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32 THEORY OF ESR SATURATION RECOVERY IN LIQUIDS
1 INTRODUCTION

This chapter is based on the original paper published in 1974, reference 1.
It was motivated by the then growing interest in pulsed electron spin
resonance (ESR) experiments on free radicals in liquids and related
media, in particular saturation recovery-type experiments.? Since then the
interest has greatly expanded, as is evidenced by this book. The basis of
our theory of time-resolved ESR experiments is a natural outgrowth of
our theory of steady-state saturation and multiple resonance behavior.
This theory has now been summarized in a chapter in another book, and
frequent reference is made to it (reference 3). In fact, it was most
interesting to find that the steady-state saturation theory. which has been
developed in great detail, could readily be extended. with all its sophisti-
cation, to the case of time-dependent, or time-resolved, spectroscopy.

We emphasize saturation recovery in this chapter, but we also include
some comments on pulsed electron-electron double resonance
(ELDOR),™ which, in principle, may be thought of as a saturation
recovery, but with observation at a frequency displaced from the high-
power pulse frequency. In later chapters we see how such methods may
be extended to free-induction decay and echo-type experiments for the
free-radical systems, where numerical techniques are useful.* We em-
phasize analytical techniques in the present chapter. This is possible
because one finds that over a wide range of types of systems, the
saturation recovery experiment is simply interpreted. We, however, give
the general expressions that are amenable to computer methods already
developed in connection with steady-state problems.’

Considerable theoretical and experimental work has focused on ESR
spectra in the slow-tumbling region. Such work has (1) extended the
range of motional reorientation times over which accurate analyses can be
made of these motions and (2) demonstrated that more microscopic
features of the motion (i.e., deviations from Brownian motion) could be
studied.”* We also outline how the original steady-state theory may
readily be extended to time-resolved experiments with emphasis again on
slow-motional saturation recovery (and ELDOR-type) experiments.
Again, because of a number of formal similarities between a motional
narrowing theory and a slow motional theory, we are able to cast both in
a single general framework. The analogies that are then established allow
us to clarify the more complex slow-motional analysis.

2 GENERAL FORMULATION

We start with the usual density-matrix equation of motion for the



2 GENERAL FORMULATION 3

spin-density matrix***, a(t):
o =—i(H5+e(t) +iR) o —0.), 1

where ¥, is the zero-order Hamiltonian, e(t) is the interaction with the
radiation field(s), R is the relaxation matrix, o, is the time-independent
equilibrium value of o(t), and the superscnpt z-implies that for two
operators A and B, A“B=[A,B]. One speaks of A= as the
superoperator form of the operator A.

This is the usual expression one obtains for the motional narrowing
region, where rotational modulation of the perturbing Hamiltonian 3¢,(0)
is sufficiently rapid that |3,(Q)°| 7}« I, where 75 is the rotational correla-
tion time. The refaxation matrix R is made up from terms guadratic in
matrix elements of #,({}), and it contains the linewidths, or in a time-
resolved experiment the matrix of the T,’s, as well as the transition
probabilities for relaxation from nonequilibrium population distributions.
It should be clcar. from the form of Eq. (1), that to have stable
cxponcntial relaxation. it must be true that the real part of the elements
of R be negative (i.c., Re R <0). The explicit appearance of e, in Eq.
(1) is part of a high-temperature approximation such that

e ~AX,, /lT/Tr{e—h*"/lT}

Ueq
L _Z'Z@] Q)
Al T )

where A is the total number of spin eigenstates and k is Boltzmann’s
constant. More generally, we may write a stochastic Liouville expression
for o(, t) wherein the assumption of motional narrowing need not be
made.Z-.SJ.R

(. )= —i(H5+e(t)"+,(()"+iR - iTp)a(Q, ) —ao(D)].  (3)

Here I'y is the Markov operator for the rotational tumbling that is
modulating #,(Q))", R’ is that part of the relaxation matrix that is
orientation independent. Note that the expression is written for a o({}, 1),
which is both a spin-density operator and a classical probability function
in the values of the random variables 2. One may recover the ordinary
spin-density matrix by averaging over orientations

o) = f dQa(Q, P (Q) = (Po( D) (€2, 1) [Py D), @)

where P_(f1) is the equilibrium distribution of orientations. and the
convenient bra-ket notation is introduced. When |%,(Q)}/|l,| « 1 one may
recover the motional narrowing limit from Eq. (3) [i.e.. one obtains Eq.
(1) for otn)
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We note that the Markov operator T';, has associated with it the
expression

ai‘ P(Q, 1) =-T,P(02. 1), (5a)

where P(, 1) is the probability density of finding € at a particular value
at time t. The process is assumed to be stationary, so that I, is time
independent and we have

MoP. (@) =0. (5b)

We first study the general approach to the time-dependent solution of
Eq. (1): then we generalize to cover Eq. (3). We now introduce for the
relevant off-diagonal elements of o(1):

o (=Y e™Z(ny, (6a)

nooox

and
Z(ny" =Z(r)"‘"+iZ(t)‘-"’" (6b)

for the A;th (ESR) transition. In our notation the matrix element o,
where a and a’ differ by at least the value of electron spin quantum
number M, =+, may be written as a2 =0, correspondmg to the A;th
(ESR) transition. The states A* are the M, = +} states; and A and )«'
have the same nuclear configuration, if one has an allowed ESR transn-
tion, or they have different nuclear configurations, if one has a forbidden
ESR transition. The matrix elements o, (t) are then Fourier-analyzed in
harmonics of the frequency w of the applied radiation field. The Z(r)""’
and Z"(1){’ are the real and imaginary parts, respectively, of VA {m
and oorrespond to the dispersive and absorptive modes of a resonant
signal.
Similarly, for the diagonal elements, we can let

[o() — o b= x(0), , )

and Fourier-analyze the deviations of the diagonal elements of o(t) from
their equilibrium values. In the present chapter we are only interested irf
the case of the n =0 Fourier component of Eq. (7) representing the actual
population deviations (i.e., recall that the diagonal elements o, gives the
population in state a). Also in Eq. (6a,b) we are only interested in
the n =1 case, corresponding to the Fourier component rotating with
the radiation field.

One can now take matrix elcments of Eq. (1) for a general multilevel
spin system. The methods have been summarized in reference 3. The
result is a set of coupled lincar differential equations which may be neatly
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arranged in matrix notation. That is, we have the matrix differential
equation

Z(1n) R-iK o0 +id] [z iQ
220l =| 0 R+iK -id| |Z*0)| + |-iQ]. 8)
x(1) +idw  —id" -W) [y 0

The vector Z(1) is a vector defined in the M-dimensional “space’ of all
the induced transitions with elements Z(1),, whereas x(f) is a vector
defined in the A-dimensional “space™ of all eigenstates with elements
Xa- Z*(1) is the complex conjugate of Z(r). The matrix W is the transition
probability matrix. whose aBth clement for a# B is just minus the
transition probability from state B to state a. It is defined in “eigenstate
space™ of dimension A. The width matrix R contains what in a steady-
state experiment are the (coupled) widths of all the induced transitions; in
a time-resolved experiment they represent the (coupled)-exponential
decays of the off-diagonal density matrix clements. It is defined in
“'transition space.” The coherence matrix K defined in “transition space”
has as its A;th diagonal element the deviation of the Larmor frequency of
the A;th transition from the applied (near)-resonant radiation field. The
vector Q, defined in *‘transition space,” results from the driving terms of
the radiation field., and is nonzero only for allowed transitions. The
transition-moment matrix d and its transpose d* are in general not square
matrices. The rows of d are labeled according to transition space, whereas
its columns are labeled according to eigenstate space. Thus it is an M X A
rectangular matrix. Its elements represent the way pairs of eigenstates
belonging to the A;th transition are coupled by the transitions induced by
the radiation field(s). Detailed instructions for writing these matrices
down are given in reference 3, and we illustrate with the following
examples.

In the case of a simple two-level system between states a — (M, =})
and b — (M, = —}) one has K — Aw=w — wy where  is the frequency of
the applied radiation field and o, is the Larmor frequency for the
transition. Also —R — T3', W is the 2 %2 matrix:

W, +W,,

involving the transition probability from state a to b, W,_, and that from
state b to a. W,,.. They are equal in the high-temperature approximation.
Also d is the 1x2 matrix:

(—d, +d),
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where d =1v,B,. This arises from the radiation term

he(t)=1hvy B,[S.e ™ +S_e***), (9a)
which is the interaction of the spin S = +1 with a rotating field:
B, = B, (i cos wt +j sin wt). (9b)

Finally, Q— quwqd with q = #/2kT in this case.
If we now transform our expressions using the definitions

1
=—=(x,xx.), 10
X 7% (xs £x-) (10)

for this two-level system, then we obtain

2@ -T;'-i Aw 0 -V2id o
z*n | 0 T.'+idw ~2id 0
x (1) “V2id V2id -T{' 0
x (0 0 0 0 0
Z(1) 1
E
x| 27O sigwed |71, a1
x~(0 0
x* (0 0

where T;'=2W,,.

We first of all see that x*(r) is uncoupled to the other density-matrix
elements and is time independent. This is because it represents the
conservation of probability condition, which more generally is

Tro=Tro,=1, (12a)
or equivalently, Trx =Tro— 0] =0. (12b)
The remaining portion of Eq. (11) involves a 3Xx3 symmetric matrix,
which, in fact. is nothing more than the well-known Bloch equations®
describing a single-line spectrum. We need only make the further identifi-
cations

2d=w,=v.B,, Z'=ReZ—M, Z'=lmZ-M.,.

where M, and M, are the x and y components of magnetization in the
rotating frame. whereas (1/v2)x — (M_,— M.), where M., is the equilib-
rium value of the magnetization and M, is its z-component. These Bloch
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equations may be solved by standard methods (e.g., Laplace trans-
forms).*®
We now return to the general Eq. (8). We wish to transform them in a
manner analogous to the type of transformation that led to the simplified
form of Eq. (11) for the simple two-level system. We can do that by
generalizing the definition Eq. (10) for each eigenstate pair x,- and x, -,
and defining new vectors )
T LX),
=7 (x+ £x-) (13)
where x, is the subvector of dimension A2 including all the Xa,- Thus

the veetors x ' are also of dimension A/2. This transformation leads to the
matrix equations

[Zn] [R-ik o VZid vzia][zn] [iQ]

ZHn 0 R+iK —v2id -v2id| |Z*©) -iQ

‘ = - — R + , (14)
X (1) V2id" —-V2id" -W - X (0 0

x(0 V2idT —V2id" Wt W | Ix*@ o |

where we have introduced the definitions
2d=d, -d_ (15a)
2d=d, +d_, (15b)

and the d, are defined by analogy to x,. That is, we may write d=
(d.,d.) (i.e., a partitioned matrix where d, represents the couplings to the
M, = + eigenstates and is of dimension M X A/2. Also we have

Zw = (w¢,+ + w—_—) _(w+,— + w—_+) (163)
2W=(W, . +W__+W, _+W_) (16b)
2W=(W, . -W_)+(W, _-W_)), (16¢)
where we have partitioned W according to the M, = =+ states as
w#_#wa-,—
W= (w_,w___)‘ (16d)

.

[Note that in reference 1 we used X(f)=+v2x (1) and x(0)=V2x*(1),
which led to a slightly more complex form of Eq. (11), but we use both
forms below]. The form of Eq. (14) and (16a—d) does indeed appear to be
more complex than Eq. (8). However, it is often the case that # = 0. This
will he exactly the case [cf. Eq. (16c) and below] when the matrix
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elements of W obey

wut.ax = wa:_a*, (17a)
wa:.ﬂ:t = wn¥‘ﬂ¥’ (]7b)

(where & and B represent any nuclear configurations and the =+ signs refer
to M,), which s a common situation.® We further assume that only
electron spin resonance (ESR) transitions are excited, in which case one
finds that d =0 [but for electron-nuclear double resonance (ENDOR)
d 0] and the x(1)* may now be decoupled from the relevant part of the
solution, that is Eq. (14) becomes

Zn] [R-iK 0 V2ida] [z iQ
Z*n|=| o R+iK -V2id| |Z*n| + |-iQ|. (18

-

x(0) [Vaide -v2idm -w | [y 0
Also we have from Eq. (16a) that

W=W, -W,_, (19)

since from Eq. (15a, b) and the fact that W is symmetric one has
W,_=W__,and W__=W,_ . Equation (18) is the natural generalization
for a multilevel spin system to the Bloch equations for a simple line. It is,
however, only valid provided that Eq. (17a) and (17b) are at least
approximately correct and that no nuclear magnetic resonance (NMR)
transitions are excited. If either or both of these conditions are not valid,
then one should use Eq. (18), which is of larger dimension (by the amount
of A/2). In either case one has a complex symmetric matrix, and one may
solve the general case on a computer by diagonalizing this matrix.® In Eq.
(8) there are one or more eigenvalues of zero corresponding to Eq. (12b)
for conservation of total probability, but this does not appear in Eq. (14).

Note that since the Z” elements are typically detected, we need the
unitary transformation

- a1 ) - - - -
VA4 —_1 —1 0 Zz Y A
V22 ’—
V2 liz I 1 : 1 0| |z* z* (20)
-~ i "’ = - -= =a ]
V2 V2
|
— Y 0 0 1 X X
21 L B I
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which transforms Eq. (18) into

Z'() R -iK 0 Z() 0
iZ@0 |=|-iK R 2d|| iz | + liQ], 21
(2)—-I/2*—(‘) 0 Zialr _w (2)*1/2x"(¢) 0

with the new symmetric matrix on the right-hand side of Eq. (21).

We note that the steady-state solutions to Eq. (8) or (18) may be
calculated by the methods reviewed in reference 5. In particular, the form
of Eq. (8) or (18) is

Am()=ILm+ Q. (22)
Then the steady-state solution m™ is formally given as
m*=-L"'Q (23)

(ignoring for the moment the singularity of the W matrix of Eq (8), cf.
reference 3). If we define

AZ(O=Z(1)~Z*, and so on, (24)
or

Am(t)=m(t)—m™, (25)
then Eq. (22) may be written in terms of these deviations from steady-
state value as

Amr(t) =LAm(¢) (26a)

Am(t) = " Am(0), (26b)

SO as t— oo, Am(t)— 0.
It is shown in reference 3 that the solution of Eq. (23) may be
simplified in terms of smaller submatrices as

Z’=M'(-R™HQ (27a)
Z'=(-R HKZ" (27b)
dX+dx=-8Z", T (279)
where
M=1+R'KP+(-R™)S. 27d)

Since we are assuming that d=0 (see above), this means that Eq. (27d)
simplifies to

dx = -SZ’, (27¢)

0 THEORY OF ESR SATURATION RECOVERY IN LIQUIDS

and the saturation matrix S simplifies to
S = 4d(W) & (28)

(and recall that W is nonsingular). It is then only necessary to invert the
real symmetric matrices S, R, and then M to obtain the steady-state
solutions. We must proceed differently for convenient solutions to the
time-dependent case.

We now particularize the solutions to saturation recovery-type experi-
ments, such that observations are made only for small d. [1f we were to
consider free-induction decay and spin-echo experiments, then we would
be looking for solutions for d =0 after the spins have been prepared by a
pulse (90° and/or 180°) of short enough duration that spin relaxation is
not yet operative.] We thus wish to develop for present purposes a
perturbation scheme to lowest order in d. For this purpose the matrix of
Eq. (18) is more satisfactory than that of Eq. (21), since it lacks the two
degenerate submatrices (R) along the partitioned diagonal that appear in
Eq. (21). Note, however, that for K, =0 (i.e.. Ath line is on resonance), if
=R, =T,, =Ty}, then a triple degeneracy occurs in Eq. (21) with respect
to the Ath transition that is lifted by d, # 0. We must consider the case of
T, . # T, separately from that for T,, =T, ,. We develop the perturba-
tion scheme by a generalization of the Van Vleck transformation proce-
dure.” We first introduce the partitioned matrices

R-iK 0 0 0 o 4
A=1 0 R+iK 0| (29) B=iv2|0 0 -dl
0 0 _w alr _alr 0
(29b)
where L = A +B and consider a vector m [cf. Eq. (22)] and solve for
OAO '(Om)+OB0 '(Om) = (A +b)m’, (30)

where the partitioned matrix B is transformed approximately to be block
diagonal [i.e., partitioned matrices along the diagonal as is A in eq. (29a)]
by the (complex) orthogonal transformation O to lowest order in d. That
is, we let

m =e"m=(1+is)m, @31)
where s is found to be the (complex) antisymmetric operator

s=+i(A")"'B, (32)
and

b=i!B's=-!B’[(A") 'B]. (33)
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That is
0 0 -(A**)"'V2d
<= 0 0 (A<4)yWV2d | . (39
—(A%)1V2d (Al V2 0

[Our present use of the symbols s and m replaces § and M in reference 1
in order not to have these symbols confused with the saturation and M
matrices; cf. Eq. (27).]

Here the inverse operator (A"*")"' for j, k = o, ¢, d may be conveniently
defined by the prescription

(A 'd= lim —I dr exp [—et]exp [Alr M exp [~Adr),

¥

and j=o or ¢ (35a)

(ALY 1A = tim — [ dr exp [—er]exp [A'T1d" exp [-A'r],
}

(),

j=o0 or c¢ (35b)
where

A'=R-iK; A“=R+iK=A"*  A%=-W, (36)

(The convergence factor ¢ >0 is always taken as large enough to guaran-
tee vanishing of the integrand as v —» o, and the limit is taken only after
preforming the integration.) Thus in a M-dimensional basis set a, b, . . . in
which A° (or A) is diagonal and an A/2 dimensional basis set a, B. . . in
which A? is diagonal, one has, for example

Bl _ 826048

o.d-\-1} = a - . . 7
(AT e = e = AT, = TR W, FiKo e7
Thus the expansion is in terms of
V24,
— «1, 37
l(—Raa ) - Wua + iKu)' 1 ( )
for any nonvanishing d,., or more simply for a simple line:
[(v2/2)e,| .
————ee & 37
T, — T, +i Aw| (37¢)

One finds, utilizing the fact that A’ are symmetric matrices, that

[(A=)"d]"=-[A") &) j=oc (37d)
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from which it follows that s is antisymmetric, as required. Also we have
c+C" —(C"+C% 0

b=| —(C+C"*) C*+C* 0 |, (38)
0 0 E+E"
where
C=d(A*")'d", (39a)
and . .
E=2d" Re[(A™*") 'MW (39b)

When the transformation of Eq. (18) is utilized, then in the basis of Z/,
iZ", (1/¥2)X" one has

0 0 ~i[Im(A"*) '}
s=2 0 0 ~[Re (A"*) '] |.
—i[lm(A"""\ l"‘u __[Re (Ad.u-)- 'H" 0
: (40)
whereas
0 2ilmC" 0
b=2|2iImC 2Re(C+C™ 0 | 41)
0 0 E+E"
Thus one may solve either Eq. (18) or (21) in the approximations used as
Aniv'(f) = (A +b) Am'(¢) (42a)
SO
Am'(1) =exp [+(A +Db)t] Am'(0), (42b)
and
Am'(t)=(1—is) exp [+(A +b)t](1+is)Am(0). (42¢)

Note that A +b given either by Eq. (29a) plus Eq. (38) [in the representa-
tion of Eq. (18)] or by wAu" plus Eq. (41) [in the representation of
Eq. (21)] have the eigenstate-pair space (represented by superscript d)
approximately uncoupled from the transition space (0 and ¢ superscripts)
so —W+(E+E") may be diagonalized separately. However,

[ R —i(l(—.-umc")]
~-i(K-4ImC) R+4Re(C+C™M

will in general couple Z' to Z. [ Alternatively, the coupling can be written
for Z and Z" from Eq. (29a) and Eq. (38).}
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We note here that it is always possible to choose basis sets a, b - - - for
transition space and a, 8 - - - for eigenstate-pair space such that d has a
simple structure with d,;=d,;5,, where | refers to the eigenstate pair
corresponding to the jth ESR transition. Several examples appear
below.*** However, this choice does not, in general, simultaneously
diagonalize A” and A“. In those cases where it does, and if di=d
independent of i, it then follows from the preceding definitions that
U? = U" (see below), C* = C and E" =E. Also the mixing of the Z and Z*
components by the terms in b is in general not easily simplified. This
mixing becomes important as the elements K;; — 0 representing exact
resonances.

2.1 Simple One-Line Case
We illustrate the preceding formalism for the simple one-line case, which

is otherwise well known. in preparation for the more complex cases given
below. In this case we have C=C", E=E" and

N 0 0 —-iAw
W —1 -1
§s= 3 Ty 3 0 0 (T2 "T| ) (433)
- +
(T2 =TV +80™ | A (T3 =T5Y 0
and
o? 0 ~iAw 0
b=—rF L —idw (T3'-T;Y 0
J-T')V +Aw?
(T_ 1 ) w 0 0 _(T;l_—r‘-l)

(43b)

in the Z', iZ", (l/JE)X’ representation. When we neglect terms of order
@(T3;'—T;"?+Aw?] compared to unity, one has

-T;' ~ildw 0
A+b=]|—-iAw -T;'+8 0 . (44)
0 0 -T;'-8
where
wi(T;'-T{"

§=

UT:'-T, )Y +Aw?]’ (44a)

The 2 x 2 submatrix may be diagonalized by the orthogonal transforma-
tion U

Uz[[]'a*].m [l_azll--lz_

[1-a.] " —[l-—a:']"”z ’ (45a)
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such that
ULA +bJU™" =['f; o ] (a5b)
where
a,= 6 ,/iT_;;-A_E)’ ' (45¢)
and

E,=-T."+5J22 V8 -1 30" (45d)

For |8%/Aw?’|« 1. that is. a line off resonance, one has complex eigen-
values of eq. (44) of A =-T.'+5/2Fi Aw corresponding to the eigen-
sotutions (1/v2)Z and (1/V2)Z* [cf. Eq. (29a)]; whereas for |§2/Aw?] > 1.
that is. a fine close to resonance. one has simple decaving solutions
A=-T3"' and ~T3'+35 for eigensolutions Z’ and iZ", respectively [cf. Eq.
(44)]. It then follows from the preceding equations that the complete
solution is

AZ'(D) e AZ'(0)
A ", . ",
| 2" =(1-isU" | e F' U1+ is) AZ™(0)
-— A —(') ~(Ty'+ A0 —_ -
JE X e N Ax™(0)

(46)

where only terms linear in s are kept. Some simple and well-known
limiting cases are'®

Case 1 Aw=0.

Then
—HT; - - _ 1
AZ"(')= e «T; B)Azn(0)+ W) (e"l[T, —Hl_e—'(T|l+b])_=A ()
_(T;'—ﬁ‘) 7% ),
47)
Case 2 Ti'»T7.
Then for +>T.'
" -, T, .rri-»al ! -
AZ"y=———e " — Ax (D) |. (48)
T, +Aw’ v2
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If we use conditions of partial saturation such that M, (0) = aM,, 0<a=<
1. with M,, the equilibrium magnetization. then

M, (0)=a Aww, T3M,

M, (0) = aw, .M,

M. (0)=aM,, (49)

and
AZ'(0)= AM,(0) = AwT, AM, (0) = AwT 2w, (a — DM,

AZ" ()= AM(0) = (a - Dw, ToM,
L Ay =AM.(0) =(a - M, (50)

Then for Case | we have

—(1—alw, LM,

AVATIE: Ty [Tile "1 —Trlehi-an, (s
z 1
whereas for Case 2 we have
—(1- s'M -
Az == T%TATT“E e e (52)

[Note that to achieve a (partial) saturation condition it is necessary to
apply a strong microwave field over a time t>T,, so the spins can
properly respond to the saturating field. This is of course different from
the use of 90° and 180° pulses in free-induction decay and spin-echo
experiments.”]

2.2 General Case for T,« T,

The preceding formalism permits the solution of a variety of situations
involving saturation recovery for which Eq. (46) is immediately
generalized. and the general expression of Eq. (8) or (18) may be used for
more general cases. We now, however, particularize our solutions to the
case for T,«T, or, more generally, |R|>[W|. This is a useful case,
especially in the slow-tumbling region, and also one for which some
relatively simple analytic solutions may be obtained even for spectra that
othcrwise appear complex. In this case we have from Eq. (18), (21), (29),
(400, and (41) that for )

[Rle>1, (53)

o |
AZ7(y=[Re(A™) '2d]e w'-—:Ax"(()). (54)

46 THEORY OF ESR SATURATION RECOVERY IN LIQUIDS

In Eq. (54) we have dropped the small correction E +E* of Eq. (44) to
W. In the simple line case, this is just the neglect of § of Eq. (44a)
compared to T, which is valid since for T;'>T;":

ol T, T*
Ol = g =i TiTE« 1 e

(where T37'=T;'-T7'). The last inequality is a consequence of the
no-saturation condition during the recovery. Now if U,, U, and U, are
the orthogonal transformations that diagonalize A®, A", and AY, respec-
tively, we may rewrite Eq. (54) as

AZ' ()~ ~[ dr{U exp U, (R- iK)U"]U,
)
+ U exp[rU (R+iK)U"JU.} dUY
. o 1
xexp [tU,(+WHUY] exp [U:,'(—WI)U:,']UJ —= Ax~(0).
- Ve

(56)

[The convergence factor has been dropped in Eq. (56) since |R|>|W]|
implies satisfactory behavior of the integrals.] Note, however, by the
functional properties U, =U,{R, —iK} and U. =U/R,+iK} it follows
that U, = U*. Then if we let

r—ik=U,(R-iK)UY, (57a)
and
w=U, (WU}, (57b)

Eq. (56) may be written more simply as

AZ(t)= —-rdf Re {Uy exp [r(r— ik]U, }(2d)UY

xexp (7 - Nw]U, —Jl—i Ax(0). (58)

We consider specific examples in the next section.

3 MOTIONAL NARROWING EXAMPLES
3.1 Well-Separated Hyperfine Lines (Nitroxide)

We first illustrate the application of our expression to a nitroxide ('*N) in
the motional narrowing region when the three Lorentzian hyperfine lines
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|0'0> |¢‘->
1 3
I~ ¢> = =>

Figure | Energy levels and uransitions for a nitroxide in high fields. Here § = jand I=1
and the notation i {M;.M,). The forbidden transitions are 4-9, and the allowed transitions
are 1-3.

are well separated. If we consider just pure electron spin-flip transitions
with rate W,; pure nuclear spin-flip transition rates, which arise from the
pseudosecular contributions of the electron-nuclear dipolar (END) in-
teractions. and are. for a spin I=1, given by 2W, (where detailed
expressions for W, are given in reference 3), and spin exchange with rate
wyp. we have

1+4b"+2b —-2b"-2b =-2b"
W_. =W _ =W,/ -2b"-2b 1+4b"+4b —=2b"-2b ]|. (59a)
-2b" -2b" 1+4b"+2b
and
W, =W__=W,21, (59b)

where we have introduced the dimensionless parameters b= W, /W, and
b" = wye/ AW.. Then from Eq. (19) we have

1+2b"+b  —-b"—b -b"
W=2W,| —b"-b 1+2b"+2b —b"—b |. (60)
~b" -b"—b 1+2b*+b
Now we may write (by symmetry considerations, see below)
[1 1 1]
V3 V3 V3
1 -1
U=|—= 0 —=|, 61
““lv2 T & (612)
1 -2 1
V6 V6 Vel
so that
1 0 0
w=2W10 1+3b"+b 0 . Y(61b)

v

0 0 1+3b"+3b
We also have

=R, =Ty'§,+(W,,-W,5,), (62)
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where the T%' give the purely secular contributions to the ith hyperfine
line and the terms involving transition probabilities add up to the Heisen-
berg uncertainty in lifetime contributions to the linewidths (cf. reference

3.
3. Also K.i=Aaw: 8, ©3)

and -d,;=iw, 5,;=14v.B,, (63a)

where j refers to the eigenstate pair associated with the jth transition.
For the general spectrum of well-separated lines we have for i # J (cf.
3):

=R =W, |<|w,~w,|, i#] (64)

Thus R+iK =r+ik is diagonal in the basis of the separate transitions,
and U, =1 [except for higher-order terms in 2W, 0" and 2W.b vs. (w, —
w;)]. Then elements of Eq. (58) are just

AZ"n) = ~ZJ dr Reexpr(r,; ~ ik, ]w (UY), 5
LR 70

1
xexp [T~ Dweo N Uy = 87 (0)

—-w.'l

e
=+w, Rez -
s Tiit Wag —i Ao,

To complete the solution we must specify the initial condition

1
(U‘J).B(U,,)ﬂ,TiAx;-(O). (65)

1
or ‘5 xi (0) =—(M,;(0)-M,)=(1 —a;)M,;, : (66)
_M.;0 66
= Mo.f ' (66a)

It is now convenient to consider two limiting cases depending on
whether b, b”"« 1 or » 1.

Case 1 Uncoupled relaxation: b, b”<« 1. For this case a saturating pulse

on the jth transition leading to ;0 will not appreciably affect the i j

lines (except for terms higher order in b, b", see below). Furthermore,
wea =2W, =T\, all 8. (67)

Then, since ¥ (U7 (U,)g; =8, Eq. (65) becomes
B

o, {1 —a; )M, ; e s

AZI ()=~ .
Z!(t)=—-Re ToT+i bay o

(68)

which is just Eq. (41) for each line.
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Case 2 Coupled relaxation b', b*» 1. For this case a saturating pulse on
the jth transition will have its eflects transmitted equally to all the
eigenstate pairs so that a; =a; =a = jarey #0. Then since L (Uyg =
v3 8a.1. Eq. (65) becomes '

e T

(=R =Ty ' +i Aw,’

for i=1, 2, or 3 (corresponding to transitions with nuclear spin of —1, 0,
and +1). Thus only one of the eigenvalues of w (i.e., 2W,=T;") is seen.

AZ!(1)=-Re w,(1 —alM,;

(69)

If it were possible to saturate one of the lines relative to the other two.
then one could obtain a superposition of three decay terms each decaying
by one of the eigenvalues of w. Such would be the case if b and/or b" is of
order of magnitude unity. But then the three eigenvalues of w would not
be much different. so that the superposition of three decay terms would
not differ much from a «ingle average exponential decay. A rigorous
solution of this intermediate region would require a calculation from Egq.
(18) of the values of x  resulting from a pulse of finite duration Ar’.
However. if Ar'>w, <T,=(2W,)"", then one may use as the ratios
ajfa; = x;"/x; " (i.e.. the steadv-state values obtained in the presence of
the saturating field). Thus

Case 3 The steady-state approximation on the pulse duration is
inl‘d = _Zw— 'fl:;.-GZ"’"". (70)

with Z™*" calculated by standard means (cf. reference 3). Then we can
use Eq. (28) for the saturation matrix elements S,, or the saturation
parameters {); defined by

S =d,Qd}, (71a)

that is, 4(W").’.,-‘ =y,

to rewrite Eq. (65) as (with d, ;,..e=iw%). Thus

—w_ wsat’d

") = — U s ZE

AZV() = w, Re,%ﬂ_.»'*'Wgn—iAw.-(Ud I‘B(Ud)p, ) 3 w
Kk

e W' 1 Z"snl‘d
=0 Re) —————— — (U)p(Uy —=— w3, « (72)
“ e“z-‘:‘ Nt wey — i dw, wy, (Ua)ia(Ua )k 2 1
where the second equality follows because
=W UL (73)
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Case 1 is obtained from the second form of Eq. (72) by setting only one
Zy*" unequal to zero and then using Eq. (67). Case 2 is obtained from
the first form of Eq. (72) by recognizing that for b andjor b”» 1, Q.
becomes independent of j and k. that is ;. — 2/(A/2)W.. (See reference
3.) (These ;;; are given explicitly for the nitroxide case in Table V of

reference 11.) Then one may use ¥ (Ua)gr =85 1 VA/2. (Recall, however,
i

that our original derivations of Cases 1 and 2 did not require the
“steady-state pulse” approximation.) Cases intermediate between 1 and 2
exhibiting effects of all three decay constants are also obtained from Eq.
{72). [Note that eq. (72) also covers ELDOR-type situations.] It follows
from Eq. (72) that the exponential decays of larger wy, have the weaker
amplitudes.

Now let us assume that the wgp are nearly equal, because b, b"« 1.
Then if the line observed is i = 1. while k = | has been saturated (simple
saturation recovery), one obtains the following from Eq. (72):

AZI(O)=Tw Re (r,,+ T;'~ i Aw,)"'e"™ [1 -(2b"+ b)(lT”)]z"’"‘dw:.
!

(74)
However, if we let k =2 (an ELDOR case),

b+b" _ ) 1+ .
AZiD= s € T Ty, Re (1, + T3 — i Awy) '(T‘)z;""’w}.

(75)

This emphasizes how the relaxation is dominated by T, and how an
ELDOR effect would be weak (but potentially noticeable) compared to
the direct saturation recovery effect for this case. When the wgg are very
different (e.g., b andfor b”» 1, such that W22, W33 > wy,), other steady-
state approximations appropriate to pulses of duration At fulfilling
w22, Wi € At< wi! =2T, may be used by solving for the steady-state
solutions appropriate for W, ~0 but W, and/or wyg # 0. This steady-state
solution yields equal degrees of saturation of all the eigenstate pairs, and
thus gives comparable results to that for Case 2. [Note, however, that for
a steady-state approximation to apply here, M=2(T7H+ T, ! and
(@P=UT'~T;29)

3.2 Single Average Hyperfine Line (Nitroxide)
Here we assume the oppositc of Eq. (64), that is,

l—Ri.f' = |WJ > 'wi —wilv i i‘ (76)
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or
2W.b and/or 2W, 5" » |w, — w;|~ ay, (76a)

so the original three-line spectrum has collapsed into a single average
Lorentzian. If we also assume {T31~ T3}« 2W,b and/or 2W, 0" then
U, =U, of Eq. (60) and Eq. (58) becomes

3 x
YAZH=- ¥ j dr Re {US o xp [7(1, . ~k,.) Wi (2), U, )
[l | ¥

iakmg

|
x<exp [(r - Owyy YU, s NG Ay, (0. an
Vo

But since J“ is independent of k and EU,.,_,‘U:,',"BEG,,.,, whereas
k

TULL=S U, =35, and x, (D) =« independent of m, one has
3 e-—-wlll
AZ!(t)=3w, Re - a, (78)
.z| I ratw,—ide,
where w,, =2W,_
. 1
M Ta W with  Til=o YT,
i=]
and
1 K]
Awy, =§ Z Aw,. 79
i=1

Corrections due to the incomplete averaging of effects of the b and b"
terms can be obtained by perturbations methods in the usual fashion.
Again the relaxation is dominated by T, =1/2W,. [Note that Eq. (72)
does not violate the validity of the perturbation approach as long as
Ty '>2wW, ]

3.3 General Case

The preceding discussion, given for the example of a nitroxide in the
motional narrowing region, is seen to apply quite generally to the case
of any hyperfine spectrum in the motional narrowing region. That is,
Eq. (65) is still applicable in the well-resolved spectral region, as are Yhe
discussions and conclusions of cases (D). (2), and (3); Eq. (77) also applies
in the limit of a single average hyperfine line. When there are degenerate
hvperfine lines, it is only necessary to replace the vectors (e.g., Z. X ") and
matrices (e.g.. R. W) by their appropriate symmetrized forms as discussed
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in reference 3, which then properly include the degeneracy factors. [Care
must be exercised in describing the (coupled) relaxation of the compo-
nents of the degenerate line, but the methods previously described are
applicable.]

Note that in the diagonalization of W (and R), one can take advantage
of the symmetries of these matrices. Thus the feature of spin exchange for
nondegenerate transitions—viz.. that it leads to equal transition prob-
abilities among all the eigenstate pairs (i.e., ~Wii=2W,b", i# ) —
means that W in the presence of exchange [but absence of electron-
nuclear dipolar (END) terms] is invariant to all permutations of the A/2
nondegeneratc eigenstate pairs (i.e., it commutes with the permutation

group Py,.). It is then a simple matter to show from the properties of this
group that there is one eigenvalue
wy, =T'=2W,, (80)

corresponding to U,, = 1/(vA/2 (for all i) or the totally svmmetric linear
combination of cigenstate pairs. Furthermore, all the other eigenvalues

are found to be degenerate [belonging to an (A/2)—1 dimensional rep-
resentation of P,,,} and equal to

w,-i=2W,(l+l-§b"), i#1. (81)

The END interaction shows less symmetry. However, for the eigenstate
pairs of a single nucleus of I (or for the J™'th set of eigenstate pairs
corresponding to n completely equivalent nuclei with J=Y [ and «

referring to a particular partner®) the WiNP are symmetric in the quan-
tum number M. Thus the only symmetry operation involves Wy, ., —
W_pm—m=1 and xp— X2 However, one may also take advantage of the
structure of W (see reference 3):

Wi/=2W, 5+ W(END);; (82)

so only W(END);_; the END contribution, needs to be diagonalized. Then
since®

W(END); = - W(END); =¥ W(END);, (83)

o jdi

the matrix W(END) must have a single eigenvalue of zero corresponding
to the eigenvector ¥ x;- (by analogy with the equivalent property of

symmetric W matrices corresponding to the conservation of probability).
Thus one again has
w, =T,'+2W.,,
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corresponding to U, = 1/VA/2 with w, =2W,[1+f,(b)]>2W., for i#1
where the function f(b) is of form seen in Eq. (61). (The preceding
symmetry considerations are sufficient to determine the w, for the
nitroxide.)

When both END and exchange are present, the lower symmetry of the
END interaction is to be used. Also, if the hyperfine pattern is degenerate
with different degeneracies for the different lines, then the W* matrix (the
svmmetrized form; see reference 3), in the presence of exchange only, one
no longer has P,,, symmetry but usually symmetry like W(END), since,
D(A) the degeneracy of the Ath transition is symmetric about the center
of the spectrum. .

One can further gencralize the problem to include a W that depends on
M fti.e., effects of the cross term between g- and dipolar tensors). This
will. however, destroy the symmetries discussed. When cross transitions
are not negligiblc. the W matrix is nonzero and one must return to Eq. (8)
but perturbation methods comparable to those of Section 2 may still be
cmployed.

3.4 On Contributions of T,-Type Decays

We now wish to discuss the validity of the neglect of the terms approp-
riate when |R}|» [W|. [See Eq. (53) and (54).] Such an approximation is
valid. for example. for dilute solutions of semiquinones where the secular
g-tensor broadening dominates the widths, except at higher temperatures
when spin rotation is most important and T,=T,."'2 In the latter case,
each hyperfine line is uncoupled from the others, and one treats each such
line separately. This latter case is also the case for the nitroxides at low
viscosity; at higher viscosity the secular g-tensor broadening is, however,
not dominant, and T3;' ~ W, in Eg. (62), so T3! is only somewhat larger
than W,. However, b= W, /W, is then usually substantially greater than
unity. Thus, although w,, =2W, < T3] in this case, the w,, and w,, of Eq.
(61) are of comparable order of magnitude to T;!. We have already seen
that for b » 1 we can neglect the effects of w,, and w,; in the saturation
recovery, and for the same reason of rapid decay we can neglect terms
decaying with time constant of order T,. A similar argument applies when
exchange makes a major contribution to the widths. However, in that
region where W, and W, (or wex=Ab"W,) are of the same order, and
T4.' is not large, then the complicating effects of the decay of T,-type
terms from the complete solution of Eq. (42) might become impqrtant.
Note further that in the well-resolved region. where only a single
hyperfine line is observed. this solution may be achieved fairly simply
utilizing the techniques given earlier. since U, =1 (even though U, is not
s0 simple).
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4 SLOW-TUMBLING EXAMPLES

4.1 Simple Line

By means of the eigenfunction expansion m:=thod of Freed, Bruno, and
Polnaszek (FBP),” one obtains the following from Eq. (3):

—I—C =Y(R,..—-iK ! iv2d,, . =
7 0= LR~ iKe) 2= G0+ 2zl,.,;(zbm))+n:/—5 Q.

(84)
as well as the complex-conjugate form of Eq. (84), and

. o | .
1,(0) = isz:.n(ﬁ = c:u))— TWaidbi0).  (85)

Equations (84) and (85) are obtained by expanding the orientation-
dependent matrix elements of o (£, 1) of Eq. (3) as

-

Z@Q. 0, =Y C.(0]G.. (), (86a)

and -
x(Q.0, =Y b.(0)|Ga oy, (86b)

where Z(Q, 1) and x(f, 1) are defined by analogy with Eq. (6) and (7) and
the G,,(0) are eigenfunctions of the Markov operator T,

IaG..() =E,G..(). (87)

After the expansions of Eq. (86a) are performed in Eq. (5) one multiplies
through by (G,,.(Q) | and uses the orthonormality property of the G,.(0)
to obtain Eq. (84) and (85). (In this section we drop the A; subscript, since
op]y a simple line is being considered. We also let 1t — m.) These
eigenfunctions G, (2) may be written for Brownian rotation in isotropic
liquids as the normalized Wigner rotation matrices

G.()) = GL, () = (2;':21) DLdN), ' (87a)

with eigenvalues E, for isotropic motion

E,—E xm=LL+DR, (87b)

where R is the rotational diffusion coefficient.>**’ For models involving
reonentatiop by appreciable jumps, it is found that the functions of Eq.
(87a) are still good eigenfunctions, and Eq. (87b) becomes

E, - Ei »= B, (L + )%, (87¢)
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where the model parameter B, ranges from unity for Brownian motion to
By =[L(L+1D]", L#0 (and B. =1 for L =0) for a strong collision
model. It is discussed in detail elsewhere.>®'>!'3 (We note that there is a
simple analogue between Brownian rotational diffusion with an END
mechanism. on the one hand, and strong jump diffusion with a Heisen-
berg exchange mechanism, on the other hand. The former pair have
significant *‘selection rules”, the latter have none.)

Note that the probability functlon of Eq. (5a) is itself representable by
the eigenfunction expansion™®

PQ, 0= Y aku(NG5p(Q). (88a)
LK.M
In particular. the conditional probability distribution P({,: Q, 1) defined

as the probability density of finding {2 at a particular value at time ¢
provided it had the value (), at time 1 = 0, obeys

Py )= Y G e i (Gl Qo) (88b)
L.KM
where we again use bracket notation. In addition, for an isotropic liquid
we have [cf. Eq. (5b)]

P ()= .@8 olQ) ——1— (88¢)
-rr

Now one observes an average over the orientations according to the
prescription of Eq. (4). It then follows that the absorption is given by

Z7(1) = (Po() Z(Q, 1) |Po()) = CJ (1), (89)

and the other coefficients Cx.(t) and bg,(t) are coupled into the prob-
lem by Eq. (84) and (85).

In particular, if we assume the orientation-dependent perturbation in
Eq. (3) is an axially symmetric g-tensor, one finds only the CL.(1) and the
b5a(1) for L even affect the observed signals [cf. Eq. (91b)]. For this case
the terms in Eq. (84) and (85) are’

Rip=ro 8 =—(T;'+E )8, - (90)
K, =Aw+x,, (91a)

with
w=te+nersn(; 2 s, *91b)

and
=3 "'B.Bug,— g.). (91¢)
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These expressions include only the secular contribution of the axially
symmetric g-tensor with parallel and perpendicular components g; and
g.. respectively. Also 8, is the Bohr magneton and B, is the dc magnetic-
field strength, and ((I; (2) ’(")) is a 3-j symbol for which L'=L or L +2.'¢
[The nonsecular contributions have been omitted in Eq. (84) and (85)
(see FBP, Section I1IB1).] Also

Wir=w 8.0 =QW,+E )8 ., 92)

and
0O, =qu, d, §, ,. (93)

We have introduced an oricntation-independent width T,' and T,'=
2W, into Eq. (90) and (92). respectively. Equation (84), its complex
conjugate, and Eq. (85) are seen to be of the same matrix form as Eq.
(18) (with the matrices d and d" which by Eq. (84) and (85) onlv couple
Cio with b(,,,). So provided the inequality of Eq. (36) for the present case
applies; then the same perturbation treatment in d, utilized for solving
Eq. (18) may be utilized for the present case.

We wish to point out at this stage that the eigenfunction expansion
method immediately yields R, ,, and W, in diagonal form. Thus when
E,. /% » 1 corresponding to motional narrowing the R+ (K is approxi-
mately diagonal in this representation. However, k, which arises from
%,(Q1), is diagonal in the space of orientational unit vectors |5(Q2 - ())).>*
We note that from the representation of the §-function:

[8(Q-0,)) =Y G¥Q,) |G, (), (94a)

where, here, |G,(Q)) are any complete orthonormal set of functions, one
has

1Gw() = [20,G,(0) 15(@ -0, (94b)

and if they are also eigenfunctions of ', then
(8(Q-Q)I T, [5(Q-0y)) = Y GG, (Q)E,. (95)

[Equation (95) also follows from evaluating aP({),,, ), 1)/t at t =0, since
this is the same as Eq. (94a).]
Equations (94a) and (94h) define the unitary transformation

U,qo. =G,(8) {96a)
(U gyon = Uk = GO (96b)
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between the two sets of basis vectors. It is often the case, however, that
the real linear combinations of the G, (2) can be used so U becomes an
orthogonal transformation.

When E, /¥ « 1. corresponding to the very slowly tumbling region, then
R+iK is approximately diagonal in the |5(Q2-0,)) representation, with

Kn.n, =k({};)=Aw, -W’(n'), (97a)

where
@'(€) = F B () = FPy(B)), (97b)

with Py(B) thc second-rank Legendre polynomial. (Of course, actual
calculations are performed using finite grid points on the unit sphere.)

Again the solution may be written in the form of Eq. (58), with an
equation like Eq. (65) appropriate when F,/$ « 1, except that U, =
(U"") are defined by Eq. (96b), whereas U, =1, (since the initial basis sets
are the eigenfunctions of T and not the individual orientational compo-
nent: whereas in the motional-narrowing case of Section 3 the individual
hyperfine components are utilized). When E /# <1, defining the slow-
tumbling region where the spectrum is intermediate between the motional
narrowing and rigid limit ones, the matrix U, may be obtained by
diagonalizing (R - iK) following methods already well described® while
U, =1. Thus we may write from Eq. (58)

e—w”!

I = 1
ACo('. w) Wy RCLJ ('R _"' iK),i + Wi (Uou)o.[( UO)[,L 2AbL (0)1 (98)
and when E; « #, this may be rewritten as
e "W"l_l

da GL(92)) }Ab, (0).
§j Q) k() + g Ot 144, (0

w, Re
V8x?

QCHt, )=

(99)

In both cases it follows from Eq. (91b) that only even values of L are
required.

Note that in Eq. (99) it is never really necessary to take an infinite sum
over L. This is because in the integration over €, the G, () for large L
have rapid oscillations compared to the rest of the integrand, so that they
average to zero. and for large enough L. one usually has W, , » W,,,. That
is, we do not need values of L so large that G, (£);) varies much faster in
), than {r(Q) - ik(Q)+w,, ]". The effect of a large T3' in r(f2) is to
broaden out the features of the near-rigid spectrum, thus decreasing the
maximum value of L required. The approximate equality of Eq. (99)
reflects the fact that we have taken R - iK as diagonal in the |6(Q2-),,))
representation. with the dominant part of f(f,) being —T5'(with any
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small residual motional broadening calculated using the correct represen-
tation that diagonalizes R~ iK, which for practical purposes, involves
difference methods). )

We can also rewrite Eq. (99) in a form more closely resembling Eq.
(65):

AZ"(Q, 1, w)=w, Re )

L even

—w

¢ - Jdﬂ,GL(ﬂ,)G{(ﬂ,)éA,\‘r(ﬂ,, 0).

(100)

ri— ik, +wy

First suppose that E, « W,, so that w,, =2W, for all values of L that
contribute appreciably to the sum [since as already noted the sum may be
truncated, but also the b, (0) may be negligible for large L], then Eq.
(100) becomes

1

— 1A, 0), 101)
ri— ik +2W, -AX(Q' ) (

AZ”(Q{. ‘)== w|e—”T‘
representing the fact ‘that ‘the spin packet at {); is uncoupled to. the other
orientations [cf. Eq. (60). Then one may use the general relation

l ",
ACo(l, w) = ﬁ Idﬂ‘ AZ (ﬂi, {, w) (102)

to calculate AC(¢, w), which is observed in an experiment. Now suppose
that E; » W, for L >0 such that w;; »2W, for L >0. Then a saturating
pulse will have its effects transmitted by the rotational diffusion equally to
all parts of the line; that is, only by(0) is normally saturated, so only
{Aby,# 0, and Eq. (99) becomes [with an equivalent form for the more
general equation (98)]

1
0, @)+2W,

3 Aby(0),
(103)

w -
ACH(Lw)=g—5e " Re ”‘m‘ r(€2) — ik(

again giving relaxation with a simple T, =1W, [cf. Eq. (69)].
We can, again, introduce the “steady-state approximation on the pulse
duration™ and the analogue of Eq. (70) becomes

(@ = - [ a0, Walo, d53i 2@ (104)
where
A * 2L+ YWk Gl
Waln= ZGu @b GR@) = T (255 Jakut0 whaditia).
m LK.M
(104a)
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and for an orientation-independent transition moment we may write

aon = —lw} 8. Although, in principle, the sum in Eq. (104a) includes a
complete sum over the orthonormal set, the nature of Z"(€})) for the
present case, as determined by Eq. (91), again means that only -the
restricted sum of L even and K =M =0 need be used in Eq. (104). An
alternative form of Eq. (104) is

bE*! = wiwg G, (104b)

In general. the h;** will be nonnegligible only for those L such that the
C"***" are strongly coupled into the problem by the term in ¥ of Eq.
(97b) and for which Hd"™*Fw;;=(-R, ). that is. the C™*? are
indeed heing saturated. It is usually the latter condition that is limiting,
since one has

' W, %
—_ <=,
E, E E
and wsually
(0)*Z(2W,)'T,

(but not very much greater). Note also that the C*** are obtained from
Eq. (84)-(91) once C, (1) and by (1) are set equal to zero.
We now obtain from Eq. (98):

ACHN = +w, RCLZ' m ( )(U")O‘(U )‘ ,,.C”('.' d)% w?,
(105)

with the obvious modification when Eq. (99) is appropriate. Equation
(100) may be rewritten as

AZMD, w, 1) =w, R e ™!
1= e.véL'(ﬂ-)—ik(ﬂ)+wLL
()G
,[__HLL )Z"‘""(n)—dn, (106)

where it is again clear that only w,q and those w, , comparable to Wo o
would contribute substantially. And the saturation recovery spectrum
given by AC™(w, t) is obtained by integrating Eq. (106) over , and
utilizing (G, () | Z"(Q2))) = C,. The case of w,, comparable to wg, for

all L contributing appreciably to Eq. (106) may be dealt wnh in the
manner of Eq. (72) to yield

AZ"Q. w.N=w, Re

e—‘wﬂ,ll
r(Q) —ik(Q)+w,

x Jdni[s(ni -“ﬂ,-)- 'Y(niv Q,)( 1+ wlu)”]wu nZ"(Q > d(zw |) (107)
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where

v(Q, ﬂ,)=LZ(')'hG )G (@), (107a)

and v, is defined by w;; =w,,y, with y «1 for all values of L
contributing appreciably to Eq. (106). [The prime on Eq. (107a) indicates
it may be calculated over this restricted set of L values. Note also that
Ti G ()G = 8(Q,—)) compared to the much slower variation
of Z"({};) with ﬂ For Brownian diffusion y, = L(L + 1)R/2W, ; whereas
for the limit of strong jumps

{8 -Q)-1/8n" R

y(Q, Q)= AW, . (108)

Equation (107) again emphasizes how the dominant relaxation is via
T, =1/2W, and it shows how one may calculate the magnitude of the
weak recovery signal for an ELDOR experiment in this case when (}; and
(), are quite different. Equation (108) substituted into Eq. (107) gives the
simple orientation-independent result expected for a strong-collision
model (for Q,#Q;). For this model, the more general expression, Eq.
(106) takes on the simpler form

AZ"'(Q),, w, 1) =w, Re

e"“'-m' ( Cﬂ(nl'd) )
r(€2) — ik () + woo Wo oV 87’

'(ﬂi)—ell::;l)+w (l)[ Z @)=~ C\/:—;d)]%w'., (109)

where w' = wg,+R.

One may speculate, for slow tumbling, whether other initial conditions
may be created before observing the recovery. In particular, one could try
initially to saturate a single orientation. In the case of E, « W, (ie.,
wy =2W, for all L) this is essentially the same as Eq. (109). The
opposite limit of w,; »w,, for L>0, a normal saturating pulse is
transmitted to all parts of the line. However, it may be possible by such
techniques as the use of a relatively weak 180° pulse (i.e.. w,7 = where
7 is the pulse duration, such that 7« ril, wil for values of L contribute
to the spectrum, and r,,.w, , € w, =u/1<K. ) initially to saturate a
small range of orientations, and still allow for w; ; >2W, for L >0 (but
not w, , »2W,). This situation could then show interesting effects from
several decay constants: w; ;.
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4.2 Other Aspects of a Simple Line

4.2.1 ORIENTATION-DEPENDENT T, AND T,

Near the rigid limit it is possible that orientation-dependent effects of T,
and T, begin to show up. We can examine such effects by introducing
terms: T, L, @34()) and T339% (). Then

Ry, =—(T5'+E.) 8- T; QL+ D@L + m”’(g (2, g)
and (110)

W =(T,"+E )8 -+ T HI2ZL + )(2L' + l)]”z([(; (2) [(‘)’)2.

(111)

When Eq. 1110} is compared with Eq. (90) and (91). it is seen that its only
efect on the previous results is to change ¥ —F—iT; 54, but Eq. (111)
renders W, ,. nondiagonal. When T,o,E;, »1 (or more precisely
T, nE-» 1) then these orientation-dependent eflects may be neglected,
but for very slow motions it would be necessary to diagonalize W, ,
[wher;. in the limit E, —0, one would obtain the |6(Q2—(),)) represen-
tation].

422 AsYMMETRIC g-TENSOR

The correct expressions may be obtained for this case by direct compari-
son of the preceding expressions with the steady-state case given by FBP.
The main feature to note is that the @% o(f2) for even L and nonzero K
appear in the problem, so effects of anisotropic rotational diffusion can
a_ppear." Otherwise the discussion is analogous to that given for symmet-
ric g-tensors.

4.2.3 CoNTRIBUTION FROM T,-TYPE DECAYING TERMS

In general, one finds that T3' is significantly larger than 2W, in the
slow-motional region, so the T,-type decaying terms should decay much
faster. However, it is possible for E, = RL(L + 1) to play a domjnant role
for large L in Eq. (90) and Eq. (92), that is, R®L(1+ 1) » T{' and T;2. But
this is the case where these terms of large L decay too rapidly in e ™ to
be important compared to the w,, case, and similar comments would
apply to the T.-type decaying terms. Again one can return to the
complete Eq. (42) for a detailed examination of such effects. We note that
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in the slow-tumbling region, the K . of Eq. (91a) will result in contribu-
tions from slightly off-resonant components of the line, and their T,-type
decay (but not T,-type decays) will have some oscillatory character (cf.
Eq. (44) and (45)). Our preceding analysis can be further refined by
distinguishing between that portion of the line broadening which is
homogeneous, and that which is inhomogeneous (assumed Lorentzian).
This is unimportant for unsaturated effects but is important when consid-
ering saturation.>®'*

4.3 Complex Spectra: Nitroxides

Very often a slow-tumbling spectrum is not just describable as a simple
line but is. rather, a complex one involving the coupling of the different
transitions. Methods for solving the steady-state spectra in such cases are
given in detail elsewhere.*”'%!* However, the partitioned-matrix con-
cept of Eq. (18) may again he applied in a manner analogous to the
simple line casc treated in the previous section. The important generaliza-
tions are just to regard each of the coefficients Ck adt) and bl st as
vectors in spin space,'” such that Ci st i) refers to the component
representing the ith ESR transition. For the particular case of nitroxides,
one need only consider the three allowed transitions (i =1, 2, or 3) and
three linear combinations of the six forbidden transitions (cf. Fig. 1).

These forbidden transitions are coupled into the (high-field motional
narrowing) allowed transitions by the pseudosecular terms in ,({2) that
induce nuclear spin flips, and as the motion slows, they also affect the
actual resonance frequencies. For very slow motions, one achieves the
rigid-limit resonance frequencies, which may, to a good approximation,
be described by three allowed transitions for each orientation.

Similarly, there are six components bL, (1, i) representing population
differences between pairs of eigenstates, that is, three for the allowed
transitions (i=1, 2, or 3) and three that are really (mixed) nuclear
magnetic resonance (NMR) transitions. These latter arise from the
pseudosecular terms in 3¢,(Q), and thus play a role closely analogous to
the three (mixed) forbidden transitions for the CLadi). As the rigid limit
is approached (in particular. for |%,(Q2)}/% » 1) their inclusion becomes
equivalent to representing the diagonalized eigenstates characteristic of
the rigid limit. )

One may thus generalize all our preceding procedures to such cases
wherein the vector spaces of Eq. {18) include the product space of the
CL. D) for the different L. K. M (or alternatively, the [8(Q2—(Q,) rep-
resentation) with the appropriate spin space as just described. In the

slow-tumbling region where
e ( Q)R> 1,
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that is, the unsaturated slow-tumbling spectra still show important mo-
tional effects, the detailed diagonalizations required for Eq. (58), for
example, are complex although tractable.’2' However, one usually (but
not always) has the condition

2W, « R,

and any saturation effects are transmitted throughout the spectrum. In
this event we again have a case where the W matrix is characterized by a
Woo=(2W,) and w, ; »w,, for L#0. and the dominant (slow) decay will
again give just T,'=2W.,.

A more careful analysis of the slow-tumbling region shows that two
types of saturation transmission eflects are operative: (1) the motional
etfect. which contributes terms of type B, L{L +1)R to the W, and (2)
nuclear spin-flip processes, which in the fast-motional case depend on b.
(See Section 2.) For e, (DR =1 (i.e., 7, =10"°sec) one gets values of
b-~10—0 representing strong coupling of the hyperfine lines.' But when
D DR > 1. and only residual motional effects are important, one must
cxamine their effects more carefully.

In Section 1 a hypothetical case called the quasi-nitroxide case, such
that v |Ay— an| <« |ay| (where ay is the isotropic hyperfine splitting and
A, is the parallel component of an axially symmetric hyperfine tensor),
was considered. [In reality. ay=~15G and J%T,(A"—a,,,)% 11 G.] The
quasi-nitroxide case allows one to use (van Vleck) perturbation theory
on the pseudosecular terms to decouple the C% (1, i) and the bE e, i)
for the three allowed transitions and the three eigenstate pairs. from
the forbidden ESR transitions and the three NMR-type transitions. In
particular, one obtains a simplified approximate nuclear spin-flip-in-
duced transition probability (i.e., a W, for L =0) given by 2W’ =
(D?*/S)[1e/(1+ b272)), where T = 1/6R, D= -3(1/V6) lv.l(Ay— ay) and
by = =1lv.l[an + H Ay~ an)), which is essentially the fast-motional result,
but is correct for siow motion (for the quasi-nitroxide) where its asympto-
tic behavior goes as (D?/5)632r5". This W, term couples the relaxation of
all three allowed transitions (or more precisely eigenstate pairs) for i = 1,
2, and 3. [More generally, for L# 0, these W, -type terms will couple the
three allowed eigenstate pairs and will also couple coeflicients bk \(i) of

different L values.]

In the limit of slow motion we can then write b = W’/W, as
#D?/5)b3 275!

w, ’
which for ®/W.» 1 will still allow b=1, and nuclear spin flips are an
important part of the problem. For %/W. <1, the contribution of nuclear
spin flips is less important relative to effects of W..

b=
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The quasi-nitroxide model immediately leads to

W, l(D)2
=1 «l,
6% 5\b,

indicating that motional effects spread the saturation within a hyperfine
line much faster than nuclear spinflips occur. But for a true nitroxide,
where D?/b3 is not much smaller than unity, this is no longer true, and
one may expect the nuclear spin flips to play an almost comparable role.
Thus we would not expect b« 1 until ®/W,«1, so that the importance of
nuclear spin-flip terms should persist to almost as slow motions as does
the direct motional effects.

5§ SUMMARY

One may conclude that the general methods developed for steady-state
saturation experiments in both the motional narrowing and slow-tumbling
region may be applied to time-dependent experiments such as saturation
recovery. The solution is again dependent on the same matrix representa-
tions. The complex coupled differential equations are most effectively
solved in terms of separate diagonalizations in transition space (in which
the relaxation and coherence matrices are defined) and in eigenstate (or
eigenstate-pair) space (in which the transition probability matrix is
defined). The saturation recovery-type experiment (which also includes
pulsed-ELDOR) may be readily handled by a general procedure, based
on having a weak nonsaturating observing mode.

One finds from the analysis of spectra with hyperfine lines exhibiting
coupled relaxation (with a nitroxide being a particular example) that,
quite generally, the saturation recovery signal is dominated by a single
exponential decay of time constant T, =(2W,)~" despite the complexities
of coupled relaxation that may exist. Simply stated, this is because when
W, or wye are much greater than W,, so as strongly to couple the
relaxation of the eigenstate pairs. then the whole spectrum first rapidly
adjusts to a common level of saturation with time constants ~W.' or
wyue and then proceeds to relax to equilibrium more slowly with T,,
which is the slow decay observed experimentally. When a steady-state
pulse approximation (i.e., the saturating pulse is on for times > the T,s)
is applicable, then one finds the fast decays all have much weaker
amplitudes (proportional to their decay time constants). For W,,
;< W,, the lines are essentially uncoupled and all decays are ~T,.
However, when W,, w,,: ~W.. then more complex behavior may be seen
with several (not very differcnt) decay constants, which are weighted
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differently for ELDOR versus direct observation. Thus ELDOR would
be helpful in deciphering the different decays. When W, oz < W, it is
still possible to observe ELDOR-recovery effects with time constant =T,,
but with a signal attenuated by factors of the order of b=W_/W., or
Ab' = any W,

In the slow-motional case, for a simple line, the important comparison
is between R versus W,, where @ is the rotational diffusion constant. For
#R>»>W, (a frequent situation even in the slow-motional region), the
rotational reorientation spreads the saturation over the whole spectrum,
and the observed slow decay is again given by T,=(2W,)"". For R« W,
each orientational component of the spectrum is separately saturated
anditrelaxeswith T, = (2W,)" ' The region of 6 ~ W, allows for the super-
position of several decays of comparable order of magnitude that might
be effectively explored by a combination of direct and ELDOR-
observational techniques. The multiple-line (e.g., the nitroxide) case
involves a combination of reorientational and nuclear spin-flip cffects.

ACKNOWLEDGMENTS

We wish to thank the NSF for partial support of this work through Grant no.
CHE 77-26996. This chapter was completed while the author was a visiting
professor of Physics at Delft Technical University, and he greatly appreciates the
facilities made available to him.

REFERENCES

1. J. H. Freed, J. Phys. Chem., 18, 1155 (1974).

2. This is reviewed by (a) J. H. Freed, Ann. Rev. Phys. Chem., 23, 265 (1972): and (b) J.
S. Hyde. ibid., 28, 407 (1974),

3. J. H. Freed, in M. Dorio and J. H. Freed, Eds., Multiple Electron-Spin Resonance,
Plenum. New York. 1979, Chap. 3.

4. M. D. Smigel, L. A. Dalton, L. R. Dalton, and A. L. Kwiram, Chem. Phys. 6, 183
(1974) discussed computer simulations of saturation recovery.

5. J. H. Freed. in L. J. Berliner, Ed., Spin Labeling: Theory and Applications, Academic,
New York. 1976, Chap. 3.

6. 1a)A. Abragam. The Principles of Nuclear Magnetism, Oxford University Press, New
York. 1961: (h) H. C. Torrey, Phys. Rev.. 76, 1059 (1949). ’

7. J. H. Freed. G. V. Bruno, and C. F. Polnaszek. J. Phys. Chem.. 75, 3385 (1971),
referred 1o as FBP.

R. G. V. Bruno. Ph.D. Thesis. Cornell University, 1973,
9. C. F. Polnaszek. G. V. Bruno, and 1. 1. Frced. J. Chem. Phvs., 88, 318S (1073).
10, The special case of dw =0 and T, = T.= T. which as noted. represents a breakdown of

1.
12
13.

14
15.

THEORY OF ESR SATURATION RECOVERY IN LIQUIDS

the cxpansion equation (2.35a), results in AZ'(r) decaying as ¢~ while the coupled
modes [AZ"(1)+1A%(1)] decay as e "7 '*®) Since we are assuming «JT,T,=
(@, )2« 1, it follows that "7~ 1+ oy ¢ =0T} 4 i, ), essentially an exponential decay
in T,.

J.S. Hyde. ). C. W. Chien, and J. H. Freed, J. Chem. Phys., 48, 4211 (1968).

D. S. Leniart, H. D. Connor, and J. H. Freed. J. Chem. Phys., 63, 165 (1975).

S. A. Goldman, G. V. Bruno, C. F. Polnaszek, and J. H. Freed, J. Chem. Phys. 56, 716
(1972).

S. A. Goldman, G. V. Bruno, and J. H. Freed, J. Chem. Phys., 89, 3071 (1973).

J. S. Hwang, R. P. Mason, L. P. Hwang, and J. H. Freed, J. Phys. Chem., 79, 489
(1975).

. A. R. Edmonds. Angular Momentum in Quantum Mechanics, Princeton University

Press, Princeton. N.J., 1957.



