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Abstract

Tikhonov regularization (TIKR) has been demonstrated as a powerful and valuable method for the determination of distance
distributions of spin-pairs in bi-labeled biomolecules directly from pulsed ESR signals. TIKR is a direct method, which requires
no iteration, and, therefore, provides a rapid and unique solution. However, the distribution obtained tends to exhibit oscillatory
excursions with negative portions in the presence of finite noise, especially in the peripheral regions of the distribution. The Shan-
non–Jaynes entropy of a probability distribution provides an intrinsic non-negativity constraint on the probability distribution and
an unbiased way of obtaining information from incomplete data. We describe how the maximum entropy regularization method
(MEM) may be applied to solve the ill-posed nature of the dipolar signal in pulsed ESR. We make use of it to suppress the negative
excursions of the distance distribution and to increase the tolerance to noise in the dipolar signal. Model studies and experimental
data are investigated, and they show that, with the initial or ‘‘seed’’ probability distribution that is required for MEM taken as the
TIKR result, then MEM is able to provide a regularized solution, subject to the non-negativity constraint, and it is effective in deal-
ing with noise that is problematic for TIKR. In addition we have incorporated into our MEM method the ability to extract the
intermolecular dipolar component, which is embedded in the raw experimental data. We find that MEM minimization, which is
implemented iteratively, is greatly accelerated using the TIKR result as the seed, and it converges more successfully. Thus we regard
the MEM method as a complement to TIKR by securing a positive pair distance distribution and enhancing the accuracy of TIKR.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Tikhonov regularization (TIKR) [1] has recently been
introduced [2–4] to extract distance distributions be-
tween spin-pairs from intramolecular dipole–dipole
interactions measured by pulsed electron spin resonance
(ESR) techniques [5], in particular double quantum
coherence (DQC) ESR and double electron–electron
resonance (DEER). The ability to obtain such distribu-
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tions, for distances as great as 7 nm [6], significantly
enhances the application of ESR techniques in studying
protein structure [7–9] in large biomolecules. A particu-
larly significant application is in providing distance dis-
tributions of intermediate folding states of proteins
[2,10,11].

The integral equation [2] that connects the intramo-
lecular dipole–dipole interactions, which are measured
in the ESR experiment, with the distance distributions
between spin-pairs is in the form of a Fredholm equa-
tion of the first kind [1], that can be represented in dis-
crete form as a linear equation K (r,t)P (r) = S0 (t),
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where K is a kernel matrix representing the shape of a
Pake doublet dipolar signal in the time domain for a giv-
en radial separation, r, while P is the vector representing
the pair distance distribution, and S0 is the vector repre-
senting the intramolecular dipolar signal from pulsed
ESR experiments, which includes experimental noise
[2]. This discrete form, in the presence of finite noise,
is ill-posed, so it cannot usually be solved in a straight-
forward manner by singular value decomposition (SVD)
or other least squares methods, and, therefore, requires
regularization methods. The difficulties connected with
solving this ill-posed problem to extract P (r) from
pulsed ESR experiments have been previously discussed
using SVD and regularization methods [2–4].

Among the regularization methods, TIKR has been
generally accepted as an important one. It has been
demonstrated in model and experimental studies that
TIKR with a regularization parameter determined by
the L-curve criterion provides a mathematically reliable
estimate for the distance distribution for reasonable
noise levels (i.e., SNR of 30–500 [2]). Another virtue
of this TIKR method is that it is easy to compute
numerically and it leads to the unique solution for a giv-
en regularization parameter, k. That is, the formal min-
imization of the TIKR functional given by

UTIKR½P � � kKP � S0k2 þ k2kPk2 ð1Þ

yields the simple matrix equation [12]

P k ¼ KTK þ k2
� ��1

KTS0. ð2aÞ

This equation for the Tikhonov functional minimizer is
readily solved by SVD to yield the form given by [12]

P k ¼ ðR2 þ kIÞ�1V RUTS0

¼
XRankðKÞ

i¼1

fi
uTi S0

ri
vi; where f i �

r2
i

r2
i þ k2

ð2bÞ

to obtain the unique P for the given value of k. In Eq.
(2b), the kernel matrix K (of dimension M · N) is
decomposed by SVD into two orthonormal matrices,
V (whose columns are composed of the N-dimensional
vectors vi) and U (whose columns are composed of the
M-dimensional vectors ui), and a diagonal matrix R
whose elements are the singular values, ri. It can be
rewritten (as shown by the second equality on the
right-hand side) as the standard SVD solution, but
where the term for the ith singular value is multiplied
by a filter function fi, which acts to screen out undesired
small singular values, ri for which ri � k. The filter,
shown in Eq. (2b), is specifically for the functional in
Eq. (1). The difference between various regularization
methods lies in the way that the filters are defined. The
analysis given by Eqs. (2a) and (2b) is easily repeated
for many values of k, from which the L-curve criterion
is readily applied to yield the optimum k.
However, a possible criticism of this approach is that
the P (r) obtained tends to exhibit oscillatory excursions
with negative portions in the presence of finite noise,
especially in the peripheral regions of the regularized
distance distributions. A physically meaningful P (r)
must, of course be non-negative, but corrupting noise
has no such requirement. In model tests it was shown
that the oscillations do not significantly affect the main
distribution. It nevertheless is desirable to constrain
the P (r) to be positive, so the TIKR method of Eq.
(1) has been adapted to include this constraint, and this
has been applied to pulsed ESR experiments [3,4]. The
resulting computational algorithm, using a self-consis-
tent (SC) approach to determine the optimum k and
subjecting to the non-negativity constraint, requires iter-
ative methods [13] that may be initiated with a good
starting guess of P (r) [14]. (These authors do supply a
sophisticated deterministic annealing method when
good initial values are not available [14].) Thus the
introduction of the non-negativity constraint leads to a
computationally more cumbersome algorithm.

In the present paper, we discuss the use of a differ-
ent approach than Eq. (1) for the regularization in
pulsed ESR. It is based on maximizing the entropy
(ME) function associated with P (r). This implicitly re-
stricts P (r) to be positive, but also at the expense of
computational ease, requiring a numerical non-linear
minimization procedure. In one study [15] the ME ap-
proach was found to be computationally significantly
faster than constrained TIKR. Our main objective is
to determine whether the inclusion of this informa-
tion-theoretic ME principle would lead to improved
estimates of P (r) under conditions of lower SNR typ-
ically encountered in real experiments. Furthermore,
we use the proposed method to determine P (r) and
to simultaneously extract information about the base-
line in the experimental data. The ME minimization
is implemented using a conjugate-gradient (CG) algo-
rithm, which provides rapid local convergence. A good
initial guess of P (r) to seed the iterative minimization
is crucial to obtaining useful results by this method.
Thus we also address this issue and we report an ap-
proach that we find to work quite well, that is based
on using the result of Eqs. (2a) and (2b) in conjunction
with the L-curve criterion, as the seed to initiate the
ME regularization approach.

Maximum entropy (ME) has been widely used as a
general and powerful method for reconstructing results
from noisy and incomplete data in various fields (e.g.,
image reconstruction [16] such as radio astronomy, med-
ical tomography, and X-ray imaging; and fluorescence
spectroscopy [17]). The idea is that by maximizing the
Shannon–Jaynes entropy

E ¼ �
Z

aðsÞ ln aðsÞds; ð3Þ
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where a (s) is the function to be determined, the solution
is determined/selected from the many sets of functions
that can fit the data. This underlying idea has been well
explained in information theory and statistical mechan-
ics by taking entropy as a probabilistic concept [18,19],
i.e., the entropy of a probability distribution can be con-
sidered as a measure of the uncertainty of the experi-
mental outcomes. The virtues of using the maximum
entropy concept are that: (i) it provides an unbiased
way of obtaining information from incomplete data;
(ii) it implicitly possesses the non-negativity constraint
to the probability distribution. Application of ME in
the context of image reconstruction was originally intro-
duced by Frieden [20] and later, was found useful in this
field. Many efforts have been made using ME to recon-
struct an image from incomplete/noisy data [16,21,22],
and even to increase SNR in NMR spectroscopy [23,24].

In this report, we replace the penalty term of the
Tikhonov regularization functional, i.e., the second
term on the right-hand side of Eq. (1) with the entro-
py Eq. (3) to solve the ill-posed inverse problem that
we encounter in determining pair distance distribu-
tions from pulsed ESR experiments. In the past, the
convergence behavior of the functional has been inves-
tigated and tested with numerical experiments. A
transformed form of the entropy, which retains the
advantages of using the Shannon–Jaynes entropy, is
suggested in the literature and used in the analysis
to provide better convergence for the functional mini-
mization [25,26]. Details about this transformation are
given in Section 2 and discussed in later sections. The
model distributions and experimental data we use are
the same as those used previously [2]. We find that
ME regularization is best utilized as a complement
to TIKR for the determination of pair distance distri-
butions. In fact, in the early stages of this work we
found that ME regularization used independently of
TIKR failed to recover satisfactory results (as com-
pared to the TIKR results) in all tested cases. Howev-
er, when the result of the TIKR was used to initiate
the ME regularization it does become a viable
method.

The dipolar time evolution signal obtained from
pulse ESR experiments includes both intra- and inter-
molecular interactions, where the former is what we de-
sire and the latter usually is unwanted. The
intermolecular contribution manifests itself as a modifi-
cation of a DEER signal envelope, thus producing a
large decaying ‘‘baseline’’; whereas in DQC it leads to
a small offset [7], whose slope increases with concentra-
tion. It also leads to a damping of the intramolecular
signal. Analysis of the dipolar signal often becomes dif-
ficult when the spin concentration is increased, which
makes these concentration effects stronger. The removal
(typically by subtraction) of the baseline from raw
experimental data has been performed independently
of the determination of distance distributions of spin-
pairs [2,7,27–29]. Such a procedure is also commonly
used in the spectral analysis of nuclear ESEEM.

One proposed method was that intramolecular inter-
actions could be separated from intermolecular interac-
tions by studying the concentration dependence of the
pulsed ESR signals. More typically, the baseline func-
tion contributed from intermolecular interactions is gen-
erally obtained by fitting a low-degree polynomial to the
raw experimental data. This method, in some cases of
DEER experiments, usually utilizes weighted fitting in
certain regions (e.g., weighted fitting of the last part of
the raw data) where intermolecular interactions domi-
nate the overall decay. In other words, the baseline sub-
traction requires some prior insight. In this report we
propose a more unified way, which is based on the
ME regularization, to simultaneously extract the inter-
molecular contribution in the raw experimental data
and determine the spin-pair distance distribution from
the intramolecular dipolar interactions. A virtue of such
an approach is that all the data are utilized to fit the
baseline as well as the P (r), thus, this approach is more
likely to avoid bias from, e.g., artifacts in local regions
of the signal.

Three models, bimodal, box-like, and broad trimodal
distributions, are tested with the levels of SNR � 500
and 30. The model study is first performed without con-
sidering any baseline in the time evolution data and then
tested with a model baseline in the analysis. The dipolar
time evolution signals of the proteins T4 lysozyme and
cytochrome c, respectively measured by DQC-ESR
and DEER techniques, are analyzed using the ME reg-
ularization method. The improvements include success-
ful suppression of the peripheral noise-like oscillations
of the Tikhonov results, the better tolerance to the noise
levels of SNR < 30, and simultaneous determination of
the intermolecular interaction and the spin-pair distance
distribution. Based on these improvements, ME regular-
ization is proposed as a complement to the Tikhonov
regularization using the L-curve criterion, and we sug-
gest that a similar strategy might be useful for the self-
consistent (SC) method of TIKR.
2. Method

2.1. MEM functional and its minimization

The maximum entropy regularization functional is
given below in Eq. (4). One readily recognizes that the
introduction of ME to the least squares problem is
equivalent to the method of Lagrange multipliers. ME
was first rigorously studied as a regularization method
by Klaus and Smith [30]. It uses the entropy as the
penalty term and is what we call MEM in this report.
(Note that MEM is referred to maximizing the



Fig. 1. A typical L-curve obtained in MEM analysis. The ordinate is
given by the modified negative of entropy, i.e., by the second term on
the right-hand side of Eq. (5) with k = 1. When a small regularization
parameter is used, the curve becomes discontinuous and oscillatory
(the upper left corner in the plot). This is due to the fact that the
residual norm oscillates back-and-forth unstably as the penalty term
fails to stabilize the regularization minimization due a small regular-
ization parameter. In such an L-curve plot the search range for an
optimal regularization parameter must be restricted to the smooth
region to avoid obtaining a noise-like solution.
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Shannon–Jaynes entropy instead of a regularization
method in some literature references.) There are two
terms in the MEM functional: the first is the residual
norm, which approaches zero as the regularized solution
P resembles the exact solution and is the same as in
TIKR; the second is negative of the entropy, �E, multi-
plied by the square of regularization parameter, k. Thus
ME regularization involves minimizing the following
functional for a given k:

UME½P � � kKP � S0k2 þ k2E

¼ kKP ðrÞ � S0k2 þ k2
Z

P ðrÞ ln PðrÞdr; ð4Þ

whereas this ME functional is a natural and appropriate
way to introduce the regularization, from a practical
viewpoint it requires an iterative approach to minimiza-
tion that exhibits slow convergence (partly due to the
complicated non-linearity of the functional) [26,31,32].
Instead of using Eq. (4) directly, it has been suggested
that one use a modified form of the entropy in the func-
tional to be minimized, [25,26,33].

UME½P � ¼ kKP ðrÞ � S0k2 þ k2

�
Z

P ðrÞ ln P ðrÞ
P 0ðrÞ

þ P 0ðrÞ
e

� �
dr

) min . ð5Þ

In this modified entropy approach, the use of an
appropriately chosen prior probability function, P0 sup-
presses the difficulty in the numerical algorithm that one
encounters when simultaneously minimizing the residual
term to zero and the penalty to minus infinity. It has
been shown that the modified form of the maximum
entropy functional (cf. Eq. (5)) is equivalent to Eq. (4),
and it is also analogous to the Tikhonov functional in
its properties [25,26]. This transformed functional not
only possesses the non-negativity constraint on the reg-
ularized solution for P (r) by virtue of the natural loga-
rithm but also is proven to inherit the stability and the
convergence rate from the Tikhonov functional,
although the actual numerical solution lacks the simplic-
ity of that for Eqs. (2a) and (2b). The modified ME func-
tional has been rigorously examined mathematically and
tested for the case of analyzing fluorescence data [26].
No marked difference between the results obtained with
Tikhonov and maximum entropy regularization, respec-
tively, was found [26,34].

The functional minimization of Eq. (5) for the deter-
mination of the solution vector P is performed using a
conjugate-gradient (CG) method [35], which is generally
considered as the appropriate method for large prob-
lems; i.e., problems with hundreds (or thousands) of ele-
ments in solution vector. Two versions of CG, the
Fletcher–Reeves (FR) and the Polak–Ribiere (PR), have
been tested for our purposes. We found that the latter is
better than the former in most of the cases studied for
two reasons: (i) PR converges much more quickly than
FR; (ii) PR always provides a better or at least a similar
solution than FR in the tested models. (The methods
only differ by one line in the numerical code, and the
algorithm can be found in the literature [35].) The pro-
gram we developed is performed with Matlab version
7.0, and naturally uses Matlab functions for matrix
and vector calculations.

The regularization parameter of the TIKR function-
al is determined using the L-curve criterion incorporat-
ed in the Regularization toolbox [36–38]. The
subroutines we have used have been modified from
those in the Regularization toolbox. The basis for
the use of the L-curve criterion in TIKR is that the
residual norm and the norm of the penalty term are
monotonic functions of the regularization parameter.
This has been proven to be true for TIKR [12], but
this matter has never previously been studied for
MEM. In this report, the regularization parameter of
the MEM functional (cf. Eq. (5))is determined in a
similar way using the maximum curvature criterion.
However, the y-axis of the L-curve plot is now the
modified entropy term rather than the solution norm.
A typical L-curve obtained in the MEM analysis is
shown in Fig. 1. If a very small regularization param-
eter is used, the curve becomes discontinuous
and oscillatory (cf. the upper left corner in Fig. 1),



1 We give the parameters used for the model distributions. Bimodal

distribution: a sum of two equally weighted Gaussian peaks at 3.6 and
3.9 nm with respective standard deviations of 0.1 and 0.077 nm. Box-
like distribution: the two maxima are located at 3.2 and 4.3 nm and the
curve between the peaks decreases as r�1 from each maximum such
that it is symmetric about the center at 3.75 nm. Trimodal distribution:
a sum of three equally weighted Gaussian peaks at 3, 4, and 5 nm with
respective standard deviations of 0.4, 0.5, and 0.2 nm.
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indicating that the penalty term is too small to stabi-
lize the solution. Thus, we ignore the range of k yield-
ing such unstable behavior. Based on the model studies
shown in Section 3, we suggest the following approach
for selecting an optimal regularization parameter for
the MEM functional: (i) perform an extensive, but
coarse-grained search over values of the regularization
parameter to determine the region in the L-curve plot
which excludes the unstable behavior. (ii) Repeat the
regularization within the selected region with finer res-
olution in k and determine the optimal regularization
parameter, kopt according to the maximum curvature
criterion. The kopt is selected and marked as asterisk
in Fig. 1. This strategy is tested in Section 4 and then
used in analyzing experimental results in this report.

2.2. MEM functional that includes both intra- and

intermolecular interactions

The results from pulsed ESR will in general include
both intra- and intermolecular dipolar interactions.
The former from the spin label pairs and the latter from
spin labels on other nearby molecules. It is best to work
with low enough concentrations to minimize the inter-
molecular contributions. There are currently standard
approaches for subtracting or removing such contribu-
tions prior to the analysis of the intramolecular compo-
nent of the time-domain signal [7,27,29]. Because the
exact form of the baseline is not known, a judicious
removal is prone to a potentially biased judgment. How-
ever, both P (r) and the ‘‘baseline,’’ can be fit simulta-
neously where the latter may be taken as one of
several convenient functional forms and parametrized
as needed. This offers the prospect of a more reliable
estimation of the intra molecular component to the sig-
nal. We consider two examples of a simple form for the
baseline. It is straightforward to include them directly
into the MEM functional of Eq. (5). Let us refer to
the raw experimental data as S. Then in DQC experi-
ments on dilute systems one usually approximates S as
a sum of intramolecular (S0) and intermolecular terms
(B) asz

S0 ¼ S � B; ð6aÞ
which was found to be satisfactory in empirical studies
[7].

A multiplicative factor is usually used for DEER, as
given in Eq. (6b) [27].

S0 ¼
S
B
� 1. ð6bÞ

(Note another baseline form has recently been recom-
mended [3]. It can also be implemented in our MEM ap-
proach, but we have used Eq. (6b) in the present study.)

In either case of Eqs. (6a) or (6b), B can be approxi-
mated as a low-degree polynomial [27]:
B ¼
Xinteger
i¼0

aiti. ð6cÞ

Then with the replacement of S0 by S into Eq. (5),
where S is given by either Eqs. (6a) or (6b), we can
simultaneously determine the distance distribution and
the unknown intermolecular contribution (i.e., baseline).
That is we utilize the iterative CG algorithm to deter-
mine both P (r) and the coefficients ai. More refined for-
mulations of the intermolecular contribution can be
incorporated into the analysis in a similar fashion, but
we confine ourselves in this study to the simple, but
commonly used, approaches given by Eqs. (6a)–(6c).

In the model (and experimental) cases we studied, we
have found that this method works very well. In fact it
does not even require good initial seed parameters for
the baseline function in order to reproduce B accurately.
However, for high concentrations, for which the base-
line dominates over the intramolecular dipolar signal,
a reasonable seed for the baseline function is recom-
mended to avoid undesired minima and expedite the
convergence. Details are given in the following sections.
3. Results for the model data

Three model distributions1 were first tested under the
condition of high SNR (�500) using MEM, and then for
the case of low SNR �30, which we previously found
challenging for TIKR [2]. We found that a good approx-
imation for P (r) to initialize the MEM regularization is
necessary. Given that both the residual and entropy
terms are non-linear and complicated one may expect
there are many local minima. Thus a good initial esti-
mate is needed. That minimizing the MEM functional
can be challenging is well known [12]. More details
about the minimizations of MEM and TIKR will be giv-
en in Section 5. Here we note that the Po (r) in Eq. (5)
and the initial or seed value of P (r) for the algorithm
is always taken as the optimum distribution obtained
by TIKR. It is necessary to first modify the negative
and zero values of P (r) obtained by TIKR to be positive
and nearly zero in order to insert the TIKR P (r) into the
argument of the natural logarithm in Eq. (5). (In cases of
high SNR, Po (r) can be set to be unity, but using a good
estimate for Po (r) significantly reduces the computation
time.)
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Fig. 2 shows the P (r) obtained by MEM for the (A)
bimodal and (B) box-like distributions for a SNR � 500.
The original distributions, estimates by MEM, and the
estimates by TIKR are shown. Both TIKR and MEM
recover very good estimates of P (r), especially for the
dominant portion of the distribution. However, the oscil-
lations about zero in the peripheral regions ofP (r) seen in
the TIKR result are significantly reduced and non-nega-
tive in the MEM result. For the box-like distribution in
Fig. 2B,we do find some high-frequency noise superposed
on the main portion of the MEM distribution. These re-
sults are consistent with a previous study, where it was
found that, where P is small MEM was often superior
to Tikhonov regularization, but was comparable to or
slightly worse than TIKR where P was not small [15].

The optimal regularization parameters for both
TIKR and MEM regularizations were determined by
the L-curve criterion [36,37] (cf. Fig. 1 and above discus-
Fig. 2. The model study results of the (A) bimodal and (B) box-like
distributions for SNR � 500. The original, MEM regularized, and
TIKR regularized solutions are plotted by solid, dashed, and dotted
lines, respectively.
sion). Our model results appear to indicate the appropri-
ateness of the L-curve criterion for determining an
optimal regularization parameter for the MEM regular-
ization of dipolar signals. However, this might not nec-
essarily be the case for other kernel functions.

Fig. 3 shows the results for the (A) bimodal and (B)
box-like distributions for SNR �30. We found that the
MEM result shows some improvements over the TIKR
result. It suppresses the undesirable oscillations in the
wings of the distribution. Also the bimodal distribution
(in Fig. 3A) is more apparent in the MEM result. A sim-
ilar observation may be made for the box-like model
(Fig. 3B) but at the expense of more noise in the main
region of the distribution. The sharp edges of the box
are much better represented by MEM, and the overall
shape within the box is better if one smoothes over the
noisier central region. Comparing the results in
Fig. 3. The model study results of the (A) bimodal and (B) box-like
distributions for SNR � 30 in the simulated dipolar signals. The
original, MEM regularized, and TIKR regularized solutions are
plotted by solid, dashed, and dotted lines, respectively.



190 Y.-W. Chiang et al. / Journal of Magnetic Resonance 177 (2005) 184–196
Fig. 3B with Fig. 2B, it appears that the artifacts in the
main distribution are primarily caused by the lower
SNR. These results indicate the limitations of both reg-
ularization methods for recovering distributions from
pulsed ESR experiments. However, the average distanc-
es determined by TIKR and MEM are both close to that
of the original model. One of the most important obser-
vations from these model tests is that both TIKR and
MEM are able to provide an average distance for the
distribution with satisfactory accuracy under substantial
noise conditions, i.e., SNR 630, which is typical in DQC
and DEER experiments. Our results also indicate that
MEM must be coupled with TIKR. The MEM can be
used to improve on the TIKR result only if the TIKR
result is used as the seed for the MEM procedure.

Fig. 4 shows the results for the broad tri-modal distri-
bution with values of SNR � (A) 500, (B) 30, and (C) 10
using both TIKR and MEM. The distribution is well
recovered for a SNR � 500 using both methods
(Fig. 4A). For a SNR � 30 (Fig. 4B) the MEM and
TIKR results are very similar and are in good, but not
precise, agreement with the original distribution. How-
ever, when the SNR was decreased to 10, the MEM
failed to provide a good estimate even though the TIKR
result, which is not so bad, was seeded as the initial dis-
Fig. 4. The model study results for a broad tri-modal distribution for
SNR � (A) 500, (B) 30, and (C) 10 using TIKR and MEM. The
original distribution, MEM, and TIKR regularized solutions are
plotted by solid, dashed, and dotted lines, respectively.
tribution. This observation, that the minimization
converges to a poorer solution for this poor SNR, is re-
ferred to as semiconvergence [12]. This means that the
solution vector initially approaches a regularized
solution vector and then, in later stages of the iteration,
converges to a undesired vector. Some undesirable oscil-
lations appear in the main distribution of the MEM re-
sult (cf. Fig. 4C) for this low SNR case.

Next we used MEM to extract the distance distribu-
tion from a simulated dipolar signal, which includes
both intra- and intermolecular contributions (cf. Eqs.
(6a)–(6c)). We added a second-degree polynomial (cf.
Eq. (6c))to the simulated data and found that the
MEM method is able to provide good estimates for all
the distributions, including the bimodal, boxlike, and
Fig. 5. (A) The time evolution data of the bimodal distribution for
SNR � 30 before (lower trace) and after (upper trace) a second-order
polynomial baseline, (a0,a1,a2) = (1.65,�0.13,0.004), is added using
Eq. (6a). (B) The distributions recovered from the baseline-added time
evolution data by minimizing Eq. (5). The original and the estimates
for SNR � 100 and 30 are, respectively, plotted by solid, dashed, and
dotted lines. The added baseline and the model distribution are
simultaneously obtained using the proposed method.



Fig. 6. The regularized distributions recovered from the dipolar
signals of the T4L 65/135 mutant obtained from six-pulse DQC-ESR
at 17.3 GHz. The distributions obtained using TIKR (Eqs. (2a) and
(2b)) and MEM (Eq. (5)) are plotted by dashed and solid lines,
respectively. The distribution obtained from minimizing Eq. (5) with
consideration of baseline presence (i.e., Eq. (6a)) is plotted by the
dotted line. The coefficients for the extracted baseline are
(a0,a1) = (�0.01,�0.001); this is to be compared to an initial signal
[i.e., S (t = 0)] magnitude of 0.36.
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trimodal distributions. Fig. 5 shows one of the cases
studied, which assumes the condition of Eq. (6a).
Fig. 5A displays the simulated dipolar signals with
SNR of 30 before (lower trace; i.e., the intramolecular
signal) and after a second-degree polynomial baseline
is added (upper trace). The original P (r) for the intra-
molecular spin pairs is shown in Fig. 5B as well as the
MEM estimates obtained from the baseline-added sig-
nals for the cases of SNR � 100 and 30. The recovered
distribution for a SNR � 100 is very good. With the ini-
tial values seeded with the TIKR results, the program
returns good approximations for both the inserted base-
line and the original distribution. The recovered distri-
bution for the case of a SNR �30 is quite good. It is
almost the same as the case obtained in the absence of
any baseline, (cf. the dashed line in Fig. 3A). This indi-
cates that the proposed method, i.e., to minimize Eq. (5)
including the presence of a baseline (e.g. Eqs. (6a)–(6c)),
is a viable approach.

The computation times required for the TIKR and
MEM calculations are quite different. Typically, the
determination of a distribution, whose solution vector
length is 150 and with SNR � 30 in the time-domain sig-
nal, requires more than an hour usingMEMand less than
aminute using TIKR to complete the calculations for 200
k values. It requires at least double this time for theMEM
if fitting the baseline is included in the calculation. Actual
computation time varies with the baseline function. The
computations were performed on a Linux-operating PC
(CPU: Intel Pentium IV 2.0 GHz; RAM: 2 GB).
Fig. 7. The regularized distributions recovered from the dipolar
signals of the T4L 61/80 mutant obtained from six-pulse DQC-ESR
at 17.3 GHz. The distributions obtained from TIKR and MEM (Eq.
(5)) are plotted by dashed and solid lines, respectively. The distribution
obtained from minimizing the MEM functional that includes Eq. (6a)
is plotted by the dotted line. The coefficients for the extracted baseline
(cf. Eq. (6a)) are (a0,a1) = (0.19,�0.09); this is to be compared to an
initial signal [i.e., S (t = 0)] magnitude of 1.55.
4. Results for the experimental data

The experimental data (i.e., the manually pre-pro-
cessed baseline-subtracted data) that we previously ana-
lyzed using TIKR was used without any modifications
in this report on the MEM analysis. Hereafter, we call
the experimental signals before and after baseline sub-
traction as ‘‘raw experimental signals’’ and ‘‘intramolec-

ular dipolar signals,’’ respectively. The latter is the
‘‘baseline-subtracted’’ signal obtained using Eqs. (6a)–
(6c) to manually remove the intermolecular component.
Two proteins were studied, T4-lysozyme (T4L) and iso-
cytochrome c (iso-1-cyt c). They were performed using
the DQC and DEER techniques, respectively. The resi-
dues of interest were substituted by cysteines and labeled
with the nitroxide spin label, (1-oxyl-2,2,5,5-tetramethyl-
3-pyrroline-3-methyl) methanethiosulfonate (MTSSL).
Further details about the materials used and the six-pulse
DQC and four-pulse DEER experiments at 17.3 GHz
are given elsewhere [2,7].

The distance distributions of spin-pairs recovered by
TIKR and MEM from the ‘‘intramolecular DQC
dipolar’’ signals of the T4L 65/135 and the T4L 61/80
mutants are shown in Figs. 6 and 7, respectively, by
dashed and solid lines. The P (r) obtained directly from
the ‘‘raw experimental’’ signal by minimizing the MEM
functional Eq. (5) that includes Eq. (6a) is plotted as a
dotted line. In Fig. 7 the main part of the P (r) is consis-
tently recognized as bimodal from the three results. The
non-negative P (r)�s that are obtained by MEM are more
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appropriate than those obtained previously by TIKR
[2]. The main portion of the distributions obtained from
the MEM and TIKR regularizations are otherwise near-
ly the same. This supports our previous contention that
the oscillations in the peripheral region of the TIKR dis-
tribution do not significantly affect the main part of the
distribution, so they can be disregarded in the TIKR re-
sults [2]. The MEM results from the raw experimental
signals are seen to suppress the oscillations in the wings
more effectively than those from the intramolecular
dipolar signals. The parameters from fitting the baseline
function, Eq. (6a), are given in the captions of Figs. 6
and 7 and are found to be very small, as expected for
low spin concentrations. In fact, they are of the order
of estimated experimental uncertainties.
Fig. 8. The pair distance distributions for three different folding states reco
from four-pulse DEER experiments at 17.3 GHz. The intermediate sta
concentrations, [GdnHCL] = (A) 0, (B) 0.7, and (C) 1.5 M, respectively. Th
distributions obtained from TIKR and MEM (Eq. (5)) are plotted by dashed
the MEM functional that includes Eq. (6b) is plotted by the dotted line. Th
corrected in the MEM results. The coefficients for the respective extracted bas
(2.52,�0.36,0.03), and (2.43,�0.51,0.05). The respective magnitudes of the
The results from the DEER signals for the P (r) of the
iso-1-cytochrome c doubly labeled at S47C and K79C
are shown in Fig. 8. They provide insight into the con-
formations of possible folding intermediates. Fig. 8 in-
cludes results for three different conformational states
of the iso-1-cyt c: (a) the completely folded state, (b) par-
tially unfolded state, and (c) a more unfolded state [2].

Overall, the P (r) recovered by MEM are consistent
with our previous results obtained by TIKR (cf.
Fig. 8). Before discussing the P (r) recovered from the
raw experimental data, we first focus on the minor dif-
ferences between the results of the two regularization
methods (MEM vs. TIKR) applied to the intramolecu-
lar dipolar data and summarize them as follows: (i)
the undesirable oscillations around zero in the wings
vered from the dipolar signals of the iso-1-cyt c S47C/K79C obtained
tes of the protein are maintained by guanidinium hydrochloride
e iso-1-cyt c is fully folded and unfolded at 0 and 2 M GdnHCL. The
and solid lines, respectively. The distribution obtained from minimizing
e oscillations around zero, which appear in the TIKR results, are all
elines, from (A to C), are (cf. Eq. (6b)) (a0,a1,a2) = (2.29,�0.25,�0.06),
initial signal [i.e., S (t = 0)] are 2.41, 2.61, and 2.50, respectively.
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of P (r) are completely suppressed in the MEM results,
as we expected; this is very desirable here, since they
are very substantial in the TIKR result. (ii) There are
some high-frequency oscillations that appear in the main
distribution of the MEM results (the solid lines in Figs.
8B and C), which are not seen in the TIKR analysis.
According to the model test results for low SNR (cf.
Figs. 3B and 4C), we attribute such oscillation as mainly
due to the substantial noise level in the data and partial-
ly due to the inaccuracy of the baseline subtraction (dis-
cussed later). This may indicate a limitation of MEM for
dealing with cases of more severe noise. In the results for
T4L in Figs. 6 and 7 the SNR was higher than those for
Fig. 8 (cf. Figs. 7–11 in [2] for the time evolution sig-
nals). This may be why there are no such high-frequency
oscillations in Figs. 6 and 7. To summarize, we suggest
that the superposition of the MEM results with those
from TIKR, as in Fig. 8, provides useful insight into
the P (r) where one should emphasize the respective
strengths (and de-emphasize the weaknesses) of the
two methods.

The P (r) recovered from the raw experimental data
by minimizing the MEM functional Eq. (5) with Eqs.
(6a)–(6c) are shown by dotted lines in Fig. 8. In this
study we found that the baseline contributed from the
intermolecular interactions is very significant because
of the high protein concentration. The concentration
of cytochrome c was five times that of T4 lysozyme in
the DQC experiment. This substantially increases the
signal intensity from the intermolecular interactions,
and also reduces the intramolecular dipolar oscillation,
thereby raising a large challenge for the CG algorithm
to search for the global minimum. When we initially
used a zero vector as the initial condition for the base-
line we obtained noise-like distributions for P (r). This
indicated that the seed is far from the global minimum.
A physically meaningful distribution (i.e., not noise-like)
was not obtained until we used reasonable seed values
for the baseline, which were obtained by fitting a sec-
ond-degree polynomial to the last three quarters of the
time-domain raw data [27].

Overall, the averages of the distributions obtained by
each of the three methods in Fig. 8 agree within estimat-
ed error (ca. ±0.2 nm). The high-frequency oscillation in
the main distribution observed in the MEM result from
the intramolecular dipolar data is absent in the MEM
result from the raw experimental data for the cases of
Figs. 8A and C. These latter results (plotted as dotted
lines) converge more nearly to the initial distributions,
i.e., the TIKR results in the main portion of P (r) with
more nearly zero values for P (r) in the wings of the dis-
tribution. To check this convergence, we repeated the fit-
ting to the raw experimental data using the MEM results
(i.e., the solid lines) as the seed distributions, and we
found that they still converge more closely to the TIKR
distributions (i.e., the dashed lines) in the central region
of P (r). It is likely that oscillations in the main part of
P (r) are suppressed because the intermolecular interac-
tion is more properly fit using the raw data and Eq.
(5) with Eqs. (6a)–(6c). As for Fig. 8B, the artifactual
oscillations remain in the main part of the distribution,
obtained from the raw data and MEM, whether we
seeded the calculations with either of the two other dis-
tributions. Perhaps a higher order polynomial approxi-
mation (cf. Eq. (6c))for the baseline is required for this
case. Overall these results indicate that incorporating
an approximate function for the baseline into the
MEM functional is a valuable asset to the analysis.
5. Discussion

5.1. MEM used as a complement to Tikhonov

regularization

The maximum entropy method of regularization has
been rigorously examined for its stability as well as its
convergence [25,26], and was previously mainly applied
to analyses of sums of exponentials [39]. The previous
study which most relates to our present study is that
of Amato and Hughes [15]. They demonstrated the con-
vergence of the solution of the minimization problem
(i.e., Eq. (5)) by showing the procedure leads to a valid
regularization method. In addition, they compare the
performance of MEM vs. TIKR by several numerical
experiments. Their results indicate that MEM is inferior
to TIKR for a one-dimensional Fredholm equation of
the first kind when P (cf. Eq. (5)) is not close to zero,
but better when P is close to zero. Another study, how-
ever, concluded that there are no clear criteria when to
prefer one over the other [33]. Performance may vary
with the kernel functions. Our report may be considered
as proposing a regularization scheme for the determina-
tion of P (r) which employs both TIKR and MEM. This
scheme benefits from the virtues of TIKR, which pro-
vides a much faster and direct regularization calculation
(cf. Eq. (2b)) as compared to MEM which requires an
iterative CG algorithm with good seed values. On the
other hand MEM constrains the regularized solution
to be non-negative, it suppresses undesirable noise in
the wings of P (r), and the intermolecular ‘‘baseline’’
can be fit without further complicating the algorithm.

Our method using MEM as a complement to TIKR is
developed in this context. As we have discussed before
[2], the most important advantage of using TIKR with
the regularization parameter determined by the L-curve
criterion is that it provides a fast regularization algo-
rithm and a graphical presentation (i.e., L-curve) for
examining how much the penalty term is weighted in
the calculation. Because the TIKR regularized solution
is in a quadratic form (cf. Eqs. (1), and (2a), (2b)) and
readily solved by SVD, it is uniquely determined for
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each given regularization parameter. The regularized
solution of TIKR is not affected by other minimization
parameters, such as the convergence and iteration step
parameters required for performing CG algorithm in
MEM regularization or other algorithms.

In our model tests MEM is found more useful for
recovering original distributions for the bimodal and
box-like models under the condition of SNR � 30 than
TIKR. However, this was the case only if the TIKR re-
sult was used as the initial distribution for MEM regu-
larization. Our regularization procedure is summarized
in the following.

(1) Obtain an approximation for the intermolecular
contribution to the dipolar signal using manual baseline
subtraction methods [7,27]. Then perform TIKR to ob-
tain a solution for P (r) with an optimal regularization
parameter determined by the L-curve criterion.

(2) Use the P (r) obtained in step 1 as the initial con-
dition and the prior distribution, Po for MEM regulari-
zation. Note that we first set the negative values of P (r)
in the TIKR result to be positive but close to zero before
substituting into the MEM regularization, since negative
values are not allowed as arguments of the logarithm in
Eq. (5). One has two choices in employing Eq. (5).
Either manually preprocess the raw experimental signal
to remove baseline and then apply Eq. (5), or else use
Eq. (5) with Eqs. (6a)–(6c) to allow the baseline to be
fit as part of the MEM regularization. In the latter case
it is helpful to use the manual estimate of the baseline to
seed the MEM. Our results indicate a preference for the
latter method.

(3) The optimal regularization parameter kopt for the
MEM functional (Eq. (5)) may also be estimated by
application of the L-curve criterion, i.e., it is taken as
the value for k corresponding to the point of the maxi-
mum curvature of the L-curve whose x- and y-axis are
the residual norm and the modified entropy term,
respectively. Care must be taken to avoid unstable re-
gions in the L-curve plot. We must caution the reader
that the mathematical validity for the L-curve criterion
in MEM has never been rigorously studied. However,
we have found from our model studies that, while the
L-curve plot no longer has a distinct L-shaped elbow
in most cases, the maximum curvature criterion is still
robust and useful for selecting an optimal regularization
parameter. This is different from a report that an L-
shaped curve may not appear in some numerical studies
[40]. The study of other methods for selecting the kopt in
the MEM functional is very limited. Generalized cross
validation (GCV; [41]) has been employed [15,42], as
has manual assignment [25,26].

MEM has recently been used to extract the distribu-
tion of first order rate constants from fluorescence reso-
nance energy transfer (FRET) experiments from which
distances between donor and acceptor labeled residues
in proteins were estimated [43,44]. That MEM applica-
tion is different from what we have discussed in this
work in the following respects: (i) the kernel functions
for the FRET (a sum of exponential decays) and for
pulsed ESR (Pake doublets) are different, which likely
implies different ill-posed behavior for the respective
problems; (ii) the ill-posed problem of FRET was solved
by considering two solutions for the distance distribu-
tions, i.e., one narrow P (r) obtained from non-linear
least squares fits subject to a non-negativity constraint
(cf. the LSQNONNEG subroutine in Matlab), and
one broad P (r) determined by minimizing a MEM func-
tional; (iii) the resolution for the estimate distribution
P (r) (i.e., dimension of the solution vector) shown in
[43,44] is much reduced (by a factor of about 10–100)
than we obtain (cf. Section 4). (Note that the instability
of an ill-posed problem can be subdued by reducing the
size of the regularized solution vector, which has the
same effect as preventing small singular values from con-
tributing to the solution). It is not possible to compare
further the two MEM regularizations since several key
issues were neither shown nor discussed in those applica-
tions [43,44], (e.g., the MEM functional, the method
used for the functional minimization, the initial seed
for the minimization algorithm, and the definition of
the L-curve axes), and, most important, they were used
to solve different problems. However, the maximum
entropy application to the analysis of FRET supports
our work in the following two aspects: (i) the L-curve
criterion seems to be a useful criterion in finding a bal-
ance between the least squares fits and the entropy; (ii)
the use of entropy provides a natural and unbiased
way of constraining the regularization solution to be
non-negative.

5.2. Implications for other approaches to the

regularization

In addition to the L-curve method used in [2], the
self-consistent (SC) method has been used for selecting
an optimal regularization parameter in TIKR in the
determination of spin-pair distance distributions from
pulsed ESR experiments [3]. The SC-method [13] relies
on an iterative approach to determine kopt in a self-con-
sistent manner; whereas, the L-curve method [37] finds
kopt by making use of a posteriori regularization infor-
mation, i.e., the residual and solution norms for all the
tested regularization parameters plotted on the L-curve.
Using the models of bimodal and box-like distributions,
we found it is not possible to draw a clear conclusion as
to which is better for the tested noise conditions,
SNR � 500, 100, and 30. However, we did find that
the SC-method with non-negativity constraint, (let us
call this the modified SC-method; [13]) was not as suc-
cessful as the L-curve criterion, especially for the broad
trimodal distribution with SNR � 30 as noted in [2] (cf.
Fig. 4B for the L-curve result and Fig. 4b in [3] for the
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modified SC result). The functional to be minimized in
the modified SC-method is a combination of the TIKR
functional and an additional constraint term to ensure a
non-negative solution. This may have interfered with the
objective of TIKR of introducing the penalty term by
means of a regularization parameter to stabilize the
solution, because the contribution from the extra term
to the functional is not controlled by any regularization
parameter. As for the minimization algorithms, the esti-
mated P (r) from the modified SC-method is obtained by
a functional minimization procedure [13,14] where the
SC-method result is used as the initial condition. In
other words, the idea of minimizing the MEM function-
al using TIKR result as initial condition that we pro-
posed here is similar to that aspect of the modified
SC-method, but the two functionals are different. Both
methods require good seeds to avoid undesired local
minima. From these considerations, one might prefer
to use MEM when a non-negative structure on the reg-
ularized solution is required. A method that performs
MEM regularization using the result of the SC-method
as the initial condition might be useful.
6. Summary

The maximum entropy regularization method for the
determination of distance distributions of spin-pairs
directly from pulse ESR dipolar signals has been intro-
duced as a complement to Tikhonov regularization in
this study. From the model distributions investigated,
it is clear that the Tikhonov regularization must first
be used. The MEM regularization, which implicitly
guarantees a non-negative solution, can then be used
to refine the TIKR result that implicitly guarantees a
non-negative solution. Its main improvement to the
TIKR distribution is the removal of negative and
positive oscillations in the wings of the distance distribu-
tion. For SNR less than or comparable to 30, MEM reg-
ularization is often useful to refine the TIKR result to
provide a better resolution. In addition, MEM regulari-
zation, which is implemented iteratively, can be readily
modified to incorporate effects of intermolecular dipolar
interactions that are embedded in the raw experimental
data as a ‘‘baseline.’’ The proposed method, tested on
model and experimental data, was found useful for
determining both the baseline and pair distance distribu-
tion functions simultaneously. This report, for the first
time, provides an iterative regularization method for a
direct determination of the two functions. The method
for determining an optimal regularization parameter
for the MEM functional is crucial to the MEM regular-
ization. This topic has never been extensively investigat-
ed using existing methods, such as L-curve, GVC, SC,
etc. The reason probably is the TIKR regularization
is sufficient for solving ill-posed problems in general
applications. In this report we have studied this topic
and derived an empirical rule, which is based on the
L-curve criterion, for selecting an optimal regularization
parameter of the MEM functional according to the
numerical experiments performed.

It is suggested that in the post-proteomic era, which
focuses on interactions between various structural do-
mains, one would employ TIKR to quickly obtain an
estimate for the pair distance distribution for all the
bilabeled protein mutants and then refine those distribu-
tions, which are of most interest, using MEM with a
greater expense in computational time.
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