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ABSTRACT: We adapt a new wavelet-transform-based method of
denoising experimental signals to pulse-dipolar electron-spin reso-
nance spectroscopy (PDS). We show that signal averaging times of the
time-domain signals can be reduced by as much as 2 orders of
magnitude, while retaining the fidelity of the underlying signals, in
comparison with noiseless reference signals. We have achieved
excellent signal recovery when the initial noisy signal has an SNR ≳
3. This approach is robust and is expected to be applicable to other
time-domain spectroscopies. In PDS, these time-domain signals
representing the dipolar interaction between two electron spin labels
are converted into their distance distribution functions P(r), usually by
regularization methods such as Tikhonov regularization. The
significant improvements achieved by using denoised signals for this regularization are described. We show that they yield
P(r)’s with more accurate detail and yield clearer separations of respective distances, which is especially important when the
P(r)’s are complex. Also, longer distance P(r)’s, requiring longer dipolar evolution times, become accessible after denoising. In
comparison to standard wavelet denoising approaches, it is clearly shown that the new method (WavPDS) is superior.

1. INTRODUCTION

1.A. Background. Pulsed dipolar ESR spectroscopy (PDS)
is a powerful biophysical method for the study of the structure
and function of biological systems.1−9 It has been applied
mainly to proteins and protein complexes, which possess either
endogenous paramagnetic centers10−12 or engineered sites to
which paramagnetic tags (spin-labels) are covalently at-
tached.13,14 PDS measures the strength of the magnetic
dipole−dipole interaction between electron spins,1,2,4 usually
carried by the attached spin-labels. However, in many cases
studying the system of interest by PDS is a challenging task due
to several factors, such as low protein concentrations available
in a particular experiment, and/or short phase memory
relaxation times (Tm’s) causing a fast decay of the dipolar
signal over a few microseconds, particularly in the case of
membrane proteins. All these obstacles lead to dipolar
evolution signals in the time domain often with insufficient
signal-to-noise ratios (SNR). Thus, very long time-averaging of
the PDS signals is frequently needed to obtain reliable data for
further analysis to reconstruct accurate distances and distance
distributions that report on the protein structure. Several
approaches have been used to overcome these challenges:
solvent deuteration,3,15,16 and also partial17 or complete18

protein deuteration; the building of spectrometers with
increasing sensitivity, either by several research groups19−22

or by commercial means; and the development of new pulse
sequences that enhance the accessible distance range and allow
samples with reduced protein concentration to be used.23,24

Yet, new methods for improving the SNR of PDS experiments
remain needed.
Herein we report our development of a novel wavelet-

transform denoising method,25 which provides significant noise
removal in time-domain signals while preserving the fidelity of
the underlying original signals. It is a powerful approach and
can be used to obtain good PDS data from noisy signals. The
method provides multiresolution analysis that enables time-
frequency decomposition of the signal; i.e., it informs which
frequencies occur at what time instances, which helps to
separate the signal from the noise.26−30 The method
significantly improves on existing wavelet denoising methods
by providing a much larger increase in SNR with virtually no
distortion of the underlying signal.
Although we focus on the application to time-domain ESR,

we note that it is equally applicable to other physical chemical
techniques that examine time-domain signals.
To demonstrate the new denoising method as applied to

PDS, we used data for doubly spin-labeled cysteine mutants of
T4 Lysozyme (T4L) as well as model data of unimodal and
bimodal Gaussian distance distributions.
We show that with this new method of denoising the time-

domain signal improves the stability of the reconstruction of
the interspin distance distributions, and therefore the reliability
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of the results. Also, we demonstrate that signal acquisition
times can be reduced by at least an order of magnitude and still
yield high-quality results after denoising. The results from
denoising of the bimodal model and bimodal experimental data
show that the method can be applied with very high accuracy to
more complex PDS signals typical of multiple interspin distance
distributions. Thus, the challenge of obtaining PDS time-
domain signals with high SNR is much reduced, so that systems
at low spin concentration and systems that produce rapidly
decaying PDS signals due to short Tm’s become more amenable
to study. We strongly believe that the denoising method
described here will greatly benefit the field of PDS studies. In
addition, this method should apply to other experimental fields
where noisy time-decay signals are observed, such as nuclear
magnetic resonance spectroscopy,31 infrared spectroscopy,32

optical spectroscopy,33 and others.
1.B. Conversion of Pulse-Dipolar Signals to Distance

Distributions. The signal from an ensemble of proteins with
two spin labels each is given as

∫ κ =r t P r r S t( , ) ( ) d ( )
R

R

min

max

(1)

where κ(r,t) represents an orientationally averaged signal from
a spin pair at a given r, P(r), is the distribution in distance
between the spin pairs, and S(t) is the PDS signal. In discrete
matrix form, it can be written as

=P SK (2)

which is especially appropriate for discrete time data
acquisition. The signal S(t) is acquired from the PDS
experiment. To obtain the distance distribution P(r), the
inversion of K is required (i.e., P = K−1S), which is an ill-posed
problem. As the determinant of K is zero or near zero, there are
many possible solutions for the distance distribution P. Also,
this inversion is easily corrupted by the noise in the
experimental results. To overcome these problems and obtain
a stable and desirable solution P, methods like Pake pattern
function,34 direct conversion,35 singular value decomposition
(SVD),36 model fitting,37−48 polynomial interpolation,49

coordinate transformation,50 Tikhonov regularization
(TIKR),36,41,49,51,52 and regularization using Monte Carlo
calculations53 have been used. The basic SVD used to invert
K and to obtain P is given by

∑
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(3)

where ui and vi are column vectors of unitary matrices U and V,
obtained in the SVD of the matrix K, and the σi are the
individual singular values of the diagonal matrix Σ obtained
from K, and p is the length of the input signal S(t).36 Given the
instability of eq 3, the TIKR method is often used.36,41,49,51 It
minimizes the function

ϕ λ≡ || − || + || ||P P S LPK[ ] minTIKR
2 2 2

(4)

where λ is the regularization parameter and L is the
differentiation operator. Equation 4 leads to the unique
distance distribution given by

λ= +λ
−P SK K K( )T 2 1 T

(5)

For practical implementation, eq 5 can be rewritten in terms of
the SVD (cf. eq 3) as

λ= Σ + Σλ
−P I SV U( )2 2 1 T

(6)

Equation 6 can be rewritten and solved as a sum of singular
value contributions:36,51

∑
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Figure 1A shows the block diagram of the standard approach.
Limitations:

(1) The ill-posed problem of eq 3 is highly sensitive to noise
present in the signal, for which the method of eq 7 has
some effectiveness. In suppressing noise, this method
tends to lead to broader distance distributions. The
broadening of the distance distribution is attributed to
the removal of the contributions from the smaller

Figure 1. Block diagrams for determining distance distribution P(r) from the dipolar signal by Tikhonov regularization using L-curve criterion: (A)
standard approach; (B) new approach after WavPDS denoising.
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singular values, for which σi
2 ≪ λ2, by the filter function

f i. But incorporating contributions of smaller singular
values, which are substantially corrupted by noise, would
yield an unstable solution. Hence, there is a trade-off
between an unstable solution and a reduction of
resolution in the distance distribution due to the
presence of noise, which requires the removal of
contributions of smaller singular values.

(2) It is difficult to obtain a high SNR using longer dipolar
evolution times. At longer evolution times, the SNR
becomes poorer by increasing the instability in the
distance distribution. Hence, smaller evolution times are
typically used with relatively higher SNR to obtain a
more stable distribution, but at a loss of resolution in the
distance distribution. This is especially a problem for
longer distances.

In this paper, we present our method to denoise the dipolar
signal to retrieve a noise-free signal, and subsequently yield
stable and accurate distance distributions. Figure 1 shows the
block diagram of the TIKR process with and without applying
wavelet denoising.
1.C. Wavelet Transform and Discrete Wavelet Trans-

form. A wavelet transform (WT) provides the time-frequency
decomposition of a signal. This helps to separate noise and
signal, as they typically do not possess the same time-frequency
patterns. The wavelet transform of a signal S(t) is given
as26,28,29

∫τ ψ τ=
| |

* −
−∞

+∞
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⎝

⎞
⎠F s

s
S t

t
s

t( , )
1

( ) d
(8)

where τ (a time) and s (an inverse frequency) are respectively
known as the translation and scale parameters, S(t) is the input
signal, F(τ,s) is the WT of the signal as a function of τ and s,
and ψ*(t) is the complex conjugate of the wavelet function
ψ(t); for real wavelets, ψ*(t) = ψ(t). As can be seen from eq 8,
τ and s allow the study of time−frequency information on the
input signal by varying the window width s and its translation τ.
However, it is computationally cumbersome to perform the
WT calculation for all the possible values of τ and s.
By analogy to the fast Fourier transform, the discrete wavelet

transform (DWT) is used to calculate the wavelet transform in
a computationally less expensive manner. The DWT is given
as26,29,54

∑ ψ= −
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−
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j j
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/2

(9)

where now s = 2−j and τ = n2j, with j and n integers, tm is the
discretized time, S[tm] is the discretized input signal, p =
length(S[tm]), and Dj[n] is the discrete wavelet transform (also
called the Detail component) of S[tm] at scale 2

j, also known as
the Decomposition level j. This represents an expansion of the
function S(t) in an orthonormal set of wavelet functions
expressed in eq 10.29
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Here L is the discrete length of the wavelet function that is a
characteristic of the particular wavelet used. The number of
Decomposition levels allowed is N, where N = |log2 p|, i.e., 1 ≤ j
≤ N, where N refers to the lowest frequency sub-band. The

dyadic scale (i.e., s = 2−j) is selected so that the Detail
components Dj[n] represent nonoverlapping frequency
bands.30 However, at Decomposition levels 1 to j, only
frequency sub-bands represented by them are wavelet-trans-
formed, requiring that the remaining frequency band to
reconstruct the original signal also be obtained. Even at j =
N, there is a low-frequency sub-band that is not covered
because j is still constrained by the discrete finite signal of step
length given by p. The remaining low-frequency information
contained in the wavelet transform of the signal is given by the
Approximation component, which is defined as

∑ ϕ= −
=

−

A n S t t n[ ] [ ]2 [2 ]j
m

p

m
j j

m
0

1
/2

(11)

where Aj[n] is the Approximation component at the jth
Decomposition level, and ϕ[tm] is the discrete scaling function
that allows the calculation of the low-frequency part of the
wavelet transform of the input signal. The wavelet function
ψ[2jtm − n] and the scaling function ϕ[2jtm − n] derived from it
are orthogonal and of the same length.26,29 The input signal can
be recovered using the inverse discrete wavelet transform
(IDWT) from the Dj[n] of eq 9 and the Aj[n] of eq 11.26,29,54

We show in Figure S1 the decomposition of an actual PDS
signal into a sequence of Detail and Approximation
components.

2. METHOD
2.A. Wavelet Denoising. The Detail components in the

DWT allow the separation of signal and noise.54,55 Moreover,
given a good choice of wavelet family, the signal, which is
coherent, will have a large magnitude in a few wavelet
coefficients and will occur at the same location at the different
Detail components. By contrast, random noise will have many
wavelet coefficients with small magnitudes that vary in location
at the different Detail components. To denoise the signal in the
DWT, the following four general steps are required,56 which we
describe in terms of our new method.25

(a) The selection of an appropriate wavelet. We use “db6”
from the Daubechises wavelet family57 in this study.
They are illustrated in Figure S2. This wavelet correlates
very well with the signal properties of decaying
oscillatory time-domain signals. This results in effective
separation of signal and noise by increasing the difference
between their wavelet coefficient patterns.

(b) The selection of the maximum Decomposition level
needed to properly denoise the Detail components and
the Approximation component. Smaller or greater
maximum Decomposition levels can result in under-
denoising or signal distortion, respectively. We use the
criterion {Sj < Tr, Sj+1 > Tr, when k = j}, where k is the
maximum Decomposition level needed, Tr is the
criterion to distinguish between noisy and noise-free
Detail components discussed below, and Sj is the “peak-
to-sum ratio”, given as

=
∑ =

S
D

D n

max( )

[ ]j
j

n
q

j1
i

(12)

Thus, Sj is a measure of the sparsity of the jth
Decomposition level. It is calculated separately for
negative and positive coefficients (Sj,L and Sj,H,
respectively) at the jth Decomposition level.
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(c) To separate the noise coefficients from the signal
coefficients, selection of noise thresholds for each Detail
component. As mentioned above, the noise coefficients
will have smaller magnitudes than the signal coefficients;
i.e., the maximum magnitude of noise coefficients should
be less than the minimum magnitude of signal
coefficients. We use two thresholds, lower and upper,
for negative and positive coefficients. They are calculated
as λj,M = μj − κj,Mσj, where M = L or H corresponding to
the lower and upper thresholds, respectively, for the
Detail component at the jth Decomposition level, μj and
σj are the mean and standard deviation, respectively, of
the Detail component at the jth Decomposition level,
and κj,L and κj,H are adjustable parameters; our previous
paper25 describes how to obtain these values on the basis
of the associated Sj,L and Sj,H values.

(d) The selection of the noise thresholding function to apply
to the noise thresholds: We have devised a condition in
ref 25 that leads to the use of wavelets such that a
coefficient in a Detail component is either a noise or a
signal coefficient provided the SNRs are above some
minimum value. We have carefully confirmed that the
wavelets in this study as well as those in ref 25 satisfy this
condition, resulting in successfully denoising at a
minimum SNR compared to the cases of other standard
wavelet families. This enables us to use as the
thresholding function

λ λ
′ =

< <
⎪
⎪⎧⎨
⎩

D n
D n

D n
[ ]

0, for [ ]

[ ], otherwise
j

j j j H

j

,L ,

(13)

where Dj[n] and Dj′[n] are the noisy and denoised Detail
component, respectively, at the jth Decomposition level.

In addition, we carry out two more steps tailored to the
needs of a rapidly decaying signal versus time. First, the signal is
flipped from left to right in time (i.e., time is reversed) before
taking the DWT to avoid distorting the initial (t = 0) signal.
Reversing the signal results instead in having small, near-zero,
magnitudes at the start, allowing more accurate DWT of the
stronger part of the signal. The DWT of the flipped signal, of
course, contains the same information as that of the nonflipped
signal.
Second, the signal is divided into two parts: higher SNR and

lower SNR regions. Although the noise content is the same, the
higher SNR part for earlier times contains signal that is less
affected by noise, whereas noise tends to be dominant in the
low-SNR part. Therefore, the number of Detail components to
denoise is different for both. Moreover, the separation into
lower and higher SNR parts avoids an overlap between the
signal wavelet coefficients of the higher SNR part and the noise
wavelet coefficients of the lower SNR part, preventing under-
denoising or signal distortion. Figure 2 compares in block
diagram form a standard wavelet denoising method (2A) with
our new denoising process (2B)25 and the modified version for
time-domain signals (2C).
We call our denoising method with the additional

modifications “WavPDS” for PDS signals.
2.B. Difference between the New Method and

Standard Methods. Standard wavelet denoising methods
are vulnerable to signal distortion and under-denoising, as they
are not able to effectively remove some noise coefficients and/

or may remove some signal coefficients in the wavelet domain
(Figures S3−S8).27,56,58,59 WavPDS avoids this by using our
new method,25 which objectively selects the number of

Figure 2. (A) Block diagram of a standard wavelet denoising method.
(B) Block diagram of the new wavelet denoising method.25 (C) Block
diagram of WavPDS. S(t) and S′(t) are the noisy and denoised signal,
respectively; Dj and D′j are the noisy and denoised Detail components
at the jth Decomposition level, respectively; Aj and A′j are the noisy
and denoised Approximation components at the jth Decomposition
level, respectively; DWT and IDWT represents discrete wavelet
transform and inverse wavelet transform, respectively. (Parts A and B
of Figure 2 are reprinted with permission from ref 25. © 2016 IEEE.)
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Decomposition levels to denoise, calculates the adaptive noise
thresholds on the basis of statistics of wavelet coefficients using
a new formula, uses separate noise thresholds for positive and
negative wavelet coefficients, and removes low-frequency noise
by denoising the Approximation component (cf. the block
diagrams in Figure 2A−C).25 The upshot of these features as
discussed in section 4, item 5 is that WavPDS is more
successful in removing the noise coefficients in the Detail
components representing high-frequency sub-bands and only
WavPDS removes the lowest frequency noise present in the
final Approximation component.
2.C. Spurious Peaks. Although noise in the signal is a

source of spurious or unwanted peaks in the distance
distribution, the removal of the smaller of singular values,
which are corrupted by the noise, also contributes to the
spurious peaks. To demonstrate this, we generated a model
unimodal Gaussian distribution centered at 5 nm with a
standard deviation 0f 0.3 nm. Then, a model signal was
generated for 3 μs using this model distance distribution. The
distance distributions were reconstructed by using different
λTIKR values in the TIKR36 followed by the maximum entropy
method (MEM).51 MEM was used largely to remove negative
values of P(r) that emerged from the TIKR.51 Figure 3 shows

different P(r)’s generated using different λTIKR values. The
original P(r) (in pink) is given by the model and is also
obtained from the model S(t) as expected (Figure 3A) after
TIKR using the L-curve36 (cf. sections 3.A and 3.B). Figure 3
shows that the distribution narrows with smaller λTIKR values,
i.e., more contributions from smaller singular values. This result
is also expected. However, Figure 3 also shows the presence of
spurious peaks despite using a noise-free model. These spurious
peaks (and negative values not shown in Figure 3 because
MEM has been applied) are due to the removal of
contributions of the smaller singular values. Thus, spurious
peaks are generated not only due to the presence of noise but

also due to the absence of contributions of the smaller singular
values, which are expunged by the TIKR method for singular
values where for σi

2 ≪ λTIKR
2.

2.D. Objective Measures. The SNR, χ2, and structural
similarity index measure (SSIM)60,61 are used as objective
measures to compare the results of noisy and denoised signals
with respect to a reference signal. The SNR provides the
estimate about the noise in the noisy or denoised signal, χ2

provides the closeness of fit, and the SSIM provides the
similarity of the noisy or denoised signal with respect to a
reference signal in terms of their shape and structure. The SNR
is calculated as

=SNR
signal

noise
peak

RMS (14)

Also χ2 is the root-mean-square (RMS) error defined as

∑χ ≡ −
=p
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where X and Y are input and reference signals, respectively. The
SSIM is calculated as
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1 2
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1
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where μ and σ are mean and standard deviation, respectively,
and c1 and c2 are positive integers used to stabilize each term.
They are given in the standard MATLAB package. The SSIM
values range from −1 to 1, where an SSIM of 1 means X is
identical to Y.60

2.E. ESR Method and Sample Preparation. DEER
experiments at 17.3 GHz were conducted on several samples of
double cysteine mutants of bacteriophage T4 lysozyme (T4L)
spin-labeled with MTSL ((1-oxyl-2,2,5,5-tetramethyl-d3-pyrro-
line-3-methyl)methanethiosulfonate). These T4L mutants were
generated by site-directed mutagenesis using the Quick-
Exchange Multi Site-Directed Mutagenesis Kit (Agilent
Technologies, Stratagene Products Division), expressed in E.
coli BL21(DE3) cells, and purified and spin-labeled as
previously described.62 After spin-labeling and removal of
unreacted MTSL, the protein concentration was determined
from the UV absorbance at 280 nm.62 The following samples of
spin-labeled T4L were studied: (i) sample 1, 63 μM of mutant
44C/135C; (ii) sample 2, mixture of mutants 8C/44C and
44C/135C at concentrations of 44 and 47 μM, respectively. In
both cases, the buffer composition was 25 mM Tris/25 mM
MOPS pH 7.6, 1 mM EDTA and 10% Gly (w/v); before
freezing for PDS measurements, an extra 20% Gly-d8 (w/v)
was added to the samples. Therefore, it should be noted that
the protein concentrations given above are those before the
extra 20% Gly-d8.
Four-pulse DEER2,63 measurements at 17.3 GHz and 60 K

were performed using a home-built Ku-band pulse spectrom-
eter under standard experimental conditions.1,3,19 The spec-
trometer tune-up was, as usual, done by using both the primary
and refocused echoes, which are much stronger than the DEER
signal, so there was no difficulty tuning up even for a very dilute
sub-micromolar concentration sample of labeled protein
(Figure S9). The π/2−π−π DEER pulse widths were 16, 32,
and 32 ns, respectively, and the π pump pulse was 32 ns. A
frequency separation of 70 MHz between detection and pump
pulses was used. The detection pulses were applied at the low-

Figure 3. Comparison of distance distributions with different λ values
for Tikhonov regularization of the model signal. The model signal was
generated from a Gaussian distribution centered at 5 nm with a
standard deviation of 0.3 nm. (Note: MEM51 was used to constrain
P(r) ≥ 0.)
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field edge and the pump pulse was positioned near the center of
nitroxide spin-label spectrum, close to the maximum. DEER
time-domain signals of 4−5 μs dipolar evolution times were
collected. Three data sets at different DEER signal averaging
times were produced for each sample, resulting in widely
different SNR. From these time-domain DEER data, interspin
distance distributions were reconstructed using TIKR36 and
refined by MEM51 to constrain P(r) ≥ 0. Because sample 1
contained just one doubly spin-labeled protein mutant, it
produced a unimodal distance distribution, whereas sample 2
produced a bimodal distance distribution due to the super-
position of two unimodal distributions.

3. RESULTS

3.A. Model Data. 3.A.1. Unimodal Distance Distribution.
A 3 μs signal was generated for a unimodal Gaussian
distribution centered at 5 nm with a standard deviation of 0.3
nm. Gaussian noise was added to the model signal to generate
SNRs of 3, 10, and 30. Denoising was performed on the noisy
data, resulting in SNRs of the denoised signals of 278, 848, and
1883, respectively. Figure 4A shows the denoised time-domain
signals along with the original noisy signals, whereas Figure 4B
compares the denoised signal with the model. All curves are
normalized. It can be seen that for SNR 10 and 30, the
denoising is able to (nearly) perfectly recover the model data.
At SNR 3, the denoised signal shows only a small discrepancy

with respect to the model. Table 1 shows the χ2, SNR, and
SSIM values of the noisy signals and how they are greatly
improved by denoising. The SNR is improved by almost 2
orders of magnitude and the χ2 values are also greatly reduced.
The SSIM values are significantly increased, approaching unity
from much poorer comparisons of the noisy signals to the
model.
The distance distributions of the model, noisy, and denoised

signals were obtained using TIKR36 followed by MEM.51 The
regularization parameter value λTIKR was first obtained using the
L-curve method.36,64−66 However, at low SNR (i.e., the noisy
signals), the L-curve method is not very reliable36 and led either
to a very broad distribution or to an unstable solution.
Moreover, it was observed that the λTIKR value obtained from
the L-curve using the criterion of maximum curvature was not
at the elbow of the L-curve for these noisy signals, because
there was no well-defined elbow. In fact, for SNRs of 3 and 10
the L-curve plot was very distorted. Therefore, the λTIKR value
was then manually selected for the noisy signals (after trial and
error) for optimal distance distribution, i.e., λTIKR

OPT . The optimal
distance distribution was easy to determine as it could be
compared with the model distribution. A larger λTIKR yielded a
broader distance distribution, whereas a smaller λTIKR yielded
an unstable distribution and/or enhanced artificial peaks.
However, once denoised, the standard shape of the L-curve
was restored (i.e., a clear elbow), so the optimal λTIKR selected

Figure 4.Model data, unimodal distribution: blue, model signal (reference); red, noisy signal; black, WavPDS denoised signal. The model signal was
generated from a Gaussian distribution centered at 5 nm with a standard deviation of 0.3 nm. White Gaussian noise was added to generate the noisy
signals at SNRs 30, 10, and 3. (A) Comparison of noisy and denoised signals. (B) Comparison of the reference signal with the denoised signal
obtained by WavPDS. (C) Distance distributions from noisy, denoised, and reference signals.

Table 1. Comparison of Noisy and WavPDS Denoised Signals with Respect to the Model Signal, Unimodal Distribution at
SNRs of 30, 10, and 3 (Figure 4)

SNR χ2 SSIM

noisy → denoised 30 → 1880 0.03 → 0.0005 0.5836 → 0.994
10 → 850 0.10 → 0.0011 0.1194 → 0.959
3 → 276 0.33 → 0.0036 0.010 → 0.938
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for the denoised signal was obtained directly from the L-curve.
For the noisy signals, the λTIKR

OPT values obtained manually
decreased after denoising (λTIKR

OPT = 15→ 0.01, λTIKR
OPT = 10→ 0.5,

and λTIKR
OPT = 5→ 0.5 for SNR of 3, 10, and 30, respectively). For

the original model signal, the optimal λTIKR
OPT = 1 × 10−6 was

obtained by using the L-curve method. Because the model data
are noise-free, λTIKR is near zero to eliminate the contributions
of the zero singular values that arise because the K matrix is
singular.36 Though they should be exactly zero, due to
computational error they are only near zero. The denoised
signals consistently have much smaller optimal λTIKR than the
noisy signals. This means that, when denoised, a significant
number of contributions from the smaller singular values could
be included according to eq 7.
Figure 4C compares the distance distributions from the

noisy, denoised, and model signals. At SNR = 30, the distance
distribution of the denoised signal and the model are very
nearly identical, whereas that for the noisy signal has a slightly
reduced normalized intensity and is somewhat broader at its
larger distances. For SNRs of 3 and 10, the distance
distributions P(r) of the denoised signals accurately provide
the peak location and distribution width, whereas the P(r) of
the noisy signals possess broader peaks of lower amplitude.
Especially for an SNR of 3, the distance distribution is no
longer reliable.

3.A.2. Bimodal Distance Distribution. A 3 μs signal was
generated for a bimodal Gaussian distribution, centered at 4
and 5 nm, each with a standard deviation of 0.3 nm. The peak
height at 4 nm was 80% of the peak height at 5 nm. Similar to
the unimodal model, Gaussian noise was added to the model
signal to generate SNRs of 3, 10, and 30 and then the model
was denoised. Table 2 shows the χ2, SNR, and SSIM values of
the noisy and denoised signals. Parts A and B of Figure 5 show
the denoised signals along with noisy and model signals, all of
which are normalized. For the SNR of 30, the denoising is able
to virtually perfectly recover the model data; the SSIM is very
close to unity. For the SNRs of 10 and 3, the denoising is
almost as good, as reflected in the SSIM values as well as in the
χ2’s. The denoised signals significantly increase in SNR by
about 2 orders of magnitude for all the noisy signals, just as we
found for the unimodal case.
Similar to example 3.A.1, the L-curve plot λTIKR value needed

to be manually adjusted for noisy signals, whereas the optimal
λTIKR for the denoised signals was obtained directly from the L-
curves (cf. Figure S10). The optimal λTIKR values were reduced
from those for the noisy signals to those for the denoised
signals (λTIKR

OPT = 60 → 5, λTIKR
OPT = 20 → 3, and λTIKR

OPT = 5 → 1 for
SNR 3, 10, and 30, respectively; cf. Figure S10). For the model
signal itself, the optimal λTIKR = 5 × 10−6 was simply obtained
using the L-curve.

Table 2. Comparison of Noisy and WavPDS Denoised Signals with Respect to the Model Signal, Bimodal Distribution at SNRs
30, 10, and 3 (Figure 5)

SNR χ2 SSIM

noisy → denoised 30 → 3186 0.03 → 0.0003 0.5412 → 0.997
10 → 1850 0.10 → 0.0005 0.1068 → 0.953
3 → 378 0.33 → 0.0026 0.0077 → 0.945

Figure 5. Model data, bimodal distribution: blue, model signal (reference); red, noisy signal; black, WavPDS denoised signal. The model signal was
generated from two Gaussian distributions centered at 4 and 5 nm and each with a standard deviation of 0.3 nm. White Gaussian noise was added to
generate the noisy signals at SNRs 30, 10, and 3. (A) Comparison of noisy and denoised signals. (B) Comparison of the reference signal with the
denoised signal obtained by WavPDS. (C) Distance distributions from noisy, denoised, and reference signals.
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In Figure 5C, the distance distributions of noisy, denoised,
and model signals at SNRs 3, 10, and 30 are shown. At SNR =
30, the P(r) of the denoised signal is very close to the model
P(r), whereas the P(r) of the noisy signal has a broader
distribution and lower peak height. Moreover, the first peak
incorrectly appears to be about the same height as the second
peak. For an SNR of 10, the noisy signal results in a broad
distribution with the two peaks almost indistinguishable.
Meanwhile, the denoised signal is able to resolve both peaks
along with maintaining their height difference. The noisy signal
at SNR = 3 provides only a single broad distribution, thereby
failing to resolve the peaks. On the contrary, its denoised
version is successfully able to clearly resolve the two peaks.
3.A.3. Short Evolution Time vs Long Evolution Time. High

SNR at short evolution times can frequently be obtained but at
the cost of poor peak resolution and broader widths in the
distance distributions. In these cases, not enough time has been
allowed for a reasonably complete dipolar oscillation. On the
contrary, due to the reduced SNR at longer evolution times,
one is also not able to resolve the peaks due to the presence of
increased noise. A major challenge in PDS is to obtain a high-
SNR signal for longer evolution times. We created a model
system to illustrate the effectiveness of WavPDS in denoising
the lower SNR signal at a longer evolution time. A model was
created, which corresponds to a distance distribution containing
two close Gaussian peaks between 5.3 and 6 nm. As shown in
Figure 6, this distribution is recovered from an 8 μs dipolar

evolution time signal. This signal was then shortened to 3 μs,
which resulted in a single peak in the P(r), showing the
resolution loss at short evolution time. Noisy signals were
generated at SNR = 30 for 3 μs and at SNR = 10 for 8 μs, i.e., a
factor of 3 increase of noise assuming the same total signal
acquisition times. In many experimental cases one often
encounters even greater reduction in SNR by doubling the
dipolar evolution times due to effects of phase memory decay.
As can be seen in Figure 6, the model, noisy, and denoised
signals at 3 μs yield a single distance distribution. For longer
evolution times at SNR = 10, the denoised signal resolves the
two peaks, whereas the noisy signal is unable to. The optimal
λTIKR’s for the noisy signals at 3 and 8 μs are 10 and 20,
respectively. For the denoised signals, the optimal λTIKR was
obtained directly from the L-curve and was 1 and 0.01,
respectively, for 3 and 8 μs evolution time. The optimal λTIKR’s
for the model signal are 4.2 × 10−6 and 2.7 × 10−6 for the 3 and
8 μs evolution times, respectively. As mentioned earlier, the
near-zero λTIKR values are due to computational error and are
used to eliminate the contributions of the zero singular values
due to the singular nature of the matrix K.

3.B. Experimental Data. 3.B.1. Unimodal Case. To test
WavPDS in experimental signals, the sample was signal-
averaged for three different acquisition periods generating
small, medium, and large SNRs. Denoising was applied after the
baseline was subtracted from the original signal. This was done
for simplicity of presentation in this paper. However, we

Figure 6. Model data, results of longer evolution time at higher noise (low SNR) compared to shorter evolution time at lower noise (high SNR):
blue, model signal (reference); red, noisy signal; black, WavPDS denoised signal. (A) Model signal at evolution time 8 μs generated from bimodal
distance distribution. (B) Bimodal distance distribution generated from two Gaussian distributions centered at 5.3 and 6 nm, each with standard
deviation 0.3 nm, and peak heights of 0.8 and 1, respectively. (C) Comparison of noisy, denoised, and Model signals at 3 μs evolution time for the
bimodal distance distribution. (D) Distance distributions from noisy, denoised, and model signals at 3 μs evolution time. (E) Comparison of noisy,
denoised, and model signals at 8 μs evolution time for the bimodal distance distribution. (F) Distance distributions from noisy, denoised, and model
signals at 8 μs evolution time.
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illustrate in Figure S10 how performing the denoising before
baseline subtraction greatly aids in its removal for noisy signals,
a matter we plan to discuss elsewhere. This unimodal signal is
illustrated in Figure 7A where the DEER signal is averaged for
14, 112, and 952 min on the protein sample. At 952 min
excellent SNR is achieved in the DEER signal (Table 3),
although some residual noise still affects the longer time, lower
SNR part of the DEER signal. The P(r)’s shown in Figure 7C
were obtained as in the model cases. A mild sharpening of the
P(r) is observed after applying WavPDS, wherein most of the
residual noise has been removed in the denoised time-domain
signal. It was not practical to average for acquisition times much
greater than ca. 1000 min. Given the good signal obtained after
952 min, we chose to use its denoised form as the reference to
compare with the cases of reduced acquisition time. When the
signal acquisition time is reduced by almost an order of

magnitude (from 952 to 112 min), the noise increases
significantly but our denoised signal and P(r) are almost
identical to those of the reference (cf. Figure 7A−C), whereas
this is not the case for the result obtained from the noisy data
(Table 3). The last case involves nearly another order of
magnitude reduction in signal averaging time to 14 min. This
yields a very noisy signal that is too noisy for a P(r) to be
recovered using λTIKR, but the result shown in Figure 7C is for
λTIKR
OPT and is clearly too broad. However, after our wavelet
denoising procedure we recover very nearly identical results as
compared to the reference.
Similar to model data results, the λTIKR values were optimized

by manual adjustment for noisy signals, whereas the optimal
λTIKR for the denoised signals was obtained directly from the L-
curves (Figure S11). The λTIKR

OPT value reduced from the noisy
signals to denoised signals: λTIKR

OPT = 30 → 0.08, λTIKR
OPT = 8 →

Figure 7. Experimental data, unimodal distribution: blue, reference signal; red, noisy signal; black, WavPDS denoised signal. The experimental signal
was generated from T4 Lysozyme spin-labeled at mutant 44C/135C with 63 μM concentration at acquisition times 952, 112, and 14 min (section
2.E). (A) Comparison of noisy and denoised signals. (B) Comparison of reference signal with denoised signals after applying WavPDS. (C) Distance
distributions from noisy, denoised, and reference signals. The denoised signal at 952 min was used as the reference.

Table 3. Comparison of Noisy and WavPDS Denoised Signals with Respect to the Experimental Reference Signal (952 min
WavPDS Denoised Signal), Unimodal Distribution at Signal Acquisition Times 952, 112, and 14 min (SNRs 37, 6.8, and 3.8,
Respectively; Figure 7)

SNR χ2 SSIM

noisy → denoised 37 → (reference) 0.027 → 0 (reference) 0.676 → 1 (reference)
6.8 → 909 0.190 → 0.0011 0.135 → 0.995
3.8 → 488 0.263 → 0.0021 0.038 → 0.967

Table 4. Comparison of Noisy and WavPDS Denoised Signals with Respect to the Experimental Reference Signal (360 min
WavPDS Denoised signal), Bimodal Distribution at Signal Acquisition Times 360, 48, and 8 min (SNRs 80, 31, and 11,
Respectively; Figure 8)

SNR χ2 SSIM

noisy → denoised 80 → (reference) 0.013 → 0 (reference) 0.8815 → 1 (reference)
31 → 3333 0.032 → 0.0003 0.573 → 0.999
11 → 1046 0.086 → 0.0009 0.156 → 0.961
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0.07, and λTIKR
OPT = 3 → 0.09 for signal acquisition times 14, 112,

and 952 min, respectively (Figure S11). It must be noted that
denoising improved the L-curve shape to give a sharp elbow
and directly resulted in the optimal λTIKR values, which was not
possible for the noisy signal (Figure S11).
3.B.2. Bimodal Case. Like the unimodal case, the bimodal

signal was obtained at different signal averaging times (8, 48,
and 360 min), generating different SNRs (Table 4). Figure 8
shows the noisy and denoised signals and their respective
distance distributions. It can be seen that at 360 min the signal
is nearly noiseless, so the “noisy” and denoised P(r) are very
similar. As in the unimodal case, the denoised 360 min case is
taken as the reference for the bimodal signals. For the 48 min
noisy signal, the distance distribution is able to retrieve the two
peaks but the first peak is now smaller and broader than the
second peak, whereas the denoised signal is able to perfectly
retrieve both peaks. For 8 min, the noisy signal yields a very
broad P(r) that is barely able to reveal the existence of two
peaks. On the contrary, the denoised signal at 8 min is
successfully able to retrieve the two peaks, and it is very nearly
identical to that of the reference.
Like the unimodal signal, the λTIKR values had to be manually

adjusted for the noisy signals, whereas the optimal λTIKR values
for the denoised signals were obtained directly from the L-
curves (Figure S11). The λTIKR

OPT values decreased from those of
the noisy signals to those of the denoised signals as λTIKR

OPT = 10
→ 0.09, λTIKR

OPT = 5 → 0.08, and λTIKR
OPT = 2.48 → 0.1 for signal

acquisition times 8, 48, and 360 min, respectively. It must again
be noted that denoising improved the L-curve shape to give a
sharp elbow and directly resulted in the optimal λTIKR values,
which was not possible for the noisy signals.

4. DISCUSSION
This work on denoising time-domain PDS signals, and how this
affects the distance distributions that are obtained from them,
has led to the following:

(1) The SNR of the time-domain signal is increased by a
factor of about 100 for both model and experimental
signals using our new denoising procedure.

(2) When the SNR ≳ 10, virtually perfect time-domain
signals are obtained after denoising, when compared to a
standard; for SNR ∼ 3, very good denoised signals are
obtained.

(3) Although standard procedures such as SVD followed by
TIKR to obtain the P(r) do a partial denoising by
discarding contributions from the heavily noise-corrup-
ted smaller singular values, the prior denoising of the
time-domain signals yields significantly better P(r)’s
especially for initially noisy signals where the SNR ≲ 30.

(4) By denoising the time-domain signals, one can employ
longer dipolar evolution times, which is important for
determining longer distances and/or separating over-
lapped distance distributions.

(5) Standard wavelet denoising methods are typically much
less effective in denoising noisy time-domain signals than
is WavPDS and hence in obtaining the correct P(r), but
they become more satisfactory for less noisy signals.

We now discuss these points in more detail.

(1) Improvement in SNR: We have shown that denoising
improves the SNR of the time-domain signal by a factor
of approximately 100 in the model and experimental
cases of unimodal and bimodal distributions. In the
model cases, we considered noisy SNRs of 3, 10, and 30.
The factor of approximately 100 is true in all three SNR
scenarios, except that in the unimodal model the SNR

Figure 8. Experimental data, bimodal distribution: blue, reference signal; red, noisy signal; black, WavPDS denoised signal. The experimental signal
was generated from the T4 lysozyme spin-labeled admixture of mutants 8C/44C and 44C/135C at concentrations of 44 and 47 μM, respectively, at
acquisition times 360, 48, and 8 min. (A) Comparison of noisy and denoised signals. (B) Comparison of denoised signals after WavPDS with
reference. (C) Distance distributions from noisy, denoised, and reference signals. The denoised signal at 360 min was used as the Reference.
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increase is about 82. Thus, substantial reductions in
signal averaging times can be achieved by denoising.
Because signal averaging improves the SNR by √N, a
factor of just 10 in SNR improvement by denoising
reduces the signal averaging time by a factor of 100.
When we considered SNR ∼ 1 for both model cases, we
found that denoising became unreliable, so we
recommend denoising for SNR ≳ 3.

(2) Accuracy of the denoised signal: Here we find the SSIM
parameter best reflects the accuracy of the fit. One needs
to compare the time-domain signal to that of a reference
to apply this parameter. For the model cases, the original
model is the appropriate reference. For the experimental
cases it was not feasible to average for long enough
periods to obtain ideal references, so we used very long
averaging times (ca. 16 and 6 h for the unimodal and
bimodal cases, respectively), yielding good SNRs (of 37
and 80, respectively), and then denoised them to serve as
the references. For the two model cases for which the
SNR = 30, nearly perfect agreement (SSIM of 0.994 and
0.997) with the reference was achieved from the initial
noisy SSIM values of 0.58 and 0.54, respectively. When
the SNR = 10, almost perfect agreement of 0.96 and
0.95, respectively, was achieved from initial values for
SSIM of ∼0.12, 0.11, whereas for SNR = 3 initial values
of SSIM 0.01 and 0.008 became 0.95 and 0.945. For the
experimental cases for SNRs of 3.8 and 11, SSIM values
of 0.97 and 0.96 were achieved after denoising, whereas
for SNRs of 6.8 and 31, SSIM values of 0.995 and 1.00
were achieved. Thus, for an SNR ∼ 3−4, excellent results
can be achieved, whereas for SNR ∼ 7−10 virtually
perfect results are achieved in the time-domain data.

(3) Improvement in Distance Distributions: Here we
consider the implications of denoising the time-domain
signals on the P(r) obtained from them. Although there
are other possible approaches to illustrate this, we used
TIKR followed by MEM largely to remove negative P(r)
values that emerge from TIKR.36,51 It is well-known that
for SNR ≲ 30 this approach, using the L-curve “elbow”
to determine the regularization parameters, λTIKR

OPT , is
inadequate.36 We show in Figures S10 and S11 the L-
curve plots. Though these plots yielded satisfactory
values of λ for the denoised signals, this was not the case
for the noisy spectra; we therefore used a trial and error
approach to determine the optimum λ for the latter. This
was only possible in this present study because we had
the reference P(r)’s for all the cases. In general,
determining an optimum λ for noisy cases becomes
rather uncertain. But by prior denoising, we find the L-
curve works quite well. We show in Figures 4−8 how the
P(r)’s derived from the noisy and denoised time-domain
signals compare with the respective reference P(r)’s.
Here, because of spurious contributions to the P(r)’s that
appear (some of which were negative before applying
MEM), we did not employ the quantitative measures
(i.e., χ2, SNR, SSIM) that we employed for the time-
domain data but rather relied on visual inspection. It is
clear from these figures (Figures 4−8) that the denoised
time-domain results all yield very good to excellent
agreement with the reference P(r). This is especially true
for initial SNR ≳ 10; for SNR ∼ 3 the results still tend to
be very good. The experimental denoised results are
particularly good. However, for the noisy spectra we see

significantly poorer P(r) results, especially for SNR ∼ 3
and even for SNR ∼ 10, even when the optimum λ is
used. This is true for both the bimodal model and the
experimental results, where the noisy results have
difficulty in resolving both peaks. That is, they show
broadened P(r)’s.
Why is depending on just the partial denoising by

TIKR less satisfactory than first denoising the time-
domain signal before applying TIKR? Because we had to
use optimized regularization parameters, λTIKR

OPT , to obtain
satisfactory P(r)’s for the noisy results, that is not the
issue. We have indeed found that prior denoising yields
significantly smaller λ values than even the optimized
values from the noisy signals. These smaller λ values
bring into the P(r) the contributions from smaller
singular values in the SVD decomposition of P(r) (eq 7)
because they are no longer corrupted by noise, and they
provide greater resolution (e.g., narrower and more
accurate P(r)’s) and detail that is important for P(r)’s
with more complex structure (e.g., separation of two
close distances).

(4) Longer Distances May be Studied: In the model example
shown in Figure 6 we illustrate that when one needs
longer dipolar evolution times to distinguish subtle
features in the P(r), but one is limited by the increase in
noise, the denoising method can help to overcome this
problem. This is clearly also true when longer dipolar
evolution times are needed for the measurement of
longer distances.

(5) Comparison of WavPDS with Standard Methods: Results
from the use of standard wavelet denoising methods58,59

are shown in Figures S3−S8 and Tables S1−S6 using the
same “db6” wavelets. They cover six of the examples: the
model bimodal case (Figures S3 and S4; Tables S1 and
S2) and the experimental unimodal (Figures S5 and S6;
Tables S3 and S4) and bimodal (Figures S7 and S8;
Tables S5 and S6) cases. These include a range of initial
SNRs. We find that these other methods are much less
effective in improving the SNR, i.e., typically only by a
factor of 2−3 (except for cases S1 and S2, where the
factor is as great as 5) compared to the factor of order
100 for WavPDS. It appears that they are not as
successful in removing the noise coefficients in the Detail
components representing high-frequency sub-bands nor
do they remove any low-frequency noise present in the
final Approximation component. The WavPDS method,
as we have seen, is very successful in rendering a good
P(r) in all these cases. For the noisiest cases (model
bimodal SNR = 3 and experimental unimodal SNR =
3.8), using the standard methods yields poor fits to the
double peak model P(r) (Figure S3) and better, but not
good, fits to the unimodal P(r) (Figure S5). These cases
also demonstrate that a simple unimodal P(r) is more
easily fit with lesser quality data than a more complex
P(r), such as in the bimodal case. This is because
contributions from fewer of the smaller singular values
are needed to describe the rather simple unimodal
distribution. And according to the requirement σi > λTIKR

OPT

(eq 7) so that the contribution from the ith singular
value is included, the larger λ’s reduce the number of
these significant contributions. Even for a somewhat
higher SNR = 11 for the bimodal experimental result
(Figure S6) and an SNR = 10 (Figure S4) for the
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bimodal model, the results from the other methods do
not yield satisfactory P(r)’s. However, where one has less
noisy signals (e.g., Figure S8), these other methods do
yield more satisfactory P(r)’s, although not as good as
WavPDS.
Low-pass filters are frequently used in denoising, but it

is well-known that the standard wavelet denoising
methods are superior.26,29,56 We demonstrate this fact
with an example from this work in Figure S12.
Overall, we can conclude that WavPDS is much more

effective at denoising the time-domain signals, but as the
SNR of the original noisy signal increases and/or the
“simplicity” of the actual P(r) increases, the results from
these other methods become more satisfactory. However,
this last comment is only true because instead of using
the λ-value obtained directly from the elbow of the L-
curves, which we find are still poorly defined, we used
trial-and-error searches to obtain the optimum λ (which
is always considerably different; cf. Tables S1−S6). In
this study we have a reference P(r) for optimizing the
choice of λ, but in actual practice, where the true P(r) is
not known a priori, the determination of a good λ still
remains a challenge. As we have shown, however, after
denoising by WavPDS, the L-curve-obtained λ is indeed
at or near the optimum λ.

We now wish to note some additional aspects related to the
methodology.

(a) Spin−Echo Detection: The experimental time-domain
decay signals discussed above are actually obtained as a
series of points which themselves represent spin−echo
heights obtained as a function of the dipolar evolution
time but with the (refocused) spin−echo kept at a fixed
time after the initial π/2 pulse.4,67 Each such point is the
average of many spin−echo repeats. One can in fact first
denoise each of these averaged spin−echo signals. We
show an example in Figure S13 how the spin−echo signal
can be very successfully denoised. We plan to investigate
this approach further.

(b) Baseline Subtraction from Weak PDS Signals: This is a
standard issue in processing PDS data. In the present
study we have chosen to first remove the baseline from
the original noisy data using our standard procedure3,68

before denoising, largely to simplify the presentation of
the denoising methodology and the comparisons
between the various sets of results. Indeed, prior
denoising of the raw data, which does include the
baseline, would aid significantly in identifying and
removing it. This is another matter we plan to address
elsewhere, but we do show a preliminary example of this
in Figure S9. This is an example of a very weak PDS
signal from sub-micromolar concentration of labeled
protein. Nevertheless, the denoising is very effective in
enabling the removal of the baseline and recovering the
denoised signal.

(c) Spurious Peaks in the P(r): Even after denoising,
spurious peaks still arise in the P(r). As we showed in
Figure 3, it is not only noise but also truncation of the
smaller singular values that contributes to the TIKR
procedure. This is an effect that remains even after
denoising by WavPDS. We plan to study this matter
further.

(d) What is the minimum SNR of the original data that can
still be usefully denoised by WavPDS? Our results on
both model and experimental data show success with an
SNR ∼ 3, but unreliable results SNR ∼ 1 with model
data. Further studies are needed to best answer this
question.

5. CONCLUSIONS
In this study, we have shown that by greatly enhancing the SNR
of time-domain signals, while retaining the fidelity of the
underlying signals by means of our new wavelet denoising
method, WavPDS, it is possible to reduce signal averaging times
by as much as 1−2 orders of magnitude. This was
demonstrated with the use of both model and experimental
pulse-dipolar ESR signals. Once denoised, they may be readily
inverted by standard methods into distance distributions more
conveniently and more accurately than for the original noisy
signals.
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