing (e.g., 4 = —3.5, corresponding to (2},> = —0.30), it has been foun
that the deviations from symmetric lines and from the theoretical orderir
parameter begin to occur at somewhat longer values of t, in the incipiel
slow tumbling region than for isotropic liquids, but that the linewidth asyn
metry starts to be appreciable at somewhat shorter t,,’s than those for whic
the apparent ordering parameter deviates significantly from the corre
value. Therefore the linewidth asymmetry can be used as an indication
slow tumbling in nematics. This can also be seen from Fig. 16 for high
ordered nitroxides.

The effect of using different models of rotational reorientation has als
been studied. For weakly ordered systems, one again sees the same qualit
tive behavior of spectral changes as the rotational model is changed, b
there are qualitative differences between the spectral changes for the isotro
ic and nematic phases. As has been usually done for isotropic liquids, tl
correlation times for the non-Brownian models were determined to be tho
that gave the same values for the separation of the outer hyperfine extren
(ie., 5) as observed in the Brownian diffusion case. For liquid crystals S
expected to be a function of 4 as well as of 7 and A, thus complicating ar
attempts to use it as a quantitative measure of tg’s in nematic phases. Tt
was found to be true for weakly ordered systems. For the strongly order
cases, the parameter S is meaningless since no outer extrema are observe

Figure 17 gives an example in which the principal axis of orientation
permuted among the three principal axes of the nitroxide magnetic tensol
The hyperfine tensor is taken as axially symmetric, but the g tensor is asyr
metric, as is typical for nitroxides. The rotational correlation time
1078 sec and 4 was adjusted to make the S values nearly equal. The x- ar
y-axis spectra are cases where the molecule tends to align paralle! to tho
axes, respectively, while the z axis tends to be perpendicular to the field. O
sees significant changes in the line shapes as the principal axis of orientatic
is changed, even for this weakly ordered system. There are also * apparen
shifts in Ag, . The g shifts persist in the motional narrowing region for tt
case of three different orientations. Thus, especially when using any cyli
drically symmetric potential, one must be careful to choose the principal ax
of orientation correctly. However, when an asymmetric potential such ;
that given in Eq. (58) is used, the potential is invariant to permutation of tl
principal axes (i.e., the relabeling of x”, y”, z” to obtain x, y’, z'). Since
coefficients of the potential transform as the components of an irreducib
tensor, we can transform the potential parameters for a principal axis syste
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Fig. 16. First derivative line shapes for nitroxides in highly ordered cases as a function of-
for Brownian diffusion: (——) 1y =3 x 107'° sec, 1F = 77.9; (---) 1, =3 x 1077 s¢
IF=529;()ta=3x10"%sec, IF=163. (@) A= -75(b)1= +85(c)i=~75a
(—)1g =3 x 10" 7sec, IF = 29.8;(---) 1y = | x 107 ®sec, IF = 41.0. All other paramete
as in Fig. 15. [From Polnaszek et al. (1973) and Polnaszek (1975a).}

in the molecule into those for another molecular axis system. For the potel
tial given by Eq. (58), one has for a permutation of axes such that the
axis — z' axis

A’y = _()’z h 3pz)/2 (92
and

Py = —(Az + pz)/z . (92]

where the subscripts refer to the principal axis of orientation of the molecul
We can also determine 4, and p, from the relation

Z'li=z_pi=0 ©

which follows from the fact that the ordering tensor is traceless.
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L 1 I 1 A 1 A 1 )
-3500 -25.00 -1500 -S00 500 1500 2500 3500 4500
GAUSS

Fig. 17. First derivative line shapes for nitroxides with cylindrically symmetric potentials
relative to the different principal axes of the magnetic tensor for Brownian diffusion. (——)The
molecular 2 axis as the principal orientation axis with 4 = —0.975; (-*-) the x™ axis as the
principal orientation axis with 4 = 1.6; (- - -) the y” axis as the principal orientation axis with
A=16 In all cases 1, =1x10"% sec, 4, =3375 G, 4, = A, =534 G, g, =20094,
9, = 20062, g, = 2.0024. [From Polnaszek (1975a).]

It is well known that liquid crystals exhibit an anisotropic viscosity when
oriented in a magnetic field (Miesowicz, 1946). The effects of anisotropic
viscosity on nitroxide slow tumbling spectra are shown in Fig. 18. In this
figure 7o, = (6R,)™" is kept constant at 1 x 10~ 8 sec, the potential par-
ameter 4 is —0.975, and Tg, is varied. The effect of keeping R, constant is to
keep the value of S virtually constant. However, there are gross changes in
the central region of the spectrum as R, is increased relative to R, . Note
from Eq. (66) that the terms that contain the effect of anisotropic viscosity
have M # 0. It is seen from Eq. (74) that such terms are the pseudosecular
terms in & (). Thus we must include them in the Hamiltonian in order to
see the effects of anisotropic viscosity. The effects of anisotropic viscosity on
the slow motional line shapes are negligible when the ordering parameter is
large or if the molecule tends to be aligned with its z axis, the axis of
cylindrical symmetry of the hyperfine tensor, parallel to the field. Note that
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3 L 1 1 ol 1 i 1 3

-3 2% -5 -5 5 5 25 35 45

GAUSS
Fig. 18. First derivative line shapes for nitroxides as a function of the anisotropic viscosity
parameter N = R,/R, for Brownian diffusion. (—) N =1, IF=348; (---) N=6

IF = 3.30; (") N = 24, IF = 5.33. All correspond to t,, = 1 x 10™? sec. All other parameter:
as in Fig. 15, {From Polnaszek et al. (1973).}

the effects of anisotropic molecular reorientation on slow tumbling spectr:
from nitroxides are not as dramatic as the effects of anisotropic reorientation
with respect to the director axis. Birrell et al. (1973) observed a system tha
can be thought of in terms of a highly anisotropic viscosity. Nitroxide fre
radicals were oriented in tubular cavities in inclusion crystals in which th
molecule is free to rotate about the long axis but with its rotation hindere
about the other two axes because of the cavity geometry. The system be
haves as a highly ordered liquid crystal, which, as has already been noted, i
fairly insensitive to the dynamics of the motion.

In all the preceding discussion, it has been assumed that n is fixed alon
the laboratory z axis, so that ¥ = (0, 0, 0). When n is tilted relative to the
axis, then Eq. (45) must be used to expand J#,(Q, V), but otherwise th
same diffusion equations in terms of Q are applicable. If there are randor
static distributions of directors, then, in principle, one must solve the prob
lem for each value of ‘¥ and then integrate over the correct static distributior
to predict the spectrum. When there is residual motion of the director, the
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the stochastic Liouville equation can be augmented to deal effectively with
the simultaneous motions of ¥ and Q (Polnaszek, 1975a; Polnaszek and
Freed, 1975).1

E. Anisotropic Liquids: Experiments

Experiments have now been carried out to test the applicability of the
slow tumbling theory to anisotropic liquids using the same general approach
as has already been described for studies in isotropic liquids (Polnaszek,
1975a; Polnaszek and Freed, 1975). In particular, the PD-TEMPONE probe
has been studied in several viscous nematic solvents. The study was limited
by the fact that before very large viscosities could be reached, the nematics
would freeze. However, in the case of phase V solvent, it was possible to
reach the slow motional region (cf. Fig. 19). Note in Fig. 20 how the appar-
ent (23,) changes markedly when the slow motional region is approached.

In the isotropic studies, the motional narrowing line shapes were care-
fully corrected for the residual inhomogenous broadening effects of the
deuteron splittings given in Table I. In the nematic phase, the splittings were
found to vary with temperature as a result of the increase of (D) with
decreasing temperature. This added factor had to be corrected for in order to
adequately deal with the line shapes.

Furthermore, careful measurements of the ay and g shifts clearly
demonstrated that the radical ordering required the use of the two-
parameter potential of Eq. (58). For most cases (including phase V solvent),
if the choice x” = x, y" =y, and 2" = 7' is made, then |A| > |p|, with
typical values for phase V being 4, = —0.8 and p = 0.3. The higher temper-
ature spectra from the isotropic phase again showed N = 1 for the aniso-
tropic diffusion parameter, corresponding to isotropic rotation. However, in
the nematic phase, only if the correct ordering potential involving both 1 and
p were used could the linewidth results be fit to isotropic rotational
diffusion.

The appropriate values of 1z, N = 1, 4, and p were then extrapolated to
the slow motional region to obtain parameters to predict the slow motional
spectrum. A typical comparison is shown in Fig 2la, where
tg = 3.6 x 107? sec at —25°. There are serious discrepancies between
experiment and prediction, unlike the good agreement (cf. Fig. 16) for
isotropic liquids. This incipient slow tumbling region has been found to be
rather model insensitive. However, careful analysis of the motional narrowing
region for 7 > 2 x 107 '° sec showed that the discrepancy was developing

t Editor’s note: Further and more expanded discussions of order parameters and the
anisotropic motion of spin labels in liquid crystals and bilayer model membrane systems are
found in Appendix IV and Chapters 10-12, respectively.

16°C

Fig. 19. ESR spectra of PD-TEMPONE in liquid crystal; phase V, at different tempera-
tures. The scan range is 40 G. [From Polnaszek (1975a).)
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Fig. 20. Ordering parameter (23,) vs. reduced temperature T* = T/T, for PD-
TEMPONE in several liquid crystals; O, phase V solvent. {Reprinted with permission from

Polnaszek and Freed, J. Phys. Chem. 719 (in press) (1975). Copyright by the American
Chemical Society.}
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Fig. 21. Comparison of theoretical (——) and experimental (---) spectra for PD-
TEMPONE in phase V tiquid crystal at (8) & =1 with 1, = 2.5 x 10" sec at —20°C and
1 =36x10"% sec at -25°C (4'=0 G); (b) &, = 1.2, Epeec = 20. The values at —6°,
= 14°, —20° and ~25°C are for 1,: 0.9, 1.6, 2.5, and 3.6 x 10~° sec, respectively, and for
A':0.55, 1.0, 1.45, and 1.75 G, respectively. The magnetic parameters are given in Table 1V.
[Reprinted with permission from Polnaszek and Freed, J. Phys. Chem. 79 (in press) (1975).
Copyright by the American Chemical Society.)

there as well [ie., the t, obtained from the B and C terms in Eq. (79)
were no longer the same]. It was found possible to largely remove this
discrepancy by the physically unreasonable model that anisotropic viscosity
was developing such that while TR, increased with #/T as is normal for a
liquid, g, remained virtually constant at ~2 x 10~ !° sec. However, some
alternative explanations have been proposed. To appreciate them, one must
first examine Figs. 3 and 4 for isotropic liquids. There it is found that
the nonsecular spectral densities for the rotational motion, which are
expected to obey a Debye-type expression (cf. Chapter 2)

Jwe) = /(1 + wid) (94)
were better fitted instead by the expression

) = 1/(1 + ew?d) (94)
with e x 5. A similar correction was found to be the case in the work with

nqmatic solvents both above and below the isotropic-nematic transition
with a smaller one below the transition. Deviations from the simple Debye
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formula would be expected to arise if the rotational reorientation is
significantly coupled to other degrees of freedom of the molecule or its
surroundings (e.g., the angular momentum of the molecule or internal
rotational degrees of freedom). A detailed statistical mechanical theory in
terms of fluctuating torques experienced by the spin probe in its liquid
environment has been proposed by Hwang et al. (1975).

The pseudosecular terms reflect the nuclear spin-flip transitions
w; = ay /2 for isotropic liquids and <ay)/2 for nematics. Thus one might try

Jws) = /(1 + gwl 1?) (95)

It was found that a large value of ¢ could account reasonably for the
motional narrowing and slow tumbling spectra in the nematic (cf. Fig. 21b).

Actually, the analysis of this effect is fairly complex, involving incipient
slow tumbling corrections from which it transpires that the secular spectral
densities are now also characterized by nonzero {requencies and the pseudo-
secular spectral densities are modified. The proper analysis, which is complex,
is discussed by Polnaszek and Freed (1975). It is found that the pseudo-
secular spectral densities require a correction of &'y ~ 15-20 while for the
secular spectral densities €'sec ~ 1-2. This yields satisfactory agreement with
experiment (cf. Fig. 21b). Another approach to this problem, in terms of
slowly fluctuating torques, has been introduced by Polnaszek and Freed
(1975). It is based upon the concept of a local structure or ordering
which is relaxing more slowly than the probe molecule. This structure is
expected to result from the surrounding rodlike nematic solvent molecules,
which reorient more slowly than the smaller spin probe. [Such effects are
not included in the Meier-Saupe (1958) mean field analysis that leads to
the effective pseudopotential.] A simple analysis of the spin relaxation
effects of such a mechanism shows that it has many of the proper trends.
We may let ¥ be the slowly relaxing set of Euler angles between the
local structure and the lab frame, then for an axially symmetric potential
of the spin probe relative to the local structure, rough estimates of
St = (2%(Q)>? ~ 0.1 and 1,/1; ~ 10 are obtained from the simple model,
where 7, is the local structure relaxation time. If such a hypothesis were
correct, further careful studies including larger spin probes of different
shapes could shed further light on this phenomenon.

Some preliminary experimental spectra of the rodlike cholesteric spin
label 3-doxyl-Sa-cholestone in the viscous nematic phase of phase V are
shown in Fig. 22 (Polnaszek, 1975a). The system is highly ordered and the
apparent splitting constants do not change appreciably with temperature.
The observed (2%,> values calculated from a motional narrowing theory
analysis (cf. Chapter 8) are —0.35, —0.39, and —0.46 for T = 26, 3, and
—26°C, respectively. The two splittings are not equal at the lowest tempera-
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26°

-26°

Fig. 22. Experimental spectra of the cholesteric spin label 3-doxyl-5a-cholestone in phase
V at different temperatures. [From Polnaszek (1975a).]

tures, and, as already noted, this is indicative of slow motion (as is the
exceedingly large value of (23,>). The estimated 1, for —26°C is
~4 x 107 % sec. These spectra compare favorably with the theoretical
spectra simulated for high order (1 = —7.5) in Fig. 16a, although the actual
ordering of the experimental spectra in Fig. 22 is somewhat less than that of
the theoretical spectra,

ey
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F. Saturation and Nonlinear Effects

The general slow tumbling theory presented in Section 1 can also
applied to saturation phenomena (Freed et al., 1971; Goldman et al., 197
Goldman, 1973; Bruno, 1973). A careful study of saturation and slow tu
bling for PADS in viscous media has shown that the stochastic Liouv
approach can be effectively employed to predict slow tumbling spec
(Goldman et al., 1973). This is illustrated in Fig. 23. Note that the simu
tions were performed for axial nitroxide parameters, so the agreeme
should not be expected to be perfect.

In the discussion of Section I1.B on simplified methods of estimating
from features of the outer hyperfine extrema, it was found that in the regi
where 1, > 1078 sec they are quite insensitive to all parameters other th
Tg,» 4., and A (the intrinsic width), while the central region is affected by t
other magnetic tensor components. It is therefore reasonable to expect tt
simulations based on axial parameters should agree quite well with 1
saturation behavior of the outer extrema but not necessarily with the cent.
extrema. Such a comparison is shown in Fig. 24, which shows the ratios
the duus(M) = |y, | Hy, man(M) [where H, (M) is the microwave fi

strength at which the M = —1, 0, or +1 regions of the spectra maximi |

where these regions correspond, respectively, to the low field, central, a
high-field extrema]. In particular, for 7, > 10~ ® sec, there is rather go
agreement between experiment and prediction for d,,(+ 1)/dp,(—1). It
possible to use such a ratio (which depends only on relative values of B, a
not on its absolute magnitude) as a means of estimating t,, but this hasr
yet been studied in detail. In particular, we are adding the new parame
W, , the electron-spin relaxation rate, into the analysis. Also note the ratt
small changes in the ratio for large changes in ;.

At the heart of all saturation and nonlinear phenomena is the fact tt
the eigenfunction expansion coefficients for the density matrix elements r-
resenting population differences {cf. Eq. (27), the terms [C];. — [C
where n = 0} are relaxed at rates that depend on

2W, + B, RL(L + 1) (¢

when (1) an orientation-independent W, is used and (2) isotropic reorient
tion is assumed. There is, of course, coupling among the different ES
transitions due to the nuclear spin-flip transitions induced by the -
dosecular terms ins#,(Q). Thus while the expansion coefficients for !
representing the population difference for the proper isotropic average o-
orientations, is relaxed by T; , = (2W,)™!, the coefficients for L > 0 a
relaxed by the rotational motion as well. Furthermore, when R » W, (ty)
cal values of W, are ~ 107 sec), then (1) the rotational motion is ve
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Fig. 23. (a) Experimental saturation spectra for PADS in 85% glyccrol—.H 20 at
T = -41°Cand A, d, = 0025 G;B,d, =0079 G;and C,d, = 0.45 G. (b) Spectfal simulated
for free diffusion with 1, =2 x 1078 sec, 6 =12G, W, =62 x 10* sec™!, aqd A,
d, =003G;B,d, =008 G;and C, d, = 0.47 G. Axial magnetic parameters were used in the
simulations. d, = 4y H,. [From Goldman (1973).)
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Fig. 24. Variation of d,,(+ 1)/d o, (0) and d_,(+1)/d,.(—1) with Tg. Solid lines arc
drawn through the experimental points for the system PADS in 85% glycerol-H,0. [Fron
Goldman et al. (1973)]

effective in spreading the saturation throughout the spectrum, and (2) only
the L = 0 component is effectively saturated. These ideas and the implica.
tions they have for pulsed saturation recovery studies are explored elsewhere
(Freed, 1974). It is found in that work that the saturation recovery times
(or at least the slowest relaxing mode) are often well approximated by
T, . >~ (2W,)™! over a wide range of conditions, including the slow tumbling
region.

Such considerations suggest that slow tumbling ELDOR experiments
could be very interesting (Bruno, 1973; Bruno and Freed, 1974a; Smigel e
al, 1974). In such experiments, we saturate with a pump microwave
field at a particular resonant frequency corresponding to a particular orien-
tation (and nuclear spin) of the nitroxide and then observe at another
position corresponding to a different orientation. Then the indirect satura-
tion at the observing position will depend on the rotational motion of the
molecule. We therefore expect that the ratio R/W, will determine the relative
importance of transmission of saturation to different environments (a form
of “spin diffusion ) versus simple ESR spin relaxation. The application of
the stochastic Liouville theory to such experiments is discussed in detail
elsewhere (Bruno, 1973; Bruno and Freed, 1974a; Smigel et al., 1974).

Finally, we note the existence of a great variety of nonlinear phenomena,
such as the modulation-frequency dependence of adiabatic rapid-passage
effects explored by Hyde and Dalton (1972). This latter, more complex
phenomenon can also be dealt with by stochastic Liouville methods and s
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discussed elsewhere (Dalton, 1973; Leniart, 1972; Thomas and McConnell,
1974). The rather striking spectral effects observed have been calibrated
with typical samples by the use of the S parameter and extrapolation of
tg with known values of n/T to yield estimates of tg = 10~ ¢ sec (Hyde
and Dalton, 1972).

In the discussion of saturation and nonlinear effects there is an important
distinction to be made with respect to intrinsic widths, which was not impor-
tant in the theory for unsaturated spectra. Note that in Egs. (28) and (29)
intrinsic widths were introduced by replacing w, by w, + iT;' with no
distinction made as to whether these widths are due to homogeneous or
inhomogeneous broadening. It is possible to show, from the general form of
the solutions in terms of superpositions of “complex Lorentzians™ (cf.
Appendix A), that this is entirely adequate for the case of a Lorentzian
distribution of inhomogeneous broadening and no saturation (Abragam,
1961; Goldman et al., 1973). If the inhomogeneous widths may not be ap-
proximated as Lorentzian, then we must convolute the line shapes obtained
from the slow tumbling theory given here with a more appropriate inho-
mogeneous line-shape function (e.g., a Gaussian). This can become a real
problem when unresolved proton extra hyperfine structure is a dominant
source of broadening (in which case rigorous line-shape simulations require
adequate knowledge of the proton splittings and their orientation depen-
dence). It is well known, however, that in the case of saturation, homo-
geneous and Lorentzian inhomogeneous lines are no longer formally equi-
valent (Abragam, 1961). Then Eqgs. (28) and (29) are only appropriate for
the homogeneous broadening. Again, inhomogeneous broadening could be
accounted for by convolution methods, but for Lorentzian inhomogeneous
broadening there is a simpler method. The solutions for saturated cases
require both the coefficients Cg\(i) of Eq. (27) and their complex con-
jugates Ck,(i)*, to which they are coupled by the saturating terms. For
homogenous broadening we replace w, »w, + iT; ' for the former, as
already noted, but w, —» w; — iT; ! for the latter. But for Lorentzian in-
homogeneous broadening, we can merely let w, - w, + iT5 ! for both
types of terms (Goldman et al., 1973). The computer simulations of Fig.
23b were made for the case of homogeneous broadening.

APPENDIX A. GENERAL SOLUTIONS AND
DISCUSSION OF THE COMPUTER PROGRAM
FOR NITROXIDES

The equations upon which the computer program given in Appendix B

for the ESR spectrum of a nitroxide in an isotropic fluid are based are
(Bruno, 1973)

-
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Many of the terms in Egs.(A.1)-(A.6) have been defined in Egs. (75) and
(76). w. is the electron-spin Larmor frequency and b = —1ay|7.|.

The absorption is given by

— . — 3
Zi+ 25+ 25 =1m Y C3 oli) (A.7)

i=1

The following definitions have also been introduced:

Chomli) =27"7[Ck M) £ Cog u(i)), K20 (A8)

N
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where the plus sign is used for even L and the minus sign for odd L.
For even L, i refers to all transitions; for odd L, i refers only to transitions
4,56,7,8,and 9;

Ckalij)=2" ”2[ 5( () F Cx. 1)) (A9)
where (i, j) are either (4, 5) or (6, 7), and the minus (plus) sign is for even
(odd) L; and

L ,(8,9) = 27" ,(8) + Ck _,09)] (A.10)
where the plus (minus) sign is for even (odd) L. Also,
N(L, L) = [(2L + 1)Q2L + 1)]'"? (A.11)
and
T;.=a+ 3B (A.12a)
T;} =18 (A.12b)

The quantity (5 3 §) is a 3j symbol, whose values are tabulated or given by
formulas (Rotenberg et al., 1959; Edmonds, 1957). These are used to evalu-
ate the integrals on the LHS of Eq. (27), utilizing

[ 402k, QD8 QL5 m, ()
= 87‘2 Ll L2 L3 Ll LZ L3 (Al3)
mg my myf\my, my my

@ﬁ. m(Q) = (_)M—MI’@EM. —m’(Q) (Al4)

There are a number of symmetry relations (Edmonds, 1957) in a 3j symbol
() L2 L) Among the more useful ones are: (1) The sum of the m values must
be zero. (2) Naturally, L must be positive and the absolute value of m; must
not be greater than the corresponding L; in a given column. (3) the columns
can be permuted without changing the value of the 3j symbol if the sum of L
values is even. If the sum of L values is odd, then a permutation of the
columns results in a change in sign for the value of the 3j symbol. (4) If the
sum of L values is even, then all the m values can change sign without
changing the value of the 3j symbol. If the sum of L values is odd, then a
change in sign for all m values results in a change in sign for the value of the
3j symbol. (5) The triangular property holds whereby the sum of any two L
values must be equal to or greater than the third L value. Properties (4) and
(5) result in the equations in L being coupled only to the equations in L and
L + 2, for the three allowed transitions; but the forbidden transitions (onl}

with the relationship
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when there are asymmetric magnetic parameters) result in a coupling to
equations in L + 1 as well. The coupling of odd L values is important only
for slow motions when tg > 5 x 107 ® sec. The required 3j symbols are
automatically calculated in the computer program in Appendix B.

The solutions in Egs. (A.1}-(A.6) can be expressed by the matrix
equation

s#/C=U (A.15)

where C is an r-dimensional column vector consisting of the independent
variables [i.e., the expansion coefficients C§ (i)}, which are to be solved for,
U is an r-dimensional column vector of constants given by the RHS of Egs.
(A.1)}-(A.6), and « is an r x r square matrix formed by the coefficients of
the Cg (i) variables in Egs. (A.1)-(A.6). For purposes of computer program-
ming efficiency, it is best that the coefficient matrix s/ be complex
symmetric.

The above equations, except for saturation, are “naturally” symmetric
because orthonormal expansions as well as a properly “normalized” linear
combination of terms were used. [Actually, one must first replace the
C5. u(i) in Eqs. (A.1)-(A.6) by C§, x(i) to be able to render s/ symmetric.]

The diagonalization method for obtaining a spectrum is especially appli-
cable, since Eq. (A.15) can be written in the form

(& + k1)C=U (A.15)

where &/’ does not contain the “sweep variable” (e.g., w, for a field-swept
spectrum), 1 is the unit matrix, and k is a constant containing the sweep
variable [ie, k = (0 — w,) — iT7 )

For a nondegenerate complex symmetric matrix /', a complex orthog-
onal matrix O exists such that

0"s/'0 = 5/, (A.16)

where &/, is a diagonal matrix and O" is the transpose of O. Premultiplica-
tion of Eq. (A.15') by O", use of Eq. (A.16), and noting that 0" = O~ ! leads
to

(/4 + k1)O"C = O"U (A.17)
or
C = O(s/4 + k1)~'0"U (A.17")
Note that the absorption Z” is given by
Z" = Im[DC] (A.18)
where
D=YU (A.19a)

(A )
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with
Y =[2""qw. d.]"! (A.19t

where we use the fact that w; = w; = w; = w, in high fields and d, = d, =
dy = d.. It follows from Egs. (A.17) and (A.18) that

Z" = Im[(DO)(s/4 + k1)~ }(0"U)] (A:2C
which can be written for the r dimensions as
. r (OlrU)‘Z ,
Z2'=Y1] A2l
" i; (/3)i + (0 —w,) = iT3}, (

and for the first derivative of an absorption field-swept spectrum

: (L)
P vy ey prapy g vy

dz"
atnd 7
T Y Im

-1

(A2

Thus only a single diagonalization is required to calculate an absorption lin
shape or the nth derivative of the absorption. Another advantage is that ./
and O are not functions of T3}, so that spectral line shapes can be ca
culated for different values of T;! without performing addition:
diagonalizations.

The diagonalization subroutine used for the slow tumbling compute
program in Appendix B is due to Gordon and Messenger (1972). Th
subroutine had the fastest execution time of all diagonalization subroutine
tried. Besides its speed in diagonalizing a matrix, it has characteristics th:
make it especially useful in solving the slow motional equations. First, tk
subroutine takes advantage of the symmetry of </, so that only the elemen
to one side of the diagonal are stored. Second, the subroutine retains t}
banded nature of the equations, so that only the subdiagonals containin
nonzero elements are stored. Third, the subroutine performs the operatio
(0'"U) “instantaneously ” for each step of the diagonalization, so that only
single column vector (0*U) need be stored rather than the construction an
storage of the entire r x r O matrix. A modified version of this subroutin
which can be used to obtain all the eigenvectors, is given by Bruno (1972

Anisotropic Liquids

Because ", for anisotropic liquids is composed of a simple sum of tern
in 2% y(Q) plus the isotropic liquid ', there is much similarity between tt
equations for anisotropic liquids and those for isotropic liquids. In fact, tt
resulting equations for anisotropic liquids can be obtained by simp
modifications of the isotropic liquid equations (A.1}-(A.6). The:
modifications can be specified by the following definitions for the simp!
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case of a Meier-Saupe potential, in which n is completely aligned by
the magnetic field (Polnaszek et al. (1973):

Cal) = -13 RA*Ck u()j) + izm(l -2’1-1)(-)"-"
XgN(L,L’)(_,lé g 11;)( ;‘4 (2) Al;)Ck',M(j)+i%Rlz
x(—)“'“:;N(L,L)(_’; )( - A’;')Ck'_w)

(A.23)
and

1/2° 1
Uk = qu.d. (K, 0)6(M, 0)!2—1"%12——— I 26, 0(0, B, 0) exp(% le) dx
(i -1
(A.24)
with Ig = |1, exp(dx?1) dx and A given by Eq. (60a). The addition of the
term C,(j) to the left-hand side and the replacement of the right-hand side
by the term U for each of the respective isotropic equations (A.1)-(A.6)
gives the desired set of equations for the anisotropic liquid.

The equations for Brownian axially symmetric rotational diffusion and
for anisotropic (axially symmetric) viscosity are obtained by using Egs.
(61a), (61b), and (62a)-(62f) and Egs. (63), (64), and (65a)-(65f), respectively.

The absorption is, from Eq. (23) or Eq. (13), proportional to

7 = Im 23: ) @L+ )" [I " 25, 0(0, B, 0) CXP(% "21) ]Cld- OU)}

Jj=1 L 12,)
(A25)

If the anisotropic liquid equations are written in the matrix notation of
Eq. (A.15), then from Egs. (A.24) and (A.25) the absorption can again be
written as proportional to

Z' = Y Im[U - C] (A.26)

In the numerical evaluation of the terms in U% the following recursion
formulas are useful:

6.o(x) = [QL — 1)x25 ' (x) = (L — D25 Z(x))/L  (A.27a)
and

1

1, = f x" exp(x?2,) dx = A3 '[exp(4;) — 3(n — 1)I,_,] (A.27b)
-1
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for n even. Appropriate expressions for the more complicated cases are giver
by Polnaszek (1975a).

Convergence for isotropic spectra has been discussed in Section 1LE ir
terms of an n, . The effect of having 4 # 0 means that the ordering affects the
convergence of the solutions. For example, in the motionally narrowec
region where n, = 2 is sufficient for isotropic liquids, then for 4 = —0.
(weak ordering) one needs n, = 4 and for A = ~3.5 (moderately stron
ordering) n,, = 6. It appears safe, for the slow motional region, to use as n,
the sum of the value required for isotropic liquids and nj — 2, where nj &
required for convergence for that value of 4 in the motional narrowin
region, although usually smaller values of n, may be used.

Computer programs are given by Polnaszek (1975a) for calculatin; |
nitroxide fine shapes when (1) the asymmetric potential defined by Eq. (58
describes the orientation of a nitroxide radical for which the principal mag
netic (x”, y", z”) and orientation (x', y/, z’) axes are coincident, and (a) Eqg
(61a), (61b), and (62a)-(62f) apply or (b) Egs. (64) and (65a)-(65[) apply; (2
a Meier-Saupe potential is used; but the z’ and z" axes are titled by angle f
(3) different reorientational models are used for a Meier-Saupe potential. A’
these programs contain the correction terms for nonsecular contributions t
the resonant frequency shifts.

All the programs, including that given in Appendix B, have been writte
in FORTRAN IV language for an IBM 360/65 computer.

APPENDIX B. COMPUTER PROGRAM FOR SLOW TUMBLING
NITROXIDES IN ISOTROPIC LIQUIDS

The following program was written in FORTRAN 1V and is listed wit
72 print positions per line. One of the subroutines in this program ha
been taken from Gordon and Messenger (1972), pp. 376-381, and has bee
reproduced with 60 print positions per line. The Gordon and Messenge
subroutine is used with permission of Plenum Press.
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CIvaLinoln, ¢ TYMUEIND LN} LLIM

e .

BT N THE DINENSION STATEMENT OF THE
asfy noel - m- MATHIE  CSYRINOIN, JOIM}

WY e DIMENSION GivER 1IN oluuuou STATERENT OF MAlN
SPOCRAR FOR AT NSy

TN

“En €% Ih THE DINENSEON SYATERENT OF YHE
“ia '.ocl ¥ FOR RMATRIL  SYZ2INSY2, 31,

TITVE o TIVLE PR EACe OF TuE WPT  SETS OF #LOTS.

41047  VALUES OF THE A-TENSOR {ELECTRON-NUCLEAR
OIPOLAK TENSOA #LUS FERMI-CONTACT TERW)
CONPONENTS ALONG THE X, Yol PRINCIPAL ANES,
RESPECTIVELY,

SYALUE In GAUSE, AYVPICAL NETANXIDE SPIN
LAGEL VALUES FOB L~AKTS ALONG THE NITROGEN
IP-P1 JPBITIL ARE  18,5.,32) GESPECTIVELY).,

“tend « G-TENSON (OWPONENTS ALONG THE KoYVl
PRUNCIBAL AXES, WESPECTIVELY,

. 0L taT 0Ny K‘I"USION RATE COMSTANT a80UT THE X,v

VS AND Yng AES, RESPECTIVELY,

CeRCLE TSN Aonns PER SECOND. (FOR 1SOTAOPIC
$#0uh1aw ACTATIONAL DEEFUSTON, SOTATIONAL
TORRELATION TISE 1S §/(eA)

KU SPECLEIES POTATIONAL REORIENTATION NOOEL~
nEAn

Y STeON sunp
S U USTARE gume
LT ] !(DIQVC Nl! WETH GAUSS1aN DISTRTBUTION

snR Tue

o iate l!ﬂll‘! Jul' WITH EXPONENTIAL OISTRAIAUTION
O THE JunP ANGLE

Pt PAuOT metsu  TO BE GIVEN FOR THE INYERMEDIATE

JUMP REOL [ENTATION OF SINPLE *FREEC DIFFUSION. R
1S Tnb ANTATIONAL OTFFUSION CONSTANT 1N UNITS OF
R4DIANS PES SECONDI AND TAU (5 ETTHED THE TiME
UNTYS UF SECOWDS PER RADIAN) AT & FIRED
OFIFNTATION (SNTERNEOIATE JUMP NODEL) OF THE T|NE
NG WA T THE ﬂlf(mlt FREELY ROTVATES (SInpLE
TEBELY 1EFUS (DN mMODFL

NETIL FLELO VALUE AT CENTER OF SPECTRUN,
TYSLUF 1N GAUSY. (NESONANCE FIELD VALUE FOR THE
CUECIRON TEFMON TERS WiYr GedGReGYOGII/., FOR
L-8AnD TYPICAL VALUE 1S 3300).

e Simaing b yaluE in NSION. L WuST BE AN

TACN NOREER. Loy FO® THE FAST MOTIONAL LIRIT
fL=10 1S TYPICAL FOR INTERMEDIAVE SLOW
. SPECTAUR WHILE (20 FOR A SRIGIOY LIKE
ey,

JACK H. FREED

TRUNC = (FULSE. -MaX|MUM TEAMINATING VALUES SPECIFIED 8Y
L BRE YO BE€ USED. THUS
KTERM » L3 LOOUB » L ( LODD =
CYAUE. ~TERMINATING VALUES (KTERM,LDOH
4%E TO BE GIVEN

-1
1L 000}

KYERN o TERMINATING VALUE OF X  FOR THE sSYNMETAIC
EXPANSION TERMS DUE 1O DIFFERENCES IN THE X AND
Y BRINC[PAL AXTS COMPONENTS OF THE A AND G
TENSCRS. TO RE GIVEN WHEN TRUNC 15 . TAUE.
VOLUE WUST BE EVEN AND LESS THAN OR EQUAL TO .,
RTERMSO |S FOR AN AXTALLY SYMWETAIC NITPOXIOE
FREF SACITAL. 1FOR I AXIS ALONG THE 20-Pf
NITAOGEN ONRITAL, KTEAMas IS YYPICAL FOR
INTEANECIATE SLOW WOTIDN AND KTEAN=S FOR

161D LINE SPECTRUN),

000 » vunlunlnc L VALUE FOR THOSE EXPANSION TEANS
H OO0 L VALUES. TO BE GIVEN wHEN TRUNC IS
."uE. VALUE MUST 8E 0DD, LESS THAN L &ND
GreEaTER 0P FQUAL + IF LODDs§ 4LL ODD | TVERMS
AF TRUNCATEOD,

LDOUS » TERWINATING L VALUE FOR '0OUBLY FORBIDOENT
TRANSITION uunslon vuus.'vo BF GIVEN wHeEN
TRUNC IS .TRUE. VALUE MUST BE EVEN, O GREATER
THAN L AND WO uu uss THan

NSET = MUMBEA OF SPECTRA VANYING ONLY T20N (DR 81,86,
OISP) FOR & GIVEN SET OF VALUES $OR Y1TLE,AXsAYs
ALrGRGY GO R AT IROT\RTAUBCEN,L  TAUNC (KTERM,
LODOLOOUS | HANPEY s PANPEY .

WANPEY = TRUE. -"IN‘ OUT EFGENVALUES OF MATRIX CSYM
ANC COLUMN VECTON anp

PANPEV = ,TAYE, ~PUNCN DUT E1GENVALUES OF !AYII! CSvm
AND THE COLUNN VECTOR  anp.

1MoY= VALUQ S'iCI’IIS TYPE OF PLOT~
OF DISPERSION

l D‘ "W OF DISPERSION AND (TS RESPECTIVE
FIRSY DERIVATIVE
*t FIRST DERTYVATIVE OF THE ABSORPTION OR

DisPEPSION
KPUNCH o (TAUE, ~SPECTRAL POINTS PUNCHED DUT
EPLOT = (TAUE. ~SPECTRAL POINTS PRESENTED AS LINE "ot

DISP « .TRUE, ~DISPERSION TYPE OUTPUT
+FALSE, ~48SOAPYION YYPE QUTPUT

YLEN o FOR LINE PLOT OUTPUT, LENGTH OF ANSORPYJON-
D|S'§IS|“./'IIS' DERIVATIVE AXTS
~VALUE IN INCHE

ELEN = FOR LINE PLOT DUTPUYT (NPLOV,TAUE,), LENGTH OF
FIELO SWEEP Ax1S.
SVALUE TN TNCHES

TZIN « ROYATIONALLY INVARVANT LORENTLIAN PP FIAST
DEFIVATIVE LINEMIDTH
~VALUE TN GAUSS, I'V’IKAI. VALU! FOM NITAOXIDE
SPIN LABEL 13 A FEN GAUS

B1.8F = INIVIAL &ND FINAL FEELD SWEEP VALUES,
RESPECTIVELY, WITH RESPECT TO CENTEN OF SPECTAUN,
SVALUE IN GAUSS

W8 = HUMBER NF POINTS FOR SPECTAUM, SPACED EQUIDISTANT
APART ALONG TME SWEEP AXIS

THE STAUCTURE OF YHE PROGRAM HAS AN [NNER AND ouvn oo
LOOP. THE OUTER ONE IS EXECUTED NPT  TIMES WHIL

INNER 00 LOOP 15 EXECUTED NSET TIMES FOR EACN C'Cll OF
THE OUTES 00 LOOP

TRPLICIT PEALOSIA-H,0-2)

COI'(EI‘IP CSYM CSYML,CIY M2, VALUE (AMP ,4BSP , XAD
t € KLEN, ARMAX o ABRT Ny DNAX (OMIN, K, ¥y OXY

“’!V.HAIOIV-DIS’ YRUNC

3
lllilbll-CSVIHIO"q(l‘OlholllllhOI PeBFLOC4OL), TITLEL201,0h0TE2)

DIMENSIONING OF MATA[CES

DIMENS ION SYLNSY 81, SYZINSY2,3),CSYMINOIN, JOIMY, VALUES
lwll‘l.ln"IDII)-(i'!l‘lﬂlﬂl-cs'lu’ml“lvClN'N'l'QEIl“
INPNT )L OFLOINPNTI TITLEC20 ),

LINITS IMPOSED BY THE DINEXNSIONS

OvE:

l.nllllml NURBER ﬂF POINTS FOR ONE SPECTRUM
VEN BY  NPH

2,WAAINUM VALUE FOR L 1-uu.sss AROVE}
-DETERNINED uuu NSY NSY2
NSY L v
Nivz uou-uuuzn/‘
NO VALUE OF L SHOULD YIELD NSY,NSY2 GREATER
THAN THOSE SPECIFIED IN CTNENSION STATEMENT

3.CONBINATION OF VALUES FOR L KTENN,LOD0,L00U8 FOR &
SINGLE PLOT
<DETEARINED $0CN  NOIN, J01M

4.$00  TRUNC ALSE. (I'!lNILvIOWI-LnLODO't 1
MDIN o th\tn . novu v 24378

401N w (904L/201 @+

J0I% - 1) WHEN (=2

G.FOR  LOOUB > LODD > KTERAM

uB e
-l!‘l'(ll.ll(ll'

.
* (L2exTERMY ) /0

1108, 360, VALUEC100)  ANPI 1083, CSY

3. THEORY OF SLOW TUMBLING ESR SPECTRA FOR NITROXIDES 123

JOIM = t9SINTERW/21) o 18
014« 10 WHEN  KTERNaQ
JotN . 7 WHEN  KTERM:0 AND Ls2

C.FOR  1OCUB > Of = KTERK > LOPD
NDEM=EE2000) » 21 ¢ (LOSLOKTERM) o (29L00URSKTERN)
¢ (30, 000CLO00) » (49LD0UBE « (HOKTERMOKTERN]
* tizexTErmy/e

JUIM = (3ERTERMI o+ &b

JOIM @ (3OKTFAN) & 3§  wHEN KTERMsLOOUB
01N m 43SKTERM) o 1C  WHEN NTENReL

018 = 13 WHEN Le2 AND KTEAWsZ

H-lunobﬂllnl . lc
0IN - Lol AND TEAMe]
(¥1J1) u\uu ™e Gluvn oi YHE TwWO VALUES)

0.FOR  LODD > LOOUF > OR » NTE&N
uoln-uzo-u * 26 v (LOSLOKTERM) o (4OLODOUNSKTFAN}
4SLODDIKTERK) + (42LD0UB) ~(P*KTERNOK YERM]
+ (LOSKTEAM) /0

JOIM o (IRIKTENR/ZID v 1

JO1M = (eoxTERN) o 19 WHES L DOUBRKTERN

JOIN = (9SIKTERM/2IN o ¥ WHEN  LDOUBSKTERM aND RTEAM>16
DI . 10 WHEN  KTERNSQ

€.FOR  LODD> XKTEAN > LDOUB
NDIMe (£2080L) » 24 ¢ (10CLOKTER®) o {4oLODDYKTERM)
* (29L00UBSLO0US) ¢ (4%LD0UB)~( TERTERMOKTERN)
* CLOPKYERM} )0

JDIN » ITSIKTERNM/Z)) + L4
or

JOIM ® (48LOOUYNY o 1S
JDIN & (90(LDOUSI2I) ¢ 7 WHEN LDOUB>18
L0IM  FQUALS THE GPEATER DF THE VWO VALUES)

F.FOR  KTERM > LOOUS > LOOD
NOTM=1£200L3 + 2] ¢ CJOSLOKTERM) « {LONUBSLDNUB)
¢ (ISLO00SLODD) # $49LD0UB) - (SORTEANOKTERNY
* (1O°KTERNM} /0

JOIR » (SS{RTEAM/ZI) o L4
"

JO[4 = (30LD0UB) o 1S
or

JOIM « (99 (LOD0~LI/20) ¢ L&
tJDIN  EQUALS YHE GREATEST OF THE THREE VALUES)H

6,FO0  KTERM 3 LODD > LDOUS

NOTHe((209L) ¢ 22 + {JOSLOKTERA} ¢ {20LD0UBLDOUN)
¢ (200000%LCD0Y + (40LD0UB) = {SOKTEAMOKTERR)
* (LOOKTERR))/0

J01M & (SO(KTERM/ZI) o 14
JOIN & (SOIKTERN/24) & % WHEN K TERM=)

JOIM » {TOLICIDO-11720) ¢ 1%
JOIR = (4%LD0UB) » IS

" tLDOUB/2)) » 10 WHEN LOOUB> IO
tsotm !WAlt THE GAEATEST DF THE TIMEE VALUES)

NO SEY OF VALUES 108 qu'ilh.lOM-LDﬂul SHOULD
YIELD A VALUE FOR ¥ DN R THAN THOSE
SPECIFIED 1N DINENSION “l'!ﬂ!'ﬂ

EQUIVALENCE (CSYRLILDLCSYNEL 11D, (CSYNITDESYMELL2))
KPLEND & .FALSE,

¢ READ INPUT DATA « ONE READ STATEMENT .

~NOTE THIS IRPUT STATEMENT wILL RE READ ONLY ONCE

READES, LY NPT, MAX,NOTH. JOTHINSY \NSY2
FORMATOI243K,T243X0 1342X §352K+83, 2%, 130
ANAXL » LMAK @ |
LMAK2 ® {ISLNAX} ¢ |}
LMAXD & | ¢ LMAK
LHAXA » 3e(LMaX ¢ 1)
LEAXS ® (30{(LMAX ¢ 2}
TFCINSY.LY, uuu.numsvz.u LMAYS}) GO TO 2

CALCULATION OF 3=J SYMOOL VALUE.

VALUES STORED IN MATAICES SV-SV?- FORMULAE FOR '“ESI
CALCULATIONS BASED UPOM !00A1|0N 1.5 IN 'THE 3-3

6-J SYRBOLS' BY ROYENBERG V"‘S.HE'!D’IMIS.I(‘OYEN
AND FORMULAE GIVEN TN *ANGULAR HOMENTUR [N QUANTUN
HECHANICS? BY EDMONOS,

SYIL.Y) = n (1]

syt 2} - 0.00

$Yi2el) = I.Dblusnnu.uo)

SY(2,21 » 2.0~

DO 3 Tw3,LMAX],2

Al » DFLOAT(I} ~ }.DO

XK1 = 2.000K1

SVIl.\I © “OSORT{EXI®EX] « 1.DOII/CEXXE v 3,DOP(AKT o 1,D00%CAX]

L]
SVIIIII ® SYLL.LBeSYILL )
SYtiel, 1) = 0Sg0 “l‘-w‘lll + 2.00)%4x5 ¢ L.D0)I/L2.00%(XN] ¢ $.0"
VIo(XRl ¢ 3.001%4KX] ¢+ 1.D0)))
3 SYQ1e)a21 @ SY(UIPL 10wSY(Tel, 0}
. [}

& ol

4 SYU),1) = 0,0

$Y(3,3) o 1, 00’059"(3 L]

X000 = -1,00

00 § [wé,LMax2,

X1 = (DFLOATEI) - L.DO)N/3,00

XK1 = 2,000x

SY{1,3) = XOODSOSOATI.0N/12,006(NXT » 3.0018(XK] » |.DOIS(XX[ = 1
100K

SY(Is1y3) = -NOOD®DSORTIXI/HEXX] ¢ 3,003%4XX! + |,D0)®2.00))

SY(192,3) « -YODOSOSORT{(AKL + 1.00101XL » 30001701kl + $.00)e(¥

XD s 3.001%(xxt » |.00)}H)

SY(R,4) o NODDdE4KIOEN] o L.DO)) - 3,P01/0SQRTIINX] ¢ 3.00304n] o

11,0019 0XXT + 1.00I*X1e(XKT ~ 1.000))

SYtTel 4} = KOODODSORT(3,00/¢1XXK] ¢+ 3.00¢%(Xl ¢ §.DOISIKKY ¢ 1.00%
]

15
SYUI02,4) o -4ODDSDSORYII3,009151 + 3.0006X11/12,0004XX) » 8.00)e(
16K o 1,003 0XX) ¢+ 1.00F))

Y1) = SYQE, 38

SYUISL(S) o =a0DPeDSORTLIXL + 2.001/12.0084XKE o 3,00101%X] ¢ 1,00
(131

SYL10245) = XOODSDSQRYCILXL » 2.00)9X]1/4IXX1 » $.001%1¥X] » 3.000
1eere) 21,0001

SYIE .81 « —XOLD#3.00eDSYITILI.N0RIXE + 2,001m( Xl = §1.00))/4IXXI »
L 2,00)00KL ¢ 1.D0104XXT + 1,DCVPAXTOXXY = 1.D0}1)

SY(I01,6) = XOODO (XD = 2.D01ODSORTLANT o 3.00)71(XKY v 30009424 o
L 1.00)e0xxY + 1,000
SYE147,6) « XADDSOSURTECKT®(A] & 4. 0010 (K1 o 3,000 b/ LERAE + 3.0019
MK o L.DOFO(AX] » 1.DQIS{XNE ¢ 3,00)1)

SYCI,7) o XODD#1(12,00 ~ txielal » x‘wn)/osununl * 3000008y
1% 1,000 60XEl ¢ |.DO)exTeiRXE - .00

SYCIAIaT) o +ON0+2.00805GP TE43. 0004 K1 3.D0100X1 « 1.00b1/0¢x3
10 2.001%4Xx1 ¢ 3.00)%IXAL ¢ 1.DONex(oikl » V.00)})

SY(1+2,71 » XO0020SORYLECSE ¢ 4.00)80x1 + 3.D01exVed1 - 1.00)#3.0
LOM/UONRT & $.D0IOIKT o 2,00180MK] ¢ 3.000e4XXl o 2,00b%4xAl ¢ [.00
]

12 )
SYt1.8) o $Vllv‘l
BN OD2(X] + 4. D0)SOSQRTILNT = 1.001700K) » Z.00)%daK] o
13,004 lll . l DQIeLRK] ¢ 1.D00NY
SYL142,0) o =XOODOOSQRYAINISIXT ¢ 3.001%(X] ~ 1.000}/4{XXS. ¢ 5,003

1*UKT ¢ 2.00)*txK] ¢ 3,0008¢xxl » |,00)})
3 K(ODD ® -XODC

svu.n . 0,00

K e

mon = 1.00

00 & l=],L™ax)

K] = OFLOATIIY - }.00

XXl » 2.00%K}

-1 l 1

x) - Iz DO'D‘mnull = 2.00

1F{41+J1,£Q.2) GO TO

SY20, 0} = XODCO U L), DO'IJ‘IJI - ANIAEXY ¢ 1.DOKID/DSQRTCIXXY o 3.
100)®LX) ¢ §.0030 (XXl + },00}OXALOIXXT = |,00))}

SY2UR4 1410 » -XODDOXJSOSQATILI.000IXY ¢ %) ¢ [.00I®(XL = XJ + 1,00
TITZLENT & 2.005%0XN) ¢ 3,DOIO(RE o 5, 000004t ¢ |,0000K01))

SY2UK+2) = XOOD®OSQAY4{6.008(XI = K - 1,001kl ~ XJ1®UKE o %3 »
1 1.000 ® X3 b 2,0003/714XX1 + 3,000 (¥X) & 2,00} (XKl ¢ 1.DOIK
2X1eEXRS = 1.0001)

SY24R142) =  ZODDSOSGRIIIINL v Ky v F.00%14) ¢ Xy ¢ 2.00094x) o
XS o 3.DIICARL = ¥III/OIRL o 2,00180%07 ¢ 3.0010IXT ¢ 1.DOJS{XX] «
2 1,001exxy b}

SYZIKe3} w XOODPOSQRTCL $.00%¢K) v xJ ~ 1,00IOIKS » XIIOIX] = X4 ¢
L 1.000eUXS - XJ ¢ 2.D005/(4xkxt ¢ 3,000%0anl ¢ 2,D00%¢XX1 ¢+ 1,G0VOn
2180 nx) ~ 1.D0MY)

SY2(691,3) = ~XODOODSOATEE(X] = Y3 o 1.00)%(K] - 2J + Z,00004X1 -
XS & 3.00)OCXE o KJDI/UEKD & Z,00000XKT & 3.000%0K1 o 1,D00®(xx} ¢
2 1,D0)exx1))

8 SYZUKZ, 1} o XODDSDSQRTU{6,DOSINT o k3 o 2.0010(Xl o XJ ¢ L.DO)I0n
10« X3 e 2,00008X1 « RS ¢ 1HONM/AIXKT ¢ 5.000%(XKY ¢ 4.00801RZ0 o
2 3.001%(XX] ¢ 2.D0VetxX( ¢ 1.00)})

SY2UKe2428 » NOODEDSOATICIXT « XJ ¢ 1,000%¢X1 & XJ ¢ 2.0019(X) » x
14 ¢ 3.00IOIXT ¢ XJ ¢ 4,000V /14KXT ¢ S.00)8(XRE ¢ 4.001%(AK] o 3.DQ
2)048%XL ¢ 2,00100%X] ¢ 1.,00}1)

SYZUK9243) = XODOWDSORTINIX] = Xy ¢ 1.D0)IN] = N} o 2.0040(X] -XJ
1 ¢ 3,00098XT ~ XJ ¢ 4,00 H/(EXX] » 3,DOFOCXX] ¢ &4,D0I®{XKi ¢ 3.DO}
29EXXL. o z BOISIKKL ¢ 1.00)}}
TKwKo
4 X000 = -KDDO

00 9 lei,2

00 9 Jei,d
® SY2tt1.4) = 0.00

00 10 LPYel, NPy

@ REAG [NPUY DATA - FIVE READ SYATEWENTS .

~+NOYE THAY THE FOLLOWING SET OF 3 INPUT CaRDS 13
FOLLOWED @Y & SET OF 2oNSET INPUT CARDS. THESE SETS
OF INPUT CAPDS ARE THEN PEPEATED A TOTAL OF NPT  TIMES

READLS, L1} TITLE
Tl FORMAT{2044)
READIS L2} AN AV AL
32 S MATIG10,3,5%,010.3,55,010.3)
DS GX GY,6L
13 lulll't‘l SeTH FB.5,THFO.9)
£ADIS,14) R (RZ,TPOT,ATAU,BCEN
13 VOINAV(DIO.)-SI.BIO-‘-’I 114%,010,3,9%,010.3)
NEADIS,15) L VTAUNC,KTERN,(000,L NSET PAMPEY WARPEY
L5 FORMAT(TZo9XyL1o0Ns 120300 1243%412+3%0 02,30, L0040,0 40
DELGO » G2 = C4GX » GY)}/2.00)
DELG2 » GX -~ G¥
G ® 1GX » GY ¢ G11/3.00
€030 » +0.2000¢07
FO o {DELGO®ACEN®2,0049.27310+6)/11.054430093.00)
F2 = IDELGROBCEN: 27310041 74DS0RT(6.001%1,0944300)
D« (AX » AY =~ {2.00022})/12.009050RTE4,00))
02 « (tAY ~ AX)/4.0u)
S w (AKX v &Y v AlM/,
GaMME « [Gv9. IY)ID'ODII 090#10.
FFATRUNCS GO TO
KTEAN o L
LO00 = L = L
Locus = o
16 kY » KTERM/2
LN = (00D - 13/2
= LDOUe/2
MRITELS ET) TITLE AN AY 8Z.0,02:8,6R.0Y G2 iFOF2oARE,L , KTERN,LODD
1,1 0008, 8CEN
1T FORMATILNI 2044077740 AEXE) A-TENSOR COMPONENT ALONG N PRINCIPA|
LAXIS  #,012.5.° GAUSS®4/,% AUY), A-TEASOR CONPONENT LONG v PRI
ANCTPAL 1S V,012.5,% GAUSS®e/y I)e &-TENSOP COMPONENT 4LONG
3L PRINCIPAL AXIS  *,012,5,% GAUSS', /(9K ¢CALCULATED VAMUE OF 0(Q
25,0 GAUSS 4, 9x, tCALCULATED VALUE OF D(2) 012.3,¢ Gau
ST /e 9X,PCALEULAYED VALUE OF B ',D12.%,° GAUSS*s//y® GIND, 4-TE
GNSOR COMPONENT ALONG X PRINCIPAL ANTS  *,FB.5,/.% GIYh, G-TENSOR
T COMPONENT ALONG Y PRINCIPAL 3XIS *sF8.5:/4% Gilly G-TENSOA COm
BPOMENT 3LGNG T PEINCIPAL A21S ', F0.9,/,9K, *CALCUATED vALUE OF
9 EIM) NiTZ.80¢ RADIANS PER SECIND® (/o SX, *CALCUCATED VALUE OF  #4




124

Vet hE.%, " RADIANS PER suuuo-.u. A, BOTATIONSL IN"OSI("I cons
an? ABOUT  K,Y  ANES  *,D12.%, NS OND* 2y 0
VIONAL DISFUSION CONSTANT ncw D
ONOty/set TiE TERMINATING L v AL v:nllnnln
= vaLuf 1S A, 13./7,% THE TERRL LODO  VALUE ASSNCUATED
ST ek B0 L COEFFECTENTS §S S.13,77.% THE TEANINATING LOOUS
. vn Ut B3SOCIATEC wiTh TWE DOUSLY FORBIODEN TRANSITEON COEFF|C ENT
1S talMef/et THE CENTER OF THE SPECTOUM  +,032.9,% GAUSS® /)

I8, 19.20020,02,33
1.00/10.0000300 7
R
3

¥ vt . L SORT(T.004/¢4.DOSDSQRY (R
%y
Ll

ngr
RIIeFQAN)

rieroans

1.0071D3QRTIBGR |} 95 O,
161

e
0. Rt w 41,00 ¢ (4.DOSRTAUII/(6.DOSDSART (RORE)eFO.
[ MALITA I ALY
[T
2oocraet
Thivie o/ ’
-uuu.ul ey
so

4,10/16,00°050RY 048911.00/41.00 ¢ (9.000ATAUSRTAUY
" 13400 vw--vmun

o0 --Ulu.hl Avau

. (5.00%T4UN/012 DO‘D‘G"U M 1IOF0ABI®I2.00 - {DEXPI-(3.D0¢
nuun . DERPY~ 00
in

0!“ OIFFUSIONS /)
PAEET Y ROTATIONAL OIFFUSION',/)
AP ROTATIONSL AECATENTATION' /)
'u(uv"; :u-: SOTATIONAL BEORIENTATION *5/y* YHE PROP
’
S1IURS BOTATIONAL AEOPTENTATION W u AN EXPONENTIAL OISTY
IPRBUTYI W UF JUND ANGLESS ./, THE PRODKT A $ 1aD12.3,/4
® 40 JUMP ROTATIONAL MEORTENTATION vnn 4 Gaussian olsvlll
WIIoR 96 jume nm.u'.l.' THE PRODUCT AOTRY S *,012,5,/
30 wWRITERe, )11 COMY
31 PORBATIIN o/4* THE CALCULATED ROTATIONAL CORSELATION TINE IS °*,D1
[T ) un’nos nl HADTAN® /)
fow DelGamMA/
o1 » nx-(u—ulu o)
& o BRIGANNR/POAD
e ¢, "i00010AT(4.00/2. 0010
0298 & -(C29D300T(8.00/3,001)

«LODO}. O tm.GV.LWIlH 60 10 301
®oe G020% ) ¢ 24 » (LOSLORTE * (20L00UBOKTENN) o
1 o 14nDOUS) - nou"lnolll u LLIONTERNII/N
. s ieeaT) o
1% quten .(9." wei0

ok

*LODDSK TERM)
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o u:;n;:wn ER D | D040, D01®L1D/DSARTI2, D01 1OSYILLZZ 0 1OSYZ(LL
IR
CYNES3,MIL20-1 » CSYRESSKLL2O-2)
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SRS ALE0) - te) .no.o OIS (FOPSYILLE2, TISSYZILL2S, LI®SELLZ)
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. ':l::;-u)fooz» = 1-1.00,0.0019(10/D30RYL2,001 19SYILLI2, 8)OS¥2(LL
LY ARS ] "
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® CSYMEIIRLLTNORE
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POl P 081 OO YO 1LS

TREINKILI0-Y) ¢ £-3,00,0.0008(F00SYALLIZ, TISSY2ULLIB IIeSFLLL)
"‘“::-.l\\l)%ll ® 1-1.00,0.0019((0/05GRTI2.00)20SYILLEZ(IOSYZILL
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JACK H. FREED

113 {FO11.€Q.1) GO YO 35
CSYRIS,KLLILL @ $1.00,0.000900205Y1LL12,3)9SY20LL13,3)9SFLLLD
CSYMEILoRLLLL-1) = CSYMEI RLLLLD
CSYMISLLKLLELY = CSYNE,RLLETD
CSYNEIZ,KLLLE=NY @ CEYRERLLLLD
CSYMIJI,KLLLI-3) © {1.D0,O,0008¢(FZ o (D2PR/2.0011wSYILLIZ,4OSY2L

11.00,0.001%¢(F2 ~ (D2PR/2.002I*SVELLI2,4)05Y2(

a8

] f+0:00,0,0007¢402/705QRT12,00110SYILLIZ,0)OSY2IL
113, 3)08FLLLY
COYMITS kIt LL=4) = CSYMEIS KLLLE-S)
1FI1.GE.LDB) GO TO 93

CSYMIJS,KLLE=30 o €-1.00,0.00084F28SVILLIZ, TISSY2ZILLLI, I OSFLLLY
[23LIFILINNY b e t-1.00,0.001%{102/0SQRT(2. 001 10SYILLIZo&DOSY2EL
ILEX 3ISSFLLLY

CEVMEIe RLLEL=2] @ CSYNIJI,KLLLL-1)

43 CIVYM{JODD,KLIL20) » 11.00,0.00)011F0 + IDPH/Z2.00) 19SYILILZ2,4)}095¥2
TLIL2I  LImSFLIL2)
CSYRIJO0D(KLIL20-3F = $1.0G+0.0009C0®SYELILZR,SIOSYZILILIY MIOSFLY

CSYN{JODD,KLIL2Q0=~2} » CSYM{JODO,KLIL20-3}

CSYMIIODDITHLIL20) o (1.00:0,00)¢1(F0 ~ 1OPR/2,DONI*SYELIL2Z 4)eS

IY20LAL 23, 00e5FL L)
CSYMEIO0D1KLIL20~Y)
CSYme JODOO L ML 1L20-2)

IF GT.L08} GO TO 118
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ASY2OLAL2I 1IPSFLILYY

CSYN{JO00#2,KLIL20=1) = CSYNLJODDI2,KLIL20-2}
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uvuunon.luuoozl ® (~1.00,0.00)9110/0SQNTI2.001 OSYILILI2 8005y
12T, 1h0SFL
CSYN{JO00e 'ltlllﬂ'll » CSYNEJ000, ML IL20* 2
e X1 « 1,00
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CSYMEIR,9=KO) » CSYM(J,10-XD}
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ne I'llG 0} 60 YO S¢
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CSYM{JODD 4=KD) = (1.D010,D0I®(1F2 ¢ 1D2PR/2,00L)®SYILELLZ, #DO5Y2H

ILILL3,2005FLILY)

CSYMII00DST+4-XD) = (1.00,0,00)04({F2 = 102PR/2,003 1OSYILLLIZ,4)esY
FLiLYY

- (=%, DC'O.DOI'HDINNQ."Z DO) IeSYILLLE2, 6008V 2ILMLE

1302008FL1LY)
CSYNEJODON T, 51 o CSYMIJOUD. 6
CSYMIJODDOZe4) = (=1.00,0.D0)9{F2OSYILILAZ, THOSYZILILIY, 209SFLILE

]
011eSYILIt12,8)05v210L0

€SYR(J000¢2,2) = {~1.00,0.D0}%1(B2/DSORTI2
WY 2DeSFLILLD
€SYM(JOD0¢ 2431 w CSYMLIODO2,2)

%o CSYM{I,4) = (1.00,0.00004DOSYILLZ,3IeSYZILLI 1IOSFLLY
CSYM(J1,3) = CSYNIJ,ab
CSYNII 40 » CSYMESL4)
CSYMIIZLIY = CSYNLY,4)
CSYMIJ L) « 111.0040. Dol-uz.no-n « (SELLOCFQ o DPRIeSYILL] E)osY
$200035111)) ¢ (£0,00,~1,DOI*OR
CSYM{Jiy i} ot(-].00,0. oolusnuro-svlul.u-svzuu.nn * 11000
be-1.00) *0ROTKL)
CSYMISZ 1t = RiL, n.,..nnu-lz DGORI ~ (SFLLYLFS = DPRISSYILLI, LIS
1SY20LL3, 11000+ (¢0 1.00)90MOTK 1)
CSYmiga1t = 111.00,0 oo B s [SFLLOIFD o (DPR/Z,DONIOSYILLZ 4105
1IYZOL3 00 (lo 00 OROTHL)

SYNLIbe k) » £11.00,0.01 * §SELLO(FD ~ (DPR/2,D0110SYILLZ A0

ISY2ULL341000) uu.no.-l.noi-uouu
1F{1.6T.L08) G0 10 120
CSYMEJDe3) » €=1.00,0.00)¢((D/OSART (2,001 )8SYILLZ 61 OSYZILLI,LIOSF

ne

CSvmgs,2) o COVRLIDAR

CSYHEIS,1) ® €(=1.00,0.00001SFLLOFOPSYALLZ,TI®SYZELL3I, 1)) * (0,0
104-1,00)%000TK1}

LR l

120 4% 0 ¢

lru.u.uel 60 YO 8
CSYAIIN00+1) = ((1.08,0.0809¢0 o {SFLILIOIFO ¢ (DPA/2.00)1%5YILILY
12.46008Y28LELL3, 11001 "¢ $10.D0s~1.00100R0TK2)
CSYN{JODOe1,lb » £41.D0,0.0000(-8 » (SFLILI®(
BIL 2, 490SY2ULRLL3W 30 HE ¢ $00.D0,~1.D010ROTX2)

TFU1,GE.LD8) GO YO 123

CSYMIJOD0Y) = (~1.00,0.00)%1(D/DSORTIZ.001 IOSYILILLZ,4I9SY24LELLY
1.118SFLILY )

CSYMIIOD04L,2) w CSYNEJO00,3)

€SYMIJO0D+2,1) @ ({~1.00,0.D0)¢SFLILISFOLSYILILIZ TIOSVZILILIN LY
il ¢ 110.00,-1.00)90ROTK
JCOUNT @ JCOUNT o |

121 JCOUNT = JCOUNT ¢ 2

A8 CONTINUE
@ 3 e JCOUNT

34 AL = AL ' z.oo
00 40 §=
AMP(I) - l.-“ +00)

40 VALUEII) = £0.00,0.000
ANP(LY » (1.00,0.000
ANPLZY » 11.00,0.00)
ANPE3) o (1,00,0.000

= (DPR/Z2.081)0SYIL

SUBROUTIMES C(SOT AND CORY DIAGONALIZE A COMPLER
SYMMETRIC MATRIX, THESE SUBAOUTINES WERE DEVELOPED BY
GORDOM AND MESSTNGER,*ESA RELANATION TN LTQUIDSY,ED.
LoTaMUUS AND P ATKINSIPLENER NEW YORK, 1972},

CALL CSQE(CSYN,ANP,NOTN, JO1N, N, SQTOL)
CALL CQRT(CSYML CTYMZAMPoNDTM N¢20, TOL, VALUE)
TFL.NOT.PARPEV) GO TO 021
WRIVELT, 0221 GANMA,FOAB SN, LCSYMLUTI ANPIT) o inl N
822 FORRATID20, Ll
823 1FL.NOT WAl
ull'!lh

4 ,uu.-sleeuvnut'.zu.-u’
l-.u.lu.zou.s.u.znu.s,u.:nu 5.#!-10" 3
023 1FENSET,LT. 10 GO w
W 10 (SET»1,NSE
IISET.6T,.1) Ill'!ll-.
.23 !olunlmul»m VM.UES ne THE SAWE &S rou PRECEDING SET OF INeY
VES */e EXCEPT FOR THE FOLLOWINGI®

. AEAD INPUT DATA ~ YHO READ STATEMENTS .

~NOTE THESE TwO INPUY CARDS ARE AEPEATED UNTIL THEY ARE
READ A TOTAL OF NSET TIMES,

AEADIS 8T 1PLOT  XKPUNCHLXPLOT,O1SP, YLEN, XLEN
(2] !olhl'l ll|ll.ll.5!.l\ AN LL NG ELDL 945XV END.3)
T7m L

S

(1} Gnlln! 348! \o
WRITE(4,89) 'le' L3 -

% FORRAT{IN /7, ROTATIONALLY INVARTANT P~P FTAST DERTVATIVE LINEW]
10TH 'DIZ.! AUSS®, /. INITIAL FIELD SWEEP VALUE RELATIVE YO CE
2"‘(‘ 012,58, GAUSS®,/,* FINAL FIELD VALUE RELATIVE 1O CENTER *,

GAUSS®, /7" NUMBER DF POINTS FOR SPECTRUM ',13,/)

Vllﬂ ® T2IN010SQRTIY.00)/2.D0)S{CANNA/FOASY

Bl = BICIGANNA/FOAS)Y

[ uruunu/m ]

DE 18F - 8 llDFlﬂ‘YlNl-ll

XA = (0.00

TF{DISP) XaQ » I.DO|D 00}

1FEIPLOT.GT.0) GO TO 243

X1010.345X413)

CAMLCULATION OF THE ABSORPTION-DISPEASION VALUES. NOTE
THE ABSORPTION-DISPERSION VALUES ARt STORED [N C  Martailx
AND THE CONRESPONDING FTELD VALUES ARE N OFLD MATRIX,

RES = 81
00 233 [6=1,NB
nsu * (0,00,0.00)

3 leln
223 AIS! @ ABSP ¢ LUAMPLIISANPLIIDZICSYNEIT) ¢ ((~1.00,0,D01%RES) ¢ (¢
"n

14852 /13.0093.14139001)
Ak

ot
RES » RES o DEL
233 CONTINVE
TFIDISP) WRITELs,908)
906 FORNATEIN 4% OISPERSION PLOY?,//)
MRITE(8,24200C0T)BFLDtL] Ial, 8]
242 FORRATALIH ,//7,4TX,SCOORDINATES FOR ARSORPTION PLOY® /7,40, ABSORP
ATEON® 6K, "FIELD o LEX, *ABSORPTION® o 6X ¢ *FLELD® ,LLX, "ABSORPTION' (86X,

ZFLELD® (11X, ABSORFTION' Jo N FUFLOY (F /1 LIK ZELG. 5 4N ZELO, S 4R LL Y
4.5, 4%, 2604.%0)
I$ L. NOT.XPUNCH) GO TO 243

PUNCH QUTPUT - (DORDINATES OF ABSORPTION-DISPERSION
SPECTAUM PUNCHED ON CARDS

MRITECT, 2440601 01,8FLO011, 101 NB)
264 FORMATCELD 8, 2KvEND. 0, TR E13.6,20,E13.06)
243 IFE.NOT RPLDTY GO YO 243

LINE PLOY FOR ABSORPTION-DISPEPSION SPECTAUM {CORNELL
U. PLOT SUBROUTINESH

ARMAX w MAKIMUM ABSOAPTION-DTSPERSTON VALUE
ABRIN = MINIMUM ARSOHPTION-DISPERSION VALUE

SUBROUTINES FOR PLOTTING-
AXIS w DPAWS AND LABELS #x1%
PLOY o nnv!s ﬂsn TO A SPECIFIED POINY LCONKUINATES TN

INC
PLYEND o SP(CI'I(S END OF ALL PLOTTING

aBMAX = €U}
ON 245 1el.NB
TFLABHAT LY. CLIT) ABMAX = CIN)
245 CONTINUE
ABMIN @ CiL)
00 246 T=),n8
TFLABMIN.GY,CILE) MBMIN » CLT}
266 CONTINUE
DXY o [BFLOING) ~ BFLOLE) ) /XLEN
CALL AXTSE0.0¢1.0,5MGAUSS =% XLENLO, O4BFLOI LD, DXY)
Y oo 1.0 ¢ (YLENSLICEL) - SBMIN)/IARMAN - ABMIND )Y
x e 0.0
CALL PLOTIX,Y D)
00 247 t=i,nb
¥ oo 1.0 ¢ LYLENSCICHTY = SBMINI/(ABMAX - ABMINI)I
X w XLEN®CIRFLDILY ~ BFLDULII/{BFLOINB) - BFLOCLD b)Y
24T CaLL PLOTLX,Y,2)
XPLEND » ,TRUE.
¥ e 0, n
X e x
cale .Lo'(ly"')l
241 1F(IPLOT.LY.OL GO 7O 1O

CALCULATION OF FINST DEMIVATIVE VALUES,
THE FINST DERIVATIVE VALUES ARE STORED IN THE DERAA
MATRTX SND THE CORMESPONOING MAGNETIC FIELD VALUES ARt
IN THE MATRIX BFLD.

RES = @8}

00 260 1Be1,N0

ABSP = 10 M;G 00}
[}

»908
WRITECE, 2401 LOERABIT) BFLDIIN,1nl NB}
208 FOSMATOIN /77,410, 'COORDINATES FOR FIRST DERIVATIVE SPECTAUN®, /7,
AN, EST DERRVY , TH P FTELD® (1 UK. *1ST DERIVE, TR PFIELD' 11X, " 18T OkRI
SEIELD  1IR, 0 08T DERIV (X, PFTELODY (/7 (1N 2600, 5, 4R, 2614, 3,4
AKX, 2€14.90 0
RPUNCH) GO TD 249

PUNCH OUTPUY - CNOADINATES OF FIPST DERIVATIVE PUNCHED
ON CARDS

WRATE(T, 2501 AUERABI T BFLO(T) Lo1,NB)
250 FORMATAELD.&,2K,EAN.6, TR ELD.6,20,E13,0)
249 1E(,NOT.WPLOY) GO Y0 10

LINE PLOT FOR & FIRST DERIVATIVE SPECTRUM,
SAME 45 FOR ABSOPPTION-DISPERSTON PLOTS EXCEPT  OMaX,
ORIN  REFER TO MAXIMUM AND MININUM VALUES,
RESPECTIVELY, NF FISST DEAIVATIVE SPECTAUN,

DHAX = DERABLLD
00 251 t=l,N8
TFEOMAK.LT.OERABETHI ONAX = DERABLY)
251 CONYInuE
OMIN = DENABCL}
00 252 1=i,N
TFIOMIN.GT,DERAB(II) DNIN » DERABII)
252 CONTINUE
DXY = (BFLOINB) -~ OFLOIIIN/XLEN
CALL BXESI0.0¢1.CySHGAUSS =S XLEN,0. 5, 8FLDEL),0KY)
Y e 1,0 ¢ (YLEN®({DEPAS(LY - DMINI/ZIDMAN - DMINID)
X« Q.
CALL PLOTIX,Y 3}
00 253 Iwl,m8
Y ® 1,0 ¢ [YLEMSLIDERASITS ~ DMINI/IDNAN ~ DNINIYY
A ® BLENOLIBALOCTY = BFLOILII/(AFLDING) - BFLDIL)))
253 CALl PLOTEA, ¥, 20
APLEND = , TRUE,
¥ = 0.0
X e X ey,
CAMLL PLOTIXY,=Y)
10 CONT INUE
6o 10 813
WRITE(H, 0120 LUAKA NSY,LMAZS . NSY2
812 FORMATLIHI,® JOB 1S TERMINATED lf(l\:Sl DIN(NSIONS OF Sy O sy
1 ARE LESS THAN MEQUIRED BY LMAX . UE OF DIMENSION N FON
ZMATRIX  SYAN,0)  SHOULD BE *.13./ uwt SPECLFIED (S0, 2x,18,77.°
3 YALUE OF DIMENSION A FOR WATAIX  $YZUM, 3} SnOULD BE *.63,7,'
4 VALUE SPECIFIED IS *,33)
G0 TO 013
814 WPITENL,815) N NDIN, N, JOLN
815 FORMAT|IN1,® JOB TEMMINGTED BECAUSE BANGWIUTH DA OROEA OF Xald|x
L CSYM IS GREATER THAN SPECIFIED',//,* VALUE FOR YHE OADER N Fum
2 THE WATAIX  CSYRIN,®)  SHOULO BE *o13,/," VALUE SPECIFIED IS *,13
3077, % VALUE FDR Tit OIMENSTON(BANDWIDTHI = OF MATRIX CSYm(h,m1
4 SHOULO BE f,13.7,% VALUE SPECIFIED 1S ', 1))
#13 IFUXPLEND) CALL PLTEND
STOP

~

END
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SUBALUTING CSGLEsoamP, 101 RsJOIM N R SYTU )
IMPLICHT REaL 86 4ona00d)

SvedOuTInE odul  TRANSFORRS, BY A MERIES UF COMPLEX

AL EL BLYATIONS, AN % 8Y W (CHPLEX SANO WATREX, 4, OF
BahG @iD¥e -] INTO & cr-uu SYMRETALC TRIDIAGONAL
BaTRIN, ¥ o TRANIPOSEIR)

ERTESING Tre JUGROUTENE, 441,00 CChTAIN Tat  HTn
STAWCNAL LLENENY ANE  ALL, 4030 CONTAINS TmE  JTn
PCERENT raCn TnE O14GINAL I Y€ ITh ROW. K 1% tnt
VENGTI 06 Tk COLUANS OF 4, 4ND W 15 TnE rsLF BAND
UL TR N

LeAvine TNE SUBRLUTINE  AL1,10 NS ThE DIAGONAL
ELEMERTY ARG BLL,J)  CUNTAINS THE NEw OFF -0 1AGONSL
CLERERTS CROERED AS lol(.

G ERTEAING Tnt VECT B 8 POTAYED 13 IN  Amp, AT FXIT
nP (LNTAINS ThE !n'll(ﬂ vECTOR,

cembLgnele Nwl-.a:lm.t-’u umu.
1 8e &o 55 344 ColmyC ve
UINENSICH RGED)

LUVIVALENCE 6,00

D
102 LJu-I 140w
» Ghe X

&

00

v $u"t" DoeC! AAILIN K 10) 1 eSQTOL

ETARTIL S P D‘I”“‘I'Oﬂlusﬁluﬁlliil

e m -7
Eain Pa3s Trbdubn TS LOOP will OESYROY 4 SEV OF OFF-
GunaL ELEFENTS  AQT.NQN
00 30 Lel AN
[T
M

Ao Nt
This sv-unul snt CLRRUTATICH WHEN THE 6ANO [S LAKGER
Tran TnE natw
LLALLI 113 20
thkﬂ ,433 "l‘rucl TNIS DE.TROYS OME OFF~0L1ALONSL ELENENT
"e)

™ FiASY A“ THeGUGH Tnls LCOP DESTROYS an on-nlmonu
FUEWEAY  A(K. N0}  AND unvu ANOTHER ELEMENT © THE
SACUB1 BOTATION OF COLUMN AKD SDWS §  anC  Iel.
SubiFuuEnt 223565 Dl‘YIDY THE ELENMENT G AND CREATE
A Trds WNTIL TRE LAST PASS wHICh DESTAOYS wITwOUT
CHeaTiv,
o s .;-u.un.u-
Il(;-lb .l
L 1149 ﬂ“ = 3ATCLE 15,413,080
W s "1J.N‘|I“J~NG
(14
«0 I'IIGIIi"l’lﬁ(ll"l'“"&"?b 15:18.70
10 “84=11831 /G
lhlll f|vl Sll'llllﬂs CONPUTE THE CORKECT SNt 5 AND
Cosing C.

» Sl * 1.08701.00 ¢
é * (CSORTESN)
s

3

Ca o (o0
(3 ('\
Te somm
VeesE TebEe snnuuvs 0TsTE  ame
TEAP o anp
aneily o c-u» - snnuhu
ARPLESLE o CoanPilel} o SOV
'Nllk FIVE STATERENTS KOTATE 'hf CROSS ELEMENTS
Ny

. » Caey
801,20 = (Sodu=v) » (Cx-SX} lhll

6% Il et =1

ThIS LOGP TRANSFORRS THE APPROPRIATE COLUMNS

uoe atla L)
sy
SL1x En) o Loy - oy
S0 LK INeL) « o0 » Cov
TE 1F(J-K) 93,85,59
B B0 N0E & (ORI, NQ) - $%6
85 18 s PININA =L}

TFUIP=2)58,48,48
This LOOP TASNIFORNS THE APPROPFIATE ADwS

+leln)

0 6 i 'I'NGI
SelvhonQl » Coalfel N
1% CONTINUE
€Ny GF Tré LOOP OVER  Jo ONE QFF-DIAGUNAL ELEMEN!
CESTIED
15 CONTIRuE
EnC CF TrE LOGP OVES . ONE SEV OF OFF-DIAGONAL
ELERENTS DESTADYED.
30 CLMTINVE
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€ ENU UF TnE LEOP LVER L, W3 3ETS OF DFF-DLAGUNAL
€ ELEMENTS DESTADYEC
04

END
SURNLUTINE CukTOR, BeaRE, 101, N M, TOL, L lovaL )
THPLICEY MEALSBLa-H, 0« 1)

ccynt

COKT 13 INTENDED YU PRODUCE THE EICENVALUE UF 4 Cumblin
SYMMEYRIC 19UT ntPAITIAN TRIDIAGUNAL MATALE BY JTERATIVE
WE TPANSHORPS aS DESCRIBED IN wILKINSCN 'Trt MLGEBRAIC
ELuFNVALUE PROBLENY | P 563,

ENTERENG TP SUBROUTENE TWE 4RRAY & OF DINENSION N
CUNTAINS Tre O1A0NAL ELERENTS, 8 Tht OFF-DJAG
BLEMENTS, Tnt VECTOR TC BE ADTATED 15 aMP, w {5 Vnt
CENENSICN OF Tnf WATRIX ANU THE LENGTR OF &

ITEPATICN 4RE CONYINUED UNTIL aLi OFF~0)ac AL uiucnvs
mAVE BEEN RECUCEC TO LESS TMaN  STOLY TN MAGNITUDI

M ES TnE RANIAUM NUMBER OF JTERATIONS ALLM(D PER
EICERVALUE, P20 HAS ALWAYS BFEN MORE Tnan SUFEICIENT.
ThE NUNBER OF TTEGAYICNS AFQUIRED MaY BE LEOUCED 1
ACCURSTE ESTINATES OF TnE EIGENVALUES ALREADY WNCWN.
TRESE INITIAL GUESSES SHOULD OF PLACED IN TnE AY
TEIGYAL® o 1F MO GUESSES ARE FURNLSHED, EIGVALIL)

SHOULD #E SET EuuaL TO & CCmPLER 2EFG, 10.00,0.00), IN

THE CALLING FROGRAR. COAT wilL GENEMATE 17 Oun GUESSES.

TrE WATAICES A,B,ANP, ARE TREATED A5 REAL ARRAYS OF
DIMENSILN Ne2 INSIOE ThE SUBFOUTINE. OUSSIDE THEY
ARE TRFATED AS CCMPLEX AMRAYS OF DINEMSICN W,
INTEGER rELL
DINENSICN Mll-llll.n‘lllhSN‘Z!.EIOV!LI“
CCmPLEN®LE
e mulvulncnu DF THE ARRAY  $8 10 THE LORPLER NUMBER
SC PERMITS YHE USE OF TuE COMPLEX SUUARE QUDT AGUTINE
CSuRT,
€QUIVALENCE LSC SMILY)
AR WEKL BE ThE UPPER LIMIT FOR Tet |TERAIION, M) wilL
SF VrE LOWER LIMIT aND BOTn mAY YARY BETWEEN JTERATIONS
X o Zen

AAARARRARARAAARAAAR,AAAA

an ane

Niwl
ThE TOLERAM E-=TrRAT [S, THE S1¢E TO weiln OFF-DISGONAL
ELEAENTS ARE REQUCED~-1S SET [N CORT ON THE BASIS OF
THE  ACAR OF TnE YREOIAGENAL NATREX.
1L » 0.00
GRALS o Ofuu'lkl
DO 200 x10e1,
asonuuuon-ozuuln'u-'.nruu 2.00%0SURTIBIX
c IOI *2 » BiK
L1Del e}
TOL = 1.0-159YOL/DSQRTY 3. DOPGAASSY
& smk AND SWI  CONTAIN THE JOTAL SnIEY

Ane

W T

SHE - G.DW
Skl o> 0.
¢ omu zu.nv ThE NUMRER OF LYERATIONS PER EIGENVALUE
%
€ IF A 55' OF PEIGVALS® 13 AVAILAGLE FOR USE AS INI'XIL
€ SHIFTS --1.E. 1F THE FIRST TEIGVAL' 1S NOT (0.
€ TPEN WE LSE TnE GUESSES [N "ETCVAL® AS SRIFTS I' Sl"lNG
€ 'mELL' EQUAL TO 101,
4531GK 3CC TO WELL
IFIDAISHlhvllllll'DAISIQIGVAlIle NE.U.00)ASSIGN 101
« 1O,
o 1o uul,uoo. on
C EACn MEW TTERATION BEGINS AT ThIS suvtuenv o a)
€ STAYEMENT 10) ~-wnilnEvER *nELL® IS

100 wexedl
€ TRESF SEVEM STATEMENTS SOLVE ThE TwO BY TwQ WATRIX IN
€ TnE LGnER LEFT CCANER AND LSE CNE RCOT AS TRE SHIFT
ATR » A(NXwL) ¢ BUNX-3
ATIsAINRE o AENA-2}
SHULIOATAGO2-ATINEY ~4 0001 AINX=L}PALNA=3)-AINX)SAINN-
[
1 BUINK«3IS0ZuBiNA-2}022)
SHEZIPZ.DOSATARATI=4 DOPLALNA-1ISAINA=ZIeAINXIPAINN=3)
¢ -
i <008 INA=3) OB (NK=2}}
OSQRTUSC)
TR=SHiL1eC, 500
STheqaT]-Su12))%0,500

EAINR-1)-STH, AINRI-STL)}
TENPO o COABS(DCHPLXLA(AX-1I=STTR, A(NXI=STTIN)
LFETENPO,GT.TENPE GO TO 102

$Th =

1F(& LGE. W) GO TO 999
STR o ELGVALINA-L) - $nk
STIsEIGYALINL)Y - $nl
102 1F{n.LE.M) GO YO 104
999 wRITE{o,1C34 N
103 FOANAT(26k CURT #AS NOT CONVEAGED IN(13,)in TERATIUNS

[N}
cati €Aty
€ TRESE TwD STATEMENTS INCREASE THE SHIFT bY Tnf
€ VEMPCAARY SHIFT
104 SFR o SR 0 S!l
Snb o Snbesy
< Tnt§ L0OF suuuus THE TENPORARY SHMIFT FPUM THE LiAGUNAL
€ ELEMEATS.
OC 20 §ed,Nx,2
SUL=1h @ AL=1)-5E0
20 8011 = Af1} =ST|
€ FRESE FOUR STATEFENTS SUPPLY INITIAL VALYES PUR Tnt
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e

e

~ e

~

e e e

~n

An AnAen

Annaa

ITERATLON,

Ule.00v
THIS LOOP COPPLETES (4t ITERATION, TeaT 1S, (A uh
TRANSFORN, | §S DJubi! TmE L IN TnE QTmsk CGeT O In

DO 10 l=ni hAs2
6 15 Tre :.nn h. WILRINSUN.
GR v AlL-1}
G1 = atir ~ ul
W18 Tek P IN WILKINSON.
PeCRoALi=1 b~ CLOACLI-CSAOEII=200CS LonEI-2)
GYeCIoatl-dleCRontl1-CS1obl1-3)-CSkoull-2)
TRLS BRANCH BYOU0S UNNECESSAKY COMPUTATION AT Tné N0
16 (FEI.EQ.NES GO TO 1C
SMEl} o QRes2-ylesZoiizlioe2-B(lise2
Ri21 =2,D00(uReyleBIL-112041))
SCs CDSQRTISCY
RN - SHIY)
Rl=SK(2)
TECLLEGNLE L0 TO 18
THESE TwO STATEMENTS FOTATE AN OFF-01AGUNAL ELEWENY
BC1-3) « SREAB-S|eR|
bil-2) sn-n-SI
1e k3 e3,00/¢R
THESE Tug snvu(uvs (uuuu THE NEw SINE FOR THE
JACCB) ROTATION,
SH o w(RRSBEI=1avBUL FORIbRS
S1e(PReBOI1-811-110RT)0RS
fHESE THC STDRE TnE PAODUCT OF Tht NEw SINE 4NO ThE OLD
COSINE,
CSh o (Megu=t 1v3]
€51 w CReSIaCTusP
THESE Thu COMPUTE Trt htw £OSIAE.
CRaiRASQAIR|SULI®RS
CledaRegl-RloUR) oRS
TRESE 31x CUPPLTE & wEW .
TR o« Gh v alield
T1eGleatle2)
SKA = SAes2-S1ee
5A0 = 2.00%sRes?
UR = SXAeTR-5K1e¥]
vieSxReTieSxieTh
TRESE TWO BUTATE TRE ULAGONAL ELEWENT,
All=1) = G& ¢ yk
A(t) o G 2 v
THESE NINE RUTATE  ane,
TAR o« AWPiE-1)
1s "
Tok = s¥eilel)
Tol o ampiiez)
AMPUE-1beTaROChoTalv(
A'l 1 = TalsCaeTane

Tonask -TBLes)
BlesarTanes
i Ch TaksSReTALOS
Annhn-lu'chu"cl Taesa-Tanes)
10 CCNTEAGE
Tnis ENOS CNE LTERATICN.
TRESE Tl COMPUTE THE LAST OFF-0IAGUNAL ELEWENT,
B(Nr-3) v SReQP «S]eQl
ELNA-2} » SKeQleS[eQR
TRESE ThO CONPUTE THE LAST O1SGONAL ELENENT
AENR=}) o G
Atnx)
AT THIS POINT WE BEGEN CnECKING UPwakD TrkUUGH Tuk OFF-
unacuu ELERENTS TO FIND THOSE LESS ThAN TOL,
o5 [Ten.
n-fst 'nau STATFMENTS CONSTITUTE AN EFFECTIVE BACAWARD
100
20 n- 1T
TS 1008 (s LEFT wrEN AN ELEMENT LESS TAN  TOL 1§
FCUND.
1F108BSEBLIY=11) » LABSIBIITIN.LELTOLY GO YO O
1F15T-M10 160,100, 30
16 NC QFF-CLAGCNAL ELENENY LESS Tran TOU  AKE FUUND, WE
PLUFURM SNOIRER |TERATION, -
TaiS CONDLTICNAL BRANCHES aCCUFUIMG TU wntlhEn Trt
PATRIX [SOLATED BY THE SMALL OFF~DLsGONAL ELEMENT 15 OF
DIMENSLLA (NE, Tud, Ok GREATER THAN TwD
40 IF{NX=1T+4) 50,80,70
THESE TwD STATEMENTS EXATHACT ThE ubtuuwe OF & UNE BY
ONE MATRIK, AODING BACK THE SMIF
53 AUNA=1} & ALAN-1) ¢ SPR
ALNR) & SUNK) ¢ SHI
TrlS CECHEASES YrE SIZt OF THE PORTJUN OF Trt WATRIX
ufuv(n lv LATER ITERATIONS.

'nIS I(S('S TrE JFERATICN COUNTEN,
Aeo

6C 10
IRIS SECTICN EXTRALTS THE EIGENYALUE FAON & Twd 8Y Two
MATAIX SECTIUN wnlln naS BECCME 1SOLATED FRUM THE REST,
IT ALSO PERFORMS THE COFRESPUNGING ROTAVIGNS LN AWP,
Tre FIAAY TWENTY-NINE STATEMENTS COMPUTE TnéE PRUPER
VALUES FOR ThE SINE AND COSINE.
20 ALRa~EiNa-3)
Bira=2)
C.50COTALNR=3) = A(ha=1t)
= 0.500 -2
SPLL) = aLR -anfee2
SMI2) w2.DOCIALROALLehNRRANT)
SC = COSURTUSC)
ANReSmiL|
ANia SPLY)
TOR « smk o ANN

2-4L

~n

~ee

B L L L L Tt

Tl = arleany
bo stk AR

TBIeani-aw|
S1G o 1.ute
INIS BRANCE Cnlustd Trk kyo? OF Tre dAPCTCITLY M6 LD
CUADRATIL Su THE CNSINE naS Int swuEn 2B50LUTE VaLUE,
TFUTAK®OZoTa w02, 03 Tohooselnines) Ly 10 ¢S
Tk o TER
TAl « 181
S16 e ~d.uy
TREST L34 COPPUTE Tak CLSINE.

NITAL)oT bk
SHIZ) @ LANKOTa|=ANL®TAN)OIbN
SC o COMNTUSCH
Chasmi))
1 e skt

TRESE FIVE CUNPUTE Twt SENE.
Tah o aANAe peL)
Tateaningl
TER=0,500/{TaRev2eTaloe2)
SKeSTLAtTARALRoTATOALE I QTER
She SlusiTakeaLl-aLhoTaldoTeh

TRESE SIATELh STORE LATA NEEGEC Ih Yrb PUTATICN OF T

AT A ELEMENTS,

. A(hx-3}

LILIte]

Na-1)

hx)

TCheBINX- 1)

TUleb(nR=2)

[T L LT

LEL = 2.pGeCRSC)

SkFeshes2-glae7

SAL = 2,UCwSAes]
CSheCuesh-C st
CSlathesiaClosk
Thel s6~ 2N
The CXI=52F
Uk v 2.00%(TCRO(SR ~ FLlelbay
UL+ 2.60eITCUSCSA + TCARCSE)
ThESt FOUl BUYATE THe TIAGONAL TLumENFS
BUNR-3) oTARSCXR-FA(OCALoTEr oSRR-TEIOSdImuhesHN
AINA=Z)aTAROCATOTATOCARSTH o al e BloSaN-UleSH]
AINA-l)aTAnOSAR-Ta AfefpheCxkr=TnloCalouke Sk
ALNAL sTaReSxToTaloSaReTonelaj e TRl RAYYIoSn]
TrESE Tmb ROTATE Tuk UFF-Dlauchal ELEMEN)S
BINA~3) ® 2. 000 ANASCSR-AnIoLSI)sTChOTM-T10T]
h‘hl-?l 4 2,000 RMHOCSTeami®lSni » ICHaT[oTCotp
Ton
ThE St klh( RCTATE  ANP
NOTICE Tral Tmt SENSE u“ BOTATION IS uPFLYITE TO Ynad
OF Tr§ FIRS) ADTATHUN,
VaReanp(L-1}
Talwarilli
FhReami (19} )
Teleanrije2)
ARFil=1) o TakeCh-TalOCi-ToreskeTBles]
APl inTalo(APTAROLI-TBIOSk-TRH®S)
ArPIleLte1Pholh-TUloC loTohosucTaloy]
AMP(1o2)aThIO(ReTRROCIoTATO R ANDS|
TrlS RESETS TmE 1VERAVICA (CUNT,

"y
THIS CHCREASES Trk STLE OF Trd PURTICN UF Tni mATK(X
AFTECTED BY TnE LATEK ITERATIONS,

AXnRR-4

L0 TL ¥0
THES STATEMENT 1S AEaLrEG wrEn Tnt PUATION OF Tt malula
USCLATED IS GREATER TnaN Vw0 BY Tmu. 11 CHANGES ThE
LOnER LIRST OF Tng JTERATILN SO Tmal uhiy ThiS POKYIun
WL BE AFFECTEL BY SUBSEGUENT KUTATIUNS ONTIL ALL ITS
EICENALUES SME FLUNL,
Tu NiajTe
TrEs STATEMENT TRANSEERY TO Tt otulnwing ub ANUTHER
ITERRTILN,

GCTD mELL b budabol)
fo0s SEATCRENT J§ KESCAED AFTew tldngh UNE Ok T
E1utnyBLUES FAVE JUST BEEN FUUND. IT THANSFERY 1F 4Ll
Tre ICENVALUES IN ThiS PLKTILN UF 1n€ MAYRIX wAVE Bftn
FLUND,
EO LFINALLT.A() WG YO 90
THIS bhANCr TRANSFEAS ACCUROING TL wntTrE® DNE  TwU, UF
PURE ETUENVALUES KEMAIN TO BE FUUNL LN TWIS PORTION.
85 JHina-NE~2) 50,80,85
INtS CUNGETIONAL §S REACKED wekt Avy Trb TIGENVALUES IN
TnlS FURTICN UF TnE MATRIR nAvE BEEN FOUND. 1Y RETURNS {F
Trds 45 Tt LAST PUKTION UF ThE maTasn
SG LEINILEG.20 RETukn
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