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The Fourier transform spectra of the free induction decays from our small tipping
angle pulsed NMR experiments in spin polarized atomic hydrogen are chamterizef by a
number of sharp resonances superimposed on an inhomogeneously broadened lineshape.
The complex nature of the spectra makes quantitative analysis of the individual spin wave
modes difficult, in particular hindering the extraction of damping factors and relative
phases. We describe an ap]i)licaﬁon of a time domain fitting procedure based on a linear
least squares analysis using linear prediction and singular value decomposition which yields
numerical results that are compared directly to theoretical simulations.

INTRODUCTION

To date the primary technique used in the analysis of the spin wave modes in the free
induction decays from our pulsed NMR experiments has been through Fourier analysis of
the sampled and digitized time domain signals. A quantitative analysis of the frequency
spectrum is difficult because of the overlap between the individual modes. In the past the
analysis has been accomplished by fitting the experimental results to spectra generated
from an analytic solution of the equations of motion which govern spin transport in the sys-
tem [1]. However, the sensitivity of these fits to the adjustable parameters in the analytic
solution is not sufficient to allow quantitative comparison to theoretical values for all of
these parameters. In this report we describe the application of a time domain spectral de-
composition technique [2,3] to aid in the analysis of the spin wave modes in our experiments.

METHOD

The method is based on a least squares fitting of the “wo orthogonal components
of the time domain signal to a series of exponentially damped sinusoids, allowing the
amplitude, frequency, damping and phase of each harmonic component to be parameters
in the procedure. The fitting is linearized by use of a linear predictive (LP) method
which formulates the problem as a matrix equation that is solved by a singular value
decomposition (SVD). The stability of the fitting technique is enhanced by eliminating
some of the singular values, an approach which assumes that the spectrum is composed
of a finite number of harmonic modes that are distinguishable from the spectral content
of the noise. In practice, the technique involves a geometric representation of the singular
values which describe the spectral content of the signal so that a sensible cutoff can be
determined for signal data as compared to noise. The final results are used to reconstruct
a time domain signal which is directly compared to the actual signal. The process is then
iterated with different cutoffs in order to refine the details of the fit.
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The output from the fit is a table of frequencies, amplitudes, widths and phases of
the individual complex Lorentsian components of the signal. The technique has a number
of features which cannot easily be achieved with Fourier transformation and fitting in the
frequency domain. The technique does not require the signal record to start at t=0 and
continue until the signal disappears into the noise. In particular, an arbitrary *time slice’ of
the signal can be taken from the free induction decay and analyzed for its spectral content
without the distortions associated with frequency transformation of a truncated signal.

One of the initial assumptions in the technique is that the spectral components of the
signal are Lorentsian in nature. Because this family of signals forms a complete basis set,
the technique will by definition be able to fit any arbitrary signal. At first this may seem to
place severe restriction on the signals which are suitable for this technique. However, unless
the individual components of the signal are extremely close in frequency as compared to
their widths, we find that we can reliably extract the details of the individual modes.
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Figure 1. The free induction decay for pulsed NMR experiment in polarized atomic

hydrogen. Superimposed on the signal is the signal reconstructed from the LPSVD fit to

the data as well as the residual signal formed by subtracting the fit from the initial data.
The residual signal has been scaled up in amplitude by 4 to enhance detail.

APPLICATION EXAMPLE

In order to assess the usefulness and accuracy of this method in the analysis of our
NMR data we have started by fitting the free induction decays generated by a modeling
program. The program is based on the analytic solution of the linearized equations of
motion for our system. The results of the program have been compared to experimental
results and shown to accurately represent the data {1]. The computer results were chosen
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because the parameters which describe the individual modes in the spectra are accurately
known and can be directly compared with the results of the LPSVD fit.

Figure 1 shows a comparison between a free induction decay of a typical first iteration
fit and the starting signal; Figure 2 shows a comparison of the Fourier spectra for the same
run. The numerical results of the first 7 spectral components are shown in Table 1 and are
compared to the known values for the input signal. In this example the point spacing in
the initial signal is 2 usec and the fit was performed using only the first 250 points. As a
starting point the routine was allowed to use up to 80 spectral components in fitting, only
15 of which were allowed to be considered significant (i.e. the remaining terms were to
be attributed to spectral content of the noise). The comparison of the frequency spectra
shows a striking agreement between the starting signal and the fit, an agreement which is
confirmed in the residual signal formed by a subtraction of the starting time domain signal
from the signal reconstructed from the fitting results.
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Figure 3. The fourier spectra for the example shown in Figure 1, as described in
text. Thecontinuoualineisthelpectnoftheinitla.lsimaland the crosses are results of
the LPSVD fit.

The results shown in Table 1 characterize a number of features of the application of
LPSVD to the spin wave problem. The fit to the first and most prominent peaks is very
good for all parameters of each component. The first major discrepancy is seen in the
phase of the third mode, the mode which corresponds to the shoulder on the third clearly
resolved peak in the frequency spectrum. In general, the first indication of a resolution
problem in the fit of a particular mode is consistently reflected in the phase and width.
The amplitudes of the components in the fit deviate more from the known values for the
higher order modes. This effect is due to the increasing overlap of the higher modes with
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their neighbors and the background lineshape. The fit also produces results not shown
in Table 1 which correspond to the broad relatively flat portion on the right side of the
spectrum. The fitting parameters for this portion of the spectrum bear little resemblence
to the known components in the initial signal. The character of these components in the
fit reflects an attempt to fit the broad flat region with a minimum number of broad flat
Lorentsians and therefore neglects the underlying structure of many closely spaced modes.

Frequency (kH,) | Inverse Linewidth Amplitude |Phase (degrees)
T, (msec)
lpsvd | initial |lpsvd| initial Ipsvd | initial {1psvd | initial
fit signal fit signal fit |signal| fit | signal
4.626 4.627 2.148 2.152 4.399] 4.391 | 9.46 9.58

4.009 4.017 1.184 1.198 3.108 | 3.064 | 6.73 11.2
3.653 3.644 0.77 1.02 402 | 2,50 | 27.3 8

3.460 .86 1.33 7.31
3.246 3.264 0.79 97 6.2 3.7 |9.73 9.6
3.1 .87 2.8 0.6

2.690 2.698 1.51 0.81 089 | 1.6 |11.2 ]| -20.1

2.656 0.72 0.26 11.2
2.30 0.70 0.27 9.6
2.19 2.28 0.77 0.65 0.31 | 0.21 | -48 6.1
2.10 0.58 0.12 7.3

1.509 1.483 0.205 0.280 031} 026 | 6.2 9.6

Table. Comparison between spectral content of initial signal and results of LPSVD
fit for an NMR free induction decay in spin polarized atomic hydrogen. Only the first
seven dominant modes are shown.

CONCLUSIONS

The use of the LPSVD technique in the analysis of spin wave spectra in spin polarized
atomic hydrogen will play an important sole in a number of aspects of the experimental
work. In the linear regime, thetechniqnecanbensedtoachieveadetaﬂodﬂttothe
individual modes. The results can then be compared to analytic solutions of the equations
of motion as well as being used as initial conditions for & nonlinear least squares fit of the
frequency spectra. In spin wave experiments in the nonlinear regime there have been a
number of recent observations which indicate that the assessment of the relative phase of
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individual components will play an important role in isolation of the nonlinear modes of

the system. Figure 3 shows an example of a fit to one of the nonlinear Fourier spectra

discussed in reference 4, this volume. Although there is good reason to expect that the

nonlinear modes may be extremely non-Lorentsian in nature, this technique can be used

to provide an measure of phase variation in the spectral content as well as providing a

means of extracting the phases of any linear modes that may be present.
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Figure 3. Fourier spectrum for large tipping angle pulsed NMR experiment which
examines nonlinear effects on spin wave modes in spin polarized atomic hydrogen. The
continuous line is the transform of the initial signal and the crosses are results from LPSVD
fit.
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