Supplemental file 1, related to MATERIALS AND METHODS. Plasmids and Yeast Strains Used in This Study

Plasmid	Mutations	Reference		
pRS416	N/A	(Sikorski and Hieter, 1989)		
pRS414	N/A	(Sikorski and Hieter, 1989)		
pRS416- <i>SNF7</i>	Wild-type	(Henne et al., 2012)		
pRS414-SNF7	Wild-type	this study		
pRS416- <i>snf7</i> ^{Q90C}	Q90C	this study		
pRS416- <i>snf7</i> ^{M130C}	M130C	this study		
pRS416- <i>snf7</i> ^{Q90C M130C}	Q90C M130C	this study		
pRS416- <i>snf7</i> ^{T20C}	T20C	this study		
pRS416- <i>snf7^{K35C}</i>	K35C	this study		
pRS416- <i>snf7^{K60C}</i>	K60C	this study		
pRS416- <i>snf7^{E88C}</i>	E88C	this study		
pRS416- <i>snf7</i> ^{H118C}	H118C	this study		
pRS416- <i>snf7</i> ^{G140C}	G140C	this study		
pRS416- <i>snf7</i> ^{E88C H118C}	E88C H118C	this study		
pRS416- <i>snf7</i> ^{K60C A66C}	K60C A66C	this study		
pRS416- <i>snf7</i> ^{T83E}	T83E	this study		
pRS416- <i>snf7^{M87E}</i>	M87E	this study		
pRS416- <i>snf7</i> ^{Q90K}	Q90K	this study		
pRS416- <i>snf7</i> ^{/94E}	194E	this study		
pRS416- <i>snf7</i> ^{A97K}	A97K	this study		
pRS416- <i>snf7</i> ^{L99K}	L99K	this study		
pRS416- <i>snf7</i> ^{L101E}	L101E	this study		
pRS416- <i>snf7</i> ^{T103E}	T103E	this study		
pRS416- <i>snf7</i> ^{M104E}	M104E	this study		
pRS416- <i>snf7</i> ^{M107E}	M107E	this study		
pRS416- <i>snf7</i> ^{M114E}	M114E	this study		
pRS416- <i>snf7</i> ^{/117E}	I117E	this study		
pRS416-snf7 ^{L121D}	L121D	(Saksena et al., 2009)		
pRS416- <i>snf7</i> ^{R25E}	R25E	this study		
pRS416- <i>snf7</i> ^{H29E}	H29E	this study		
pRS416- <i>snf7^{K36E}</i>	K36E	this study		
pRS416- <i>snf7</i> ^{E95K}	E95K	this study		
pRS416- <i>snf7</i> ^{E102K}	E102K	this study		
pRS416- <i>snf7</i> ^{E109K}	E109K	this study		
pRS414- <i>snf7</i> ^{R25E K36E}	R25E K36E	this study		
pRS416- <i>snf7</i> ^{E95K E109K}	E95K E109K	this study		
pRS414- <i>snf7</i> ^{R25E H29E K36E}	R25E H29E K36E	this study		
pRS416- <i>snf7</i> ^{E95K E102K E109K}	E95K E102K E109K	this study		

Plasmids for Saccharomyces cerevisiae Expression

pRS414- <i>snf7^{K35C}</i>	K35C	this study
pRS416- <i>snf7</i> ^{A63C}	A63C	this study
pRS416- <i>snf7^{K69C}</i>	K69C	this study
pRS416- <i>snf7</i> ^{Q75C}	Q75C	this study
pRS416- <i>snf7</i> ^{E81C}	E81C	this study
pRS416- <i>snf7</i> ^{E95C}	E95C	this study
pRS416- <i>snf7</i> ^{E102C}	E102C	this study
pRS416- <i>snf7</i> ^{∨126E}	V126E	this study
pRS416- <i>snf7</i> ^{M130E}	M130E	this study
pRS416- <i>snf7</i> ^{133E}	1133E	this study
pRS416- <i>snf7</i> ^{A51E}	A51E	this study
pRS416- <i>snf7</i> ^{L55E}	L55E	this study
pRS416- <i>snf7</i> ^{L67E}	L67E	(Henne et al., 2012)
pRS416- <i>snf7</i> ^{N59P}	N59P	this study
pRS416- <i>snf7</i> ^{E102P}	E102P	this study
pRS416- <i>snf7</i> ^{L121P}	L121P	this study

Plasmids for Escherichia coli Expression for Protein Purification				
Plasmid	Mutations	Reference		
pET28a- <i>SMT3-snf7</i> ¹²⁻¹⁵⁰	SMT3-snf7N12-P150	this study		
pET23d- <i>snf7^{R52E}</i>	R52E	(Henne et al., 2012)		
pET23d- <i>snf7</i> ^{R52E E88C H118C}	R52E E88C H118C	this study		
pET23d- <i>snf7</i> ^{R52E E88C G140C}	R52E E88C G140C	this study		
pET23d- <i>snf7</i> ^{R52E H118C G140C}	R52E H118C G140C	this study		
pET23d- <i>snf7</i> ^{R52E T20C}	R52E T20C	this study		
pET23d- <i>snf7</i> ^{R52E K35C}	R52E K35C	this study		
pET23d- <i>snf7</i> ^{R52E K60C}	R52E K60C	this study		
pET23d- <i>snf7</i> ^{R52E E88C}	R52E E88C	this study		
pET23d- <i>snf7</i> ^{R52E H118C}	R52E H118C	this study		
pET23d- <i>snf7</i> ^{R52E G140C}	R52E G140C	this study		
pET23d- <i>snf7</i> ^{R52E K60C A66C}	R52E K60C A66C	this study		
pET23d- <i>snf7</i> ^{R52E Q90K}	R52E Q90K	this study		
pET23d- <i>snf7</i> ^{R52E I94E}	R52E 194E	this study		
pET23d- <i>snf7</i> ^{R52E M107E}	R52E M107E	this study		
pET23d- <i>snf7</i> ^{R52E M114E}	R52E M114E	this study		
pET23d- <i>snf7</i> ^{R52E R25E H29E K36E}	R52E R25E H29E K36E	this study		
pET23d- <i>snf7</i> ^{R52E E95K E102K E109K}	R52E E95K E102K E109K	this study		
pET23d- <i>snf7</i> ^{R52E V126E}	R52E V126E	this study		
pET23d- <i>snf7</i> ^{R52E I133E}	R52E I133E	this study		
pET23d- <i>VPS24</i>	Wild-type	(Henne et al., 2012)		
pET23d- <i>VPS</i> 2	Wild-type	(Henne et al., 2012)		

Yeast Strains Used in This Study			
Strain	Genotype	Reference	
	Mat a, leu2-3, 2-112, ura3-52, his3-∆200,		
SEY6210.1	trp1-∆901, lys2-801, suc2-∆9	(Robinson et al., 1988)	
MBY24	SEY6210.1; <i>snf7∆::HI</i> S3	(Babst et al., 2002)	
	SEY6210.1; snf7∆::HIS3; MUP1-		
NBY44	PHLOURIN::KAN	(Henne et al., 2012)	

Figures and figure supplements

Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

Shaogeng Tang et al

Figure 1. X-ray Crystal Structure of Snf7^{core} (A) The domain organization of Snf7. The core domain used for X-ray crystallography is shown in blue. (B) Overlay of ribbon and space-filling models of the X-ray crystal structure of Snf7^{core}. (C) Electrostatic surface potential of Snf7^{core} with positively charged regions in blue (+10kcal/e⁻) and negatively charged regions in red (-10kcal/e⁻). See also **Table 1**. DOI: http://dx.doi.org/10.7554/eLife.12548.003

Figure 1—figure supplement 1. Protein purification of Snf7^{core} (**A**) A superdex-200 gel filtration size exclusion chromatogram of Snf7^{core}. (**B**) A SDS-PAGE Coomassie brilliant blue staining of the gel filtration fractions corresponding to Snf7^{core}. **DOI:** http://dx.doi.org/10.7554/eLife.12548.004

Figure 1—figure supplement 2. 2Fc-Fo simulated-annealing composite-omit electron density maps contoured at 1.0σ of Snf7^{core} open conformations (A) A and (B) B. **DOI:** http://dx.doi.org/10.7554/eLife.12548.005

Figure 1—figure supplement 3. Superimposing Snf7^{core} (blue) with (A) CHMP4B^{α 1- α^2} (cyan) (PDB: 4ABM), with (B) CHMP3^{α 1- α^4} (purple) (PDB: 3FRT), with (C) CHMP6^{α 1} (red) (PDB: 3HTU) Snf7^{core}, and with (D) IST1^{α 1- α^6} (grey) (PDB: 3FRR). DOI: http://dx.doi.org/10.7554/eLife.12548.006

Figure 2. Conformational Rearrangement of Snf7 (A–B) Ribbon diagrams of (A) a homology model of closed Snf7^{core} (*Henne et al., 2012*) and (B) the X-ray crystal structure of open Snf7^{core}. (C) A close-up view of the side chain interaction between Gln90 and Met130. (D) Western blotting and subcellular fractionation of *snf7*Δ yeast exogenously expressing *SNF7* or *snf7^{Q90C M130C}* with and without copper(II) 1,10-phenanthroline. (E) Schematic showing closed and open Snf7^{core} with cysteines (red dots) before and after SDS-denaturing. (F) Snf7 site-directed spin-labeling with MTSL (red). (G–H) Distance between Glu88 and His118 of (G) closed and (H) open Snf7 shown in ribbon. (I and K) Time domain signals and distance distributions from DEER spectroscopy of (I) Snf7^{R52E E88C H118C} in solution, and simulated closed and open Snf7^{core E88C H118C} using *MMM*, and (K) Snf7^{R52E E88C H118C}: Snf7^{R52E} (1:0, 1:1, 1:2, and 1:8) with liposomes. (J) Schematic showing liposome sedimentation for DEER. MTSL-labeled Snf7 proteins (blue oval) and liposomes (grey circle).

Figure 2—figure supplement 1. Conceptual model for the Mup1-pHluorin MVB sorting assay. DOI: http://dx.doi.org/10.7554/eLife.12548.009

Tang et al. eLife 2015;4:e12548. DOI: 10.7554/eLife.12548

Figure 2-figure supplement 3. Time domain signals and distance distributions from DEER spectroscopy of fulllength Snf7^{R52E E88C H118C}, Snf7^{R52E H118C G140C} and Snf7^{R52E E88C G140C}. (A) Ribbon models of closed and open Snf7^{core} showing inter-residue distances between E88, H118 and G140. (B–D) Time domain signals and distance distributions from DEER spectroscopy of (B) full-length Snf7^{R52E E88C H118C}, and full-length Snf7^{R52E E88C} H118C: Snf7^{R52E} (1:1) in solution, (C) full-length Snf7^{R52E} H118C G140C in solution and simulated closed and open Snf7^{core H118C G140C} using MMM, and (D) full-length Snf7^{R52E E88C G140C} in solution and simulated closed and open Snf7^{core_E88C_G140C} using MMM. Blue shaded portions of the distributions indicate distance ranges that can be attributed to open and closed conformations.

Figure 3. Membrane-bound Snf7 Protofilament with '30 Å Periodicity (A) Overlay of ribbon and space-filling models of a 7-mer Snf7 protofilament with measured dimensions. (**B** and **D**) Time domain signals and distance distributions from DEER spectroscopy of (**B**) full-length Snf7^{R52E K35C}, and Snf7^{R52E E88C} with liposomes, (**D**) full-length Snf7^{R52E K60C}, Snf7^{R52E H118C}, and Snf7^{R52E G140C} with liposomes. (**C** and **E**) Schematic showing the spin label positions in a Snf7 protofilament.

Figure 3—figure supplement 1. Time domain signals and distance distributions from DEER spectroscopy of full-length Snf7^{R52E K60C A66C} in solution and full-length Snf7^{R52E K60C A66C}: Snf7^{R52E} (1:0, 1:2) with liposomes, and schematic showing the locations of the spin label positions in a Snf7 protofilament. DOI: http://dx.doi.org/10.7554/eLife.12548.013

Figure 3—figure supplement 2. Time domain signals and distance distributions from DEER spectroscopy of full-length Snf7^{R52E E88C H118C}: Snf7^{R52E} (1:0, 1:2.5, 1:4, 1:8) with liposomes and simulated Snf7^{core E88C H118C}: Snf7^{core} (1:0, 1: ∞) polymers using *MMM*, and schematic showing the locations of the spin label positions in a Snf7 protofilament. The full-length Snf7^{R52E E88C H118C}: Snf7^{R52E} (1:0 and 1:8) with liposomes datasets are re-plotted from *Figure 2K* as shown in fine lines.

Tang et al. eLife 2015;4:e12548. DOI: 10.7554/eLife.12548

Figure 4. Hydrophobic and Electrostatic Interactions in a Snf7 Filament (A–B) Ribbon models of a Snf7 protofilament. The hydrophobic protein interface is shown in black dash-line and the electrostatic interface in grey dash-dot line. (C–D) Close-up views of the hydrophobic interface between α2/3ⁱ and α3ⁱ⁺¹ and the electrostatic interface between α1ⁱ and α2/3ⁱ⁺¹. Protomer (i) shown in yellow and protomer (i+1) in red. (E) Conceptual model for the Mup1-pHluorin MVB sorting assay. Vacuole (v). (F) Quantitative MVB sorting data for snf7Δ yeast exogenously expressing empty vector, *SNF7*, snf7^{L121D}, snf7^{L117E}, snf7^{M114E}, snf7^{M107E}, snf7^{L199K}, snf7^{L199K}, snf7^{L101E}, snf7^{L101E}, snf7^{M1782E}, and snf7^{T83E}. Error bars represent standard deviations. (G) Quantitative MVB sorting data for snf7Δ yeast exogenously expressing empty vector, *SNF7*, snf7^{R52E H29E K36E} and empty vector, empty vector and snf7^{E95K E102K E109K}, and snf7^{R52E H29E K36E} in Snf

Figure 4—figure supplement 1. Hydrophobic Interface Mutant Analysis. (A) Representative TEM images of recombinant full-length Snf7^{R52EI94E} and Snf7^{R52EM114E}. Scale bars, 200nm. (B) Superdex-200 gel filtration size exclusion chromatograms of Snf7^{R52E}, Snf7^{R52EI94E} and Snf7^{R52E M107E}. Related to *Figure 4H*. DOI: http://dx.doi.org/10.7554/eLife.12548.018

Figure 4—figure supplement 2. Western blotting analyses of $snf7\Delta$ yeast expressing SNF7, $snf7^{L121D}$, $snf7^{H17E}$, $snf7^{M114E}$, $snf7^{M107E}$, $snf7^{T103E}$, and $snf7^{L99K}$, and SNF7, $snf7^{M104E}$, $snf7^{L101E}$, $snf7^{A97K}$, $snf7^{P9K}$, $snf7^{P9K}$, and $snf7^{T83E}$. G6PDH used as loading controls.

Sequence analyses of Snf7 lpha2/3 with conserved residues shown in gold and dark red.

Tang et al. eLife 2015;4:e12548. DOI: 10.7554/eLife.12548

Figure 4—figure supplement 5. Western blotting analyses of *ex vivo* P13 fractions BMOE crosslinking by Snf7^{K35C} with Snf7^{K60C}, Snf7^{A63C}, Snf7^{C69C}, Snf7^{C75C}, Snf7^{E81C}, Snf7^{E88C}, Snf7^{E95C}, and Snf7^{E102C}. DOI: http://dx.doi.org/10.7554/eLife.12548.022

Figure 5. Electrostatic Protein-membrane Interactions in a Snf7 Filament (A) A Snf7 protofilament in ribbons placed on a lipid membrane in spheres (grey) (*Heller et al., 1993*). (B) Electrostatic surface potential showing the membrane interacting surface of a Snf7protofilament with positively charged regions in blue (+10kcal/e⁻) and negatively charged regions in red (-10kcal/e⁻). DOI: http://dx.doi.org/10.7554/eLife.12548.023

Figure 6. Snf7 α 4 in Inter-Filament Interactions (A–B) Snf7^{core} conformations A (green) and B (blue) superimposed. (B) 90° rotation and superimposing with a closed CHMP3 (purple) using its α 3 as a reference. (C) Overlay of ribbon and space-filling models of the Snf7^{core} crystal packing of the open conformation A. The dash-line box represents the interfilament contacts. Arrows represent inter-protofilament orientations. (D–E) Close-up views of the hydrophobic interface between α 1/2ⁱ (blue) and α 4^j (yellow) of open conformations (D) A and (E) B. (F) Quantitative MVB sorting data for *snf7* Δ yeast exogenously expressing empty vector, *SNF7*, *snf7*^{V126E}, *snf7*^{M130E}, *snf7*^{A51E}, *snf7*^{L55E}, and *snf7*^{L67E}. Error bars represent standard deviations. See also **Table 1**.

Figure 6—figure supplement 1. Representative TEM images of recombinant full-length Snf7^{R52E V126E} and Snf7^{R52E I133E}. Scale bars, 200nm. **DOI:** http://dx.doi.org/10.7554/eLife.12548.025

Sequence analyses of Snf7 α 1/2 and α 4 with conserved residues shown in blue or gold. DOI: http://dx.doi.org/10.7554/eLife.12548.026

Figure 6—figure supplement 3. Quantitative MVB sorting data for *snf7*Δ yeast exogenously expressing *SNF7*, *snf7*^{E102P}, *snf7*^{N59P}, and *snf7*^{L121P}. Error bars represent standard deviations. Overlay ribbon models of (upper right) closed (purple) and open (blue) Snf7^{core} with Glu102 shown in sticks, and (lower right) open conformation A (green) and B (blue) with Asn59 and Leu121 shown in sticks. Arrows represent conformational rearrangements. DOI: http://dx.doi.org/10.7554/eLife.12548.027

Figure 6—figure supplement 4. An overlay of ribbon and space-filling models of the Snf7^{core} crystal packing of the open conformation B. The dash-line box represent the interfilament contacts shown in *Figure 6E*.

eLIFE Research article

Figure 7. Models of Snf7 activation, polymer assembly and membrane remodeling (A) Space-filling CONSURF models with high conservation (purple) and low conservation (cyan). Interacting protomers shown in ribbon (blue). Seven conserved regions with assigned functions labeled. Gray arrows indicate the flexibility of α4. (B) Speculative cartoons illustrating four stages in ESCRT-mediated vesicle budding. (C) Space-filling models and schematic cartoons of Snf7^{core} in closed and open states with membrane (grey). (D) Space-filling and close-up ribbon models of a 25-mer Snf7 single filament with membrane. (E) Space-filling and close-up ribbon models of a 23-mer Snf7 normal mode analysis filament with membrane (grey). (F) Schematic of a Snf7 homo-polymer in the neck of a nascent ILV with positive and negative membrane curvatures. DOI: http://dx.doi.org/10.7554/eLife.12548.030

	Snf7 "Core" Domain		
	α1 α2 α3 α4		
Sc Snf7	ESPTKAIVRLREHINLLSKKQSHLRTQITNQEN-EARIFLTKGNKVMAKNALKKKKTIEQLLSKVEGTMESMEQQLFSIESANLNLETMRAMQEGAKAMKTIHSGLDIDKVDETMDEIREQVELGDEISDAIS-RP		
Hs CHMP4B	PTPQEAIQRLRDTEEMLSKKQEFLEKKIEQELT-AAKKHGTK-NKRAALQALKRKKRYEKQLAQIDGTLSTIEFQREALENANTNTEVLKNMGYAAKAMKAAHDNMDIDKVDELMQDIADQQELAEEISTAIS-KP		
Mm CHMP4B	PTPQEAIQRLRDTEEMLSKKQEFLEKKIEQELT-AAKKHGTK-NKRAALQALKRKKRYEKQLAQIDGTLSTIEFQREALENANTNTEVLKNMGYAAKAMKAAHDNMDIDKVDELMQDIADQQELAEEISTAIS-KP		
X1 CHMP4B	PSPQEAIQKLRDTEEMLAKKQEFLEKKIEQELV-TAKKHGTK-NKRAALQALKRKKRYEKQLAQIDGTLSTIEFQREALENANTNTEVLKNMGFAAKAMKAAHDNMDIEKVDELMQDIADQQELAQEISDAIS-KP		
Dm shrb	TTG-EAIQKLRETENMLIKKQEFLEAKIEDELN-IARKNASK-NKRVALQALKKKKRLEKQLQQIDGTLSTIEMQREALESANTNTAVLTTMKNAADALKRAHQNMDVDKVHDMMDDIAEQQDVAREISDAIS-NP		
Ce VPS-32-2	ITPQESIQKLRETEDILEKKQEFLEKKIDDVRKQNAVKYGTK-NKRMALQCLSRKKAFEKQLIHIDGVLATLEHQRETLENASTNAEVLTVMKLASDALKAVHNNMDSDQVRDMMDNIDEQREVAKEIADAIS-NP		
Sp Vps32	DTTKDTIVRFQEMLALYDKKEEVLERQIAEQTE-IARKNATT-NKRLALTALKRKKMHENELVKIEGSRNNIEQQLFSIQNANLNFETLQAMRQGAEAMKSIQRGMDADKVDQIMDKIRDQQTISESISTMIS-TPARAMANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
Lokiarch 16760	KEKANLITNAKVHIHKLNLVNRNYTKRAEISRK-NAKIALRRGEKTRAKNFLIQYKSYNAKIDRSNNIRSKIERQIQAIEEGQLISQTGSIFEGIRDELKYIATEASPAKVAEIAEDSDVVVSEIEEAADILAGDP		

Figure 7—figure supplement 1. Alignment of Snf7^{core} protein sequences from Saccharomyces cerevisiae (Sc), Homo sapiens (Hs), Mus musculus (Mm), Xenopus laevis (XI), Drosophila melanogaster (Dm), Caenorhabditis elegans (Ce), Schizosaccharomyces pombe (Sp) and Lokiarchea (**Spang et al., 2015**). DOI: http://dx.doi.org/10.7554/eLife.12548.031

Figure 7—figure supplement 2. A ribbon model of a supercomplex of Vps25-Vps20-Snf7. The first Snf7's α 1 was used for superimposing with the Vps20 α 1 (*Im et al., 2009*) (PDB: 3HTU) for molecular docking. DOI: http://dx.doi.org/10.7554/eLife.12548.032

Figure 7—figure supplement 3. Architectures of Snf7 protofilaments (**A**) A representative TEM image of recombinant Snf7^{R52E} (left) and a space-filling model of a 61-mer Snf7^{α1-3} straight filament shown in the same scale (right). (**B**) A representative TEM image of recombinant full-length Snf7^{R52E}, Vps24 and Vps2 (2:1:1) (left), and space-filling and close-up view of ribbon models of a 97-mer Snf7^{α1-3} superhelix generated by normal mode analysis with measured dimensions (right). TEM scale bars, 50nm. DOI: http://dx.doi.org/10.7554/eLife.12548.033