This paper is published as part of a PCCP Themed Issue on:

Modern EPR Spectroscopy: Beyond the EPR Spectrum

Guest Editor: Daniella Goldfarb

Editorial

Modern EPR spectroscopy: beyond the EPR spectrum

Phys. Chem. Chem. Phys., 2009

DOI: [10.1039/b913085n](https://doi.org/10.1039/b913085n)

Perspective

Molecular nanomagnets and magnetic nanoparticles: the EMR contribution to a common approach

DOI: [10.1039/b905880j](https://doi.org/10.1039/b905880j)

Communication

Radiofrequency polarization effects in zero-field electron paramagnetic resonance

DOI: [10.1039/b906102a](https://doi.org/10.1039/b906102a)

Papers

Radiofrequency polarization effects in low-field electron paramagnetic resonance

DOI: [10.1039/b907915g](https://doi.org/10.1039/b907915g)

Three-spin correlations in double electron–electron resonance

DOI: [10.1039/b905724b](https://doi.org/10.1039/b905724b)

“N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge

DOI: [10.1039/b905841a](https://doi.org/10.1039/b905841a)

Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated radical parameters

DOI: [10.1039/b905522c](https://doi.org/10.1039/b905522c)

General and efficient simulation of pulse EPR spectra

DOI: [10.1039/b907277b](https://doi.org/10.1039/b907277b)

Dynamic nuclear polarization coupling factors calculated from molecular dynamics simulations of a nitroxide radical in water

DOI: [10.1039/b905709a](https://doi.org/10.1039/b905709a)

Dynamic nuclear polarization of water by a nitroxide radical: rigorous treatment of the electron spin saturation and comparison with experiments at 9.2 Tesla

DOI: [10.1039/b906719c](https://doi.org/10.1039/b906719c)

Dynamic mixing processes in spin triads of “breathing crystals” Cu(hfac)_2L: a multifrequency EPR study at 34, 122 and 244 GHz

DOI: [10.1039/b906007c](https://doi.org/10.1039/b906007c)

Nitrogen oxide reaction with six-atom silver clusters supported on LTA zeolite

DOI: [10.1039/b903870a](https://doi.org/10.1039/b903870a)

Multifrequency ESR study of spin-labeled molecules in inclusion compounds with cycloextrins

DOI: [10.1039/b903490k](https://doi.org/10.1039/b903490k)

ESR imaging in solid phase down to sub-micron resolution: methodology and applications

DOI: [10.1039/b905943a](https://doi.org/10.1039/b905943a)

Multifrequency EPR study of the mobility of nitroxides in solid-state calixarene nanocapsules

DOI: [10.1039/b905943a](https://doi.org/10.1039/b905943a)

Ferro- and antiferromagnetic exchange coupling constants in PELDOR spectra

DOI: [10.1039/b905524j](https://doi.org/10.1039/b905524j)

Electronic structure of the tyrosine D radical and the water-splitting complex from pulsed ENDOR spectroscopy on photosystem II single crystals

DOI: [10.1039/b908093g](https://doi.org/10.1039/b908093g)
Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems
DOI: 10.1039/b906177k

The reduced [2Fe-2S] clusters in adrenodoxin and Arthrobacter platensis ferredoxin share spin density with protein nitrogens, probed using 2D ESEEM
DOI: 10.1039/b904597j

Frequency domain Fourier transform THz-EPR on single molecule magnets using coherent synchrotron radiation
DOI: 10.1039/b905745e

PELDOR study of conformations of double-spin-labeled single- and double-stranded DNA with non-nucleotide inserts
DOI: 10.1039/b904873a

Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation
Anna Pavlova, Evan R. McCarney, Dylan W. Peterson, Frederick W. Dahlquist, John Lew and Songi Han, Phys. Chem. Chem. Phys., 2009
DOI: 10.1039/b906101k

Structural information from orientationally selective DEER spectroscopy
DOI: 10.1039/b907010a

Structure and bonding of [V^5O(acac)] on the surface of A1F3 as studied by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy
Vijayasarthi Nagarajan, Barbara Müller, Oksana Storcheva, Klaus Köhler and Andreas Pöppl, Phys. Chem. Chem. Phys., 2009
DOI: 10.1039/b903826b

Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary
DOI: 10.1039/b905642d
Multifrequency ESR study of spin-labeled molecules in inclusion compounds with cyclodextrins†

Boris Dzikovski,ab Dmitriy Tipikin,a Vsevolod Livshits,b Keith Earleac and Jack Freed*a

Received 18th February 2009, Accepted 26th May 2009
First published as an Advance Article on the web 30th June 2009
DOI: 10.1039/b903490k

The molecular dynamics of spin-labeled compounds included into the solid phase of cyclodextrins (CDs) has been studied using conventional (X-band) ESR at 9 GHz and high-field high-frequency (HFHF) ESR at 240 and 170 GHz. The patterns of axial rotation at these higher frequencies are clear just by inspection of the spectrum, unlike the case for 9 GHz spectra. That is HFHF ESR is sensitive to molecular motion about the diffusion axis collinear with the X, Y or Z-direction of the magnetic g- and A-tensors of the nitroxide moiety (referred to, respectively, as X, Y or Z-rotation). For doxyl stearic acids (Z-rotation) and TEMPOyl caprylate (X-rotation) included in β- and γ-CDs we were able to determine the rate of molecular motion and the corresponding potential barriers. We emphasize that determining the rate of Z-rotation by ESR is feasible only using HFHF ESR. For the X-rotation case we suggest that the motion of the nitroxide moiety consists of fast small-angle librations about the magnetic X-axis superimposed by rotational diffusion about the same axis. The potential barrier of 1.7 Kcal mol⁻¹ for this rotational diffusion is unusually low. A fascinating feature of TEMPO derivatives included in β-CD is the detectable molecular motion at temperatures below 77 K. For the other CD-spin probe systems, we used multifrequency analysis to assign the conformations of spin-labeled molecules. A dramatic spectral change for 16-sasl in β- and γ-CDs at ~260 K corresponds to a tilting of the position of the nitroxide moiety on the rotating molecule relative to the long diffusion axis, while for TEMPO derivatives in γ-cyclodextrin below 200 K, we observe a rapid transition from fast to very slow rotational motion. More complex features are best studied by means of multifrequency ESR experiments. The visual clarity and the simplicity of analysis of the ESR spectra shown in this work should provide a benchmark for future studies of molecular motion by HFHF ESR.

Introduction

Cyclodextrins (CDs) are cyclic oligomers of β-glucopyranose. Due to the presence of a hydrophobic cavity in the molecule they are able to form guest–host complexes with a variety of organic compounds.¹,² Complete or partial inclusion into the CD cavity dramatically affects physical and chemical properties of the guest molecule in many cases. For instance, for many hydrophobic compounds binding to CDs dramatically increases the solubility in water, making possible delivery of various pharmaceuticals³,⁴ or extraction of biologically important molecules, such as cholesterol from biomembranes.⁵ The presence of CD accelerates the catalytic hydrolysis of esters⁶ and stabilizes some short-lived radicals.⁷ The quantum yield of fluorescence of aromatic hydrocarbons and heterocyclic compounds increases upon inclusion into the CD cavity.⁸ In order to better understand the change in properties of organic compounds in CD complexes, knowledge of their motional features upon binding to CDs may be a key point.

Cyclodextrin inclusion compounds have been extensively studied in solution or in a crystalline state. In most industrial applications, however, CDs are used in a highly disperse polycrystalline, probably partially amorphous, state.⁹ Molecular probes can be useful to aid in analyzing such applications.

The sensitivity of spin label ESR to molecular motion and local polarity has made it one of the most valuable techniques in physical–chemical and biophysical studies. This sensitivity can be dramatically improved using high-field high-frequency (HFHF) ESR. In the early 1970’s Griffith and co-authors demonstrated at low ESR frequencies (9 GHz) patterns of anisotropic molecular motion about various axes by including spin-labeled molecules into monocrystals of thiourea and polycrystalline CDs.¹⁰ In the present work, we use HFHF ESR to carry out detailed studies for similar systems, for which we determine the details of the molecular motions.

† Electronic supplementary information (ESI) available: Examples of simulations for the experimental spectra shown in Fig. 5 and 10. See DOI: 10.1039/b903490k

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics

First published as an Advance Article on the web 30th June 2009
DOI: 10.1039/b903490k

Multifrequency ESR study of spin-labeled molecules in inclusion compounds with cyclodextrins†

Boris Dzikovski,ab Dmitriy Tipikin,a Vsevolod Livshits,b Keith Earleac and Jack Freed*a

Received 18th February 2009, Accepted 26th May 2009
First published as an Advance Article on the web 30th June 2009
DOI: 10.1039/b903490k

The molecular dynamics of spin-labeled compounds included into the solid phase of cyclodextrins (CDs) has been studied using conventional (X-band) ESR at 9 GHz and high-field high-frequency (HFHF) ESR at 240 and 170 GHz. The patterns of axial rotation at these higher frequencies are clear just by inspection of the spectrum, unlike the case for 9 GHz spectra. That is HFHF ESR is sensitive to molecular motion about the diffusion axis collinear with the X, Y or Z-direction of the magnetic g- and A-tensors of the nitroxide moiety (referred to, respectively, as X, Y or Z-rotation). For doxyl stearic acids (Z-rotation) and TEMPOyl caprylate (X-rotation) included in β- and γ-CDs we were able to determine the rate of molecular motion and the corresponding potential barriers. We emphasize that determining the rate of Z-rotation by ESR is feasible only using HFHF ESR. For the X-rotation case we suggest that the motion of the nitroxide moiety consists of fast small-angle librations about the magnetic X-axis superimposed by rotational diffusion about the same axis. The potential barrier of 1.7 Kcal mol⁻¹ for this rotational diffusion is unusually low. A fascinating feature of TEMPO derivatives included in β-CD is the detectable molecular motion at temperatures below 77 K. For the other CD-spin probe systems, we used multifrequency analysis to assign the conformations of spin-labeled molecules. A dramatic spectral change for 16-sasl in β- and γ-CDs at ~260 K corresponds to a tilting of the position of the nitroxide moiety on the rotating molecule relative to the long diffusion axis, while for TEMPO derivatives in γ-cyclodextrin below 200 K, we observe a rapid transition from fast to very slow rotational motion. More complex features are best studied by means of multifrequency ESR experiments. The visual clarity and the simplicity of analysis of the ESR spectra shown in this work should provide a benchmark for future studies of molecular motion by HFHF ESR.

Introduction

Cyclodextrins (CDs) are cyclic oligomers of β-glucopyranose. Due to the presence of a hydrophobic cavity in the molecule they are able to form guest–host complexes with a variety of organic compounds.¹,² Complete or partial inclusion into the CD cavity dramatically affects physical and chemical properties of the guest molecule in many cases. For instance, for many hydrophobic compounds binding to CDs dramatically increases the solubility in water, making possible delivery of various pharmaceuticals³,⁴ or extraction of biologically important molecules, such as cholesterol from biomembranes.⁵ The presence of CD accelerates the catalytic hydrolysis of esters⁶ and stabilizes some short-lived radicals.⁷ The quantum yield of fluorescence of aromatic hydrocarbons and heterocyclic compounds increases upon inclusion into the CD cavity.⁸ In order to better understand the change in properties of organic compounds in CD complexes, knowledge of their motional features upon binding to CDs may be a key point.

Cyclodextrin inclusion compounds have been extensively studied in solution or in a crystalline state. In most industrial applications, however, CDs are used in a highly disperse polycrystalline, probably partially amorphous, state.⁹ Molecular probes can be useful to aid in analyzing such applications.

The sensitivity of spin label ESR to molecular motion and local polarity has made it one of the most valuable techniques in physical–chemical and biophysical studies. This sensitivity can be dramatically improved using high-field high-frequency (HFHF) ESR. In the early 1970’s Griffith and co-authors demonstrated at low ESR frequencies (9 GHz) patterns of anisotropic molecular motion about various axes by including spin-labeled molecules into monocrystals of thiourea and polycrystalline CDs.¹⁰ In the present work, we use HFHF ESR to carry out detailed studies for similar systems, for which we determine the details of the molecular motions.

† Electronic supplementary information (ESI) available: Examples of simulations for the experimental spectra shown in Fig. 5 and 10. See DOI: 10.1039/b903490k
HFHF, which provides exceptional orientational resolution, gives a clear picture of molecular motion and its anisotropy.11,12 Also, at the lowest temperatures it enables the unambiguous determination of the A and g-tensors.

Thus in this work, we show how HF ESR provides a comprehensive picture of molecular dynamics and motional modes of spin-labeled molecules where lower frequency ESR is either insensitive or ambiguous. For example, whereas the modes of spin-labeled molecules where lower frequency ESR is insensitive or ambiguous, renders low frequency spectra virtually insensitive to the motion about the diffusion axis coaxial with the magnetic Z-axis, the dominance of the rhombic g-tensor at HF enables its accurate study. One of our distinctive observations enabled by HFHF ESR is that of anomalous mobility of spin-labeled molecules included in the CD solid phase at temperatures as low as 30 K. The results reported herein should provide a useful benchmark for the study of molecular motion by HFHF ESR and display its virtues vs. ESR at conventional frequencies. We do wish to emphasize that in this study we make use of rather simple motional models, which leads to semi-quantitative, but visually clear and intuitive, interpretation of the results. More sophisticated analysis is planned in future work.

Materials and methods

β- and γ-cyclodextrins were purchased from Sigma, doxyl-labeled stearic acids were from TCI America, palmitic acid, caprylic acid, N,N'-dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine (DMAP), 4-amino-TEMPO (TEMPAMINE) and 4-hydroxy-TEMPO (TEMPOL) were from Aldrich. TEMPO-derivatives, TEMPOyl-caprylate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-caprylate), TEMPOyl-palmitate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-palmitate) and TEMPOyl-palmitamide (4-palmitamido-2,2,6,6-tetramethylpiperidine-1-oxyl), were synthesized using the standard DCC-promoted reaction between corresponding acids and TEMPAMINE or TEMPOL13 in methylene chloride and DCC-promoted reaction between corresponding acids and TEMPAMINE or TEMPOL13 were from Aldrich. TEMPO-derivatives, TEMPOyl-caprylate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-caprylate), TEMPOyl-palmitate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-palmitate) and TEMPOyl-palmitamide (4-palmitamido-2,2,6,6-tetramethylpiperidine-1-oxyl), were synthesized using the standard DCC-promoted reaction between corresponding acids and TEMPAMINE or TEMPOL13 were from Aldrich. TEMPO-derivatives, TEMPOyl-caprylate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-caprylate), TEMPOyl-palmitate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-palmitate) and TEMPOyl-palmitamide (4-palmitamido-2,2,6,6-tetramethylpiperidine-1-oxyl), were synthesized using the standard DCC-promoted reaction between corresponding acids and TEMPAMINE or TEMPOL13 were from Aldrich. TEMPO-derivatives, TEMPOyl-caprylate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-caprylate), TEMPOyl-palmitate (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-palmitate) and TEMPOyl-palmitamide (4-palmitamido-2,2,6,6-tetramethylpiperidine-1-oxyl), were synthesized using the standard DCC-promoted reaction between corresponding acids and TEMPAMINE or TEMPOL13 were from Aldrich.

The chemical structures of some spin labels used in the study.

![Fig. 1 Chemical structures of some spin labels used in the study.](image-url)
9.5 GHz spectra. These tensor components are summarized in Table 1.

Where it was possible, we used for simulations of the motions a simple model of axial anisotropic rotation with or without diffusion tilt angle. In some cases, when the simple model failed, we used the MOMD model21 with orienting potential or the fast internal motion (FIM) model21–23

Table 1 Principal values of the g- and A-tensors for various spin-labeled molecules included into solid phase of β- and γ-cyclodextrins. g_{zz} is fixed at 2.00233, cf. texta

<table>
<thead>
<tr>
<th>System</th>
<th>g_{xx}</th>
<th>g_{yy}</th>
<th>A_{xx}/G</th>
<th>A_{yy}/G</th>
<th>A_{zz}/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPOyl-caprylate, β-CD</td>
<td>2.01041</td>
<td>2.00641</td>
<td>7.0</td>
<td>6.4</td>
<td>33.6</td>
</tr>
<tr>
<td>TEMPOyl-palmitate, β-CD</td>
<td>2.01035</td>
<td>2.00642</td>
<td>7.0</td>
<td>6.4</td>
<td>33.7</td>
</tr>
<tr>
<td>TEMPOyl-palmitamide, β-CD</td>
<td>2.01038</td>
<td>2.00644</td>
<td>7.0</td>
<td>6.4</td>
<td>33.7</td>
</tr>
<tr>
<td>TEMPOyl-caprylate, γ-CD</td>
<td>2.01019</td>
<td>2.00621</td>
<td>6.7</td>
<td>6.2</td>
<td>33.6</td>
</tr>
<tr>
<td>5-sasl–γ-CD</td>
<td>2.00955</td>
<td>2.00614</td>
<td>5.1</td>
<td>4.5</td>
<td>33.2</td>
</tr>
<tr>
<td>5-sasl–β-CD</td>
<td>2.00942</td>
<td>2.00611</td>
<td>5.3</td>
<td>4.9</td>
<td>32.3</td>
</tr>
<tr>
<td>16-sasl–γ-CD</td>
<td>2.00945</td>
<td>2.00613</td>
<td>5.1</td>
<td>4.5</td>
<td>33.3</td>
</tr>
<tr>
<td>16-sasl–β-CD</td>
<td>2.00936</td>
<td>2.00611</td>
<td>5.4</td>
<td>5.0</td>
<td>32.7</td>
</tr>
</tbody>
</table>

aUncertainties: in g_{xx}–g_{yy} and g_{yy}–g_{zz} approx. 1×10^{-5}, A_{zz}, approx. 0.2 G, A_{xx}, and A_{yy}, approx. 0.5 G.

Fig. 2 Effects of hydration and addition of cyclohexane for 16-sasl in γ-CD, at (A) 9 GHz, 278 K and (B) 170 GHz, 293 K. (a) the sample prepared by the standard method and kept under vacuum for 12 h (b) the same sample after adding cyclohexane (c) the sample after additionally adding water (d) the initial lineshape before pumping.

Reproducibility of ESR spectra

The ESR lineshape of included spin-labeled compounds depends in general on the presence of crystallohydrate water in the molecular structure of CD. Though mild drying in air over several hours does not substantially affect the EPR spectrum, several hours of evacuation does cause a dramatic change, as seen in Fig. 2. The change, as follows from a simple inspection of the HF ESR spectrum shown in Fig. 2, is due to a complete cessation of Z-rotation and convergence to a nearly rigid limit spectrum after the evacuation. To rule out the possibility that the changes in the spectrum are due to the loss of organic co-precipitant (cyclohexane, decane etc.) rather than water, a simple experiment was carried out. After a small amount of water was added to a sample after a 12 h evacuation, the spectrum almost completely recovered the lineshape before the drying. Addition of excess cyclohexane does not change the lineshape up to the point when spin probes start to partition into the bulk liquid organic phase. Simultaneous addition of cyclohexane and water to an evacuated sample gave the same effect as water addition alone. In the current study, in order to avoid possible heterogeneity of the samples due to non-uniform drying, we excluded the drying procedure. Instead, we separated the inclusion compound and removed the remaining liquid phases by centrifugation in sealed tubes.

Results and discussion

One of the main virtues of HFFH ESR over ESR at conventional frequencies is the excellent orientational resolution that it provides for studies utilizing nitroxide spin labels.11,12,19 High-field ESR spectroscopy provides g-tensor resolved ESR spectroscopy in frozen or “powder” media. As seen for the rigid limit spectrum at 170 GHz shown in Fig. 3A, the regions corresponding to molecules with their X-axis parallel to B_0 (X-region), Y-axis parallel to B_0 (Y-region) and Z-axis parallel to B_0 (Z-region) are well separated due to the dominant role of the g-tensor. As a result, once motional effects are discernable in the spectrum, one can discern about which axis (or axes) the motion occurs. Fast rotation about a diffusion axis collinear with the magnetic X-, Y- or Z-axis of the nitroxide radical does not, of course, affect the field position of the corresponding
spectral region. Fig. 3 shows experimental 170 GHz spectra corresponding to fast axial rotation about the X-, Y- or Z-axis in comparison with the rigid limit spectrum. For example, if the rotation about the X-axis is very fast on the ESR time scale, one can still see a sharp peak at the same magnetic field as for the X-region of the rigid limit spectrum, (cf. Fig. 3C). However, instead of separate peaks corresponding to the Y- and Z-regions of the rigid limit spectrum, one observes a single peak with an averaged \(g \)-factor value of \((g_{yy} + g_{zz})/2\). For the case of Z-rotation, (cf. Fig. 3B) two regions corresponding to effective \(g \)-values \(g_{zz}\) and \((g_{xx} + g_{yy})/2\) are also observable in the spectrum, with the Z-region split into a well-resolved triplet due to the large value of the hyperfine constant \(A_{zz}\). For fast Y-rotation, since for nitroxides \(g_{yy} \approx (g_{xx} + g_{zz})/2\), the HFHF ESR spectrum takes an appearance of a single sharp line superimposed on a broader line (cf. Fig 3D). Unlike the X- or Z-rotation cases, the conclusion of Y-rotation may not be immediately clear by simple inspection of the high-field ESR spectrum and may require a multifrequency study for verification. Since we did not observe fast Y-rotation in solid CDs, it is shown in Fig. 3D for the case of a spin-labeled cholesterol analog, CSL, in membrane vesicles. In our study, these simple models of anisotropic axial rotation are used for semi-quantitative interpretation of ESR spectra and for extracting motional and thermodynamic parameters of spin-labeled molecules included into solid CDs.

Fig. 3 170 GHz spectra of nitroxide radicals corresponding to different modes of molecular motion: (A) 5-sasl in \(\gamma\)-CD with crystallohydrate water removed by overnight evacuation at 293 K: rigid limit spectrum. (B) 5-sasl in \(\gamma\)-CD crystallohydrate at 292 K. (C) TEMPOyl-caprylate in \(\beta\)-CD at 293 K. (D) CSL spin label in the DPPC membrane at 295 K. Insert A shows the principal magnetic axes of the nitroxide group. Inserts B–D show the corresponding mode of molecular motion.

Fig. 4 9 GHz spectra of 5-, 7-, 10- and 16-doxyl stearic acids at 293 K in solid \(\gamma\)-CD.

Doxyl stearic acids

Fig. 4 shows 9.5 GHz spectra of doxyl stearic acids at room temperature in solid \(\gamma\)-CD. With the exception of 16-sasl...
(discussed below) the spectra of all the doxyl stearic acids are similar. The pattern of anisotropic rotation about the Z-axis is obvious for 5-sasl from the HFHF spectrum just by a simple visual inspection of its 170 GHz spectrum (Fig. 3B). One can see a merging of X- and Y-regions of the spectrum whereas the Z-region essentially retains the structure of the rigid limit spectrum. Simulation of HFHF spectra using a simple model of axial Z-rotation gives reasonable semi-quantitative agreement with the experimental spectra for 5-sasl (cf. Fig. 5) yielding the \(R_J > R_J \) values at temperatures above 210 K from the best fits (cf. Table 2). The results are indicative of strong rotational anisotropy, with \(R_J > 50 R_J \) at room temperature. We have to note here that, strictly speaking, the model of unrestricted slow off-axial motion (\(R_J > R_J \)) is not very realistic since the molecular motion is restricted in amplitude by the CD cavities. However, the rates of the off-axial motion obtained below 273 K are so slow that this motion has only a marginal effect on the shape of the ESR spectrum, consistent with its uniaxiality on the time scale of 170 GHz ESR. A more realistic MOMD model with extremely high order parameter, \(S \geq 0.95 \), and a greater \(R_J \) yields exactly the same \(R_J \) values over the whole temperature range and a comparable quality of fit (cf. ESI—simulations, also see results for TEMPO-derivatives below).

The activation energy for motion about the long molecular axis (i.e. \(R_J \)) can be determined from diffusion coefficients \(R_J \) given in Table 2 using the Arrhenius relation

\[
R_J = A \exp\left(-\frac{\Delta H}{RT}\right).
\]

It gives \(\sim 6.3 \) Kcal mol\(^{-1}\), indicative of substantial interaction of spin-labeled molecules with their CD environment (but see results for X-rotating derivatives of TEMPO below).

We emphasize that determining the rate of Z-rotation by ESR benefits greatly from the use of high frequency. Due to the almost axially symmetric \(A \)-tensor for nitroxides and the insufficient \(g \)-factor resolution of low frequency ESR, the latter is not sensitive to this type of molecular motion, whose rate is given by \(R_J \). However, 9 GHz ESR does show sensitivity to \(R_J \), which manifests itself in the decreasing outer splitting \(2A_{zz} \) and the deepening of the minimum between the maxima.

![Image 5](Fig. 5 170 GHz spectra of 5-sasl in solid \(\gamma \)-CD at 80–295 K. Dotted lines show simulations for 80 K (rigid limit) and 295 K.)

![Image 6](Fig. 6 Temperature dependence of 9 GHz ESR spectra for 5-sasl in \(\gamma \)- and \(\beta \)-cyclodextrins.)

<table>
<thead>
<tr>
<th>Temperature/K</th>
<th>(R_J /\text{s}^{-1})</th>
<th>(R_J /\text{s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Rigid limit</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>(1.5 \times 10^7)</td>
<td>(3.3 \times 10^6)</td>
</tr>
<tr>
<td>240</td>
<td>(2 \times 10^7)</td>
<td>(7.5 \times 10^6)</td>
</tr>
<tr>
<td>250</td>
<td>(2.4 \times 10^7)</td>
<td>(7.8 \times 10^6)</td>
</tr>
<tr>
<td>265</td>
<td>(5 \times 10^7)</td>
<td>(9 \times 10^6)</td>
</tr>
<tr>
<td>273</td>
<td>(6 \times 10^7)</td>
<td>(1.18 \times 10^7)</td>
</tr>
<tr>
<td>293</td>
<td>(1.7 \times 10^8)</td>
<td>(2.5 \times 10^7)</td>
</tr>
</tbody>
</table>
of the low field and central components as \(R_\parallel \) increases (Fig. 6). We also note that a multifrequency approach with two or more high frequencies may be very useful in many cases. For example, most high field experiments in this study were carried out at 240 GHz. However, for 5-sasl the 170 GHz spectra show much better patterns of \(Z \)-rotation. The pattern of complete merging \(X \)- and \(Y \)-components with an insignificant change in the position and shape of the \(Z \)-component is obvious at this frequency just by visual inspection of the room temperature spectrum. On the other hand, 240 GHz ESR gives a faster snapshot of the molecular motion in the same system and shows separate peaks for \(X \)- and \(Y \)-components in the whole temperature range. However, the \(Z \)-rotation pattern at 240 GHz is quite clear if spectra at several temperatures are analyzed for the change in positions of \(X \)- and \(Y \)-components.

The validity of the analysis in terms of simple anisotropic diffusion is supported by the fact that diffusion rates determined from simulations of ESR spectra at 240 and 170 GHz are the same.

In \(\beta \)- and \(\gamma \)-CDs the \(Z \)-rotation patterns obtained for 5-sasl are very similar. It seems likely that two or more CD molecules comprise the hydrocarbon chain on both sides of the nitroxide (Fig. 7), which supports a stretched conformation of the chain and, hence, perpendicular orientation of the plane of the nitroxide moiety relative to the chain. In this confinement the nitroxide ring moves like a wheel on the hydrocarbon axis rotating in the hubs of two CD molecules.

The values of the \(g \)- and \(A \)-tensors indicate low polarity of the local environment for the spin label in \(\beta \)- and \(\gamma \)-CDs (cf. Table 1). The polarity value is close to that detected by 16-PC spin label in the most hydrophobic part of a DPPC membrane with corresponding tensor values, which are

\[
\begin{align*}
g_{xx} & = 2.00299, \quad g_{yy} = 2.00600, \quad g_{zz} = 2.00212, \quad A_{zz} = 33.5 \text{ G}. \\
\end{align*}
\]

As seen above, (cf. Fig. 4) for 16-sasl, the pattern of molecular motion displayed by the HF ESR spectrum is different compared to the other doxyl stearic acids. At room temperature HF and 9 GHz spectra for 16-sasl can be simulated using a diffusion tilt angle of 32° (\(\gamma \)-CD) or 38° (\(\beta \)-CD) corresponding to the angle between the magnetic \(Z \)-axis and the long diffusion axis of the molecule (cf. Fig. 8). In Fig. 9 spectra of 16-sasl are shown at different temperatures at 240 and 9 GHz. The difference between 16-sasl and other doxyl stearates can be explained by an insufficient length of the hydrocarbon chain on one side of the nitroxide moiety to bind a CD molecule in the case of 16-sasl (cf. Fig. 7). Instead of a stretched conformation, the molecule takes on a gauche-like one with the direction of the magnetic \(Z \)-axis different from the long diffusion axis.

![Fig. 7](image_url)

Fig. 7 Schematic drawing of the hypothetical arrangement of cyclodextrin molecules around spin-labeled compound: (a) 5-sasl (b) 16-sasl (c) TEMPOyl-caprylate.

![Fig. 8](image_url)

Fig. 8 Simulation of the ESR spectrum of 16-sasl at 9 GHz (upper image) and 240 GHz (lower image) at room temperature. The \(g \)- and \(A \)-tensor components for all simulations are taken from Table 1. Simulation parameters, see ref. 18 for both cases, \(\beta \text{CD} \) 9 GHz: \(R_\parallel/R_\perp = 3.16 \times 10^7 \text{ s}^{-1}/10^8 \text{ s}^{-1}, \ \beta \text{CD} \) 240 GHz: \(R_\parallel/R_\perp = 4 \times 10^7 \text{ s}^{-1}/10^9 \text{ s}^{-1}, \ \beta \text{CD} \) 9 GHz: \(R_\parallel/R_\perp = 7.9 \times 10^7 \text{ s}^{-1}/10^8 \text{ s}^{-1}, \ \beta \text{CD} \) 240 GHz: \(R_\parallel/R_\perp = 38°, \gamma \text{CD} \) 9 GHz: \(R_\parallel/R_\perp = 3.16 \times 10^7 \text{ s}^{-1}/7.9 \times 10^8 \text{ s}^{-1}, \ \gamma \text{CD} \) 240 GHz: \(R_\parallel/R_\perp = 32° \).
An interesting feature of 16-sasl included into the solid phase of CDs is a dramatic change of the spectrum within a relatively narrow temperature range. This change is an indication of a change in the mode of molecular motion (cf. Fig. 9). For both β- and γ-CDs at ~220–270 K, one can see this dramatic transformation in the spectrum. It is manifested at 9 GHz as a change of the outer splitting from close to the rigid limit value of 64 G at 210 K to ~47 G in γ-CD and ~42 G in β-CD at room temperature. At intermediate temperatures one can clearly see two coexisting components and an isosbestic-point like behavior. But it is not precisely an isosbestic point since the spectra of both components are also changing with temperature, not just their ratio. This ratio changes from 1 : 10 to 10 : 1 within a temperature interval of ~50 K, which gives an estimate for the enthalpy of the transition 10–11 Kcal mol⁻¹.

Similar values were observed for a number of cases of conformational interconversion of simple organic molecules, see, for example, ref. 25 and 26. HF ESR helps to understand the nature of the transition. At 240 GHz increasing the temperature from 190 K (corresponding to the nearly rigid limit) causes two separate effects. First, as seen also at 9 GHz, is the emergence of a second component. Second, one sees a change in the shape of the initial, rigid limit-like component. Similar to 5-sasl, at 240 GHz the X-peak moves towards the Y-peak; at the same time the position of the Z-triplet remains virtually unchanged. Thus, just an inspection of the high-field spectrum leads to the conclusion of Z-rotation at lower temperatures and assigns the conformational change as a change in the orientation of the nitroxide moiety relative to the long molecular axis. This assignment cannot be obtained from 9 GHz, since the low frequency does not allow reliable distinction between this kind of conformational change and complete cessation of axial rotation at low temperature. Also, comparing results at the two high frequencies, 240 GHz (cf. Fig. 2) gives a better separation of the two components than 170 GHz (not shown). One can also see that in the case of 16-sasl, the Z-rotation is faster than for 5-sasl. That is, 5-sasl and 16-sasl within the CD environment have virtually the same values of g- and A-tensors (cf. Table 1). If they both undergo Z-rotation, the spectra at the same motional rate should be similar. As seen in Fig. 9 the peak positions for the presumably Z-rotating component of 16-sasl at 240 K in β-CD correspond to the 308 K spectrum of 5-sasl.

Fig. 9 240 GHz and 9 GHz ESR spectra of 16-sasl, temperature dependence, (A) in β-CD; (B) in γ-CD.
4-Acyl derivatives of TEMPO

Another relatively simple case of molecular motion was observed for 4-acyl TEMPO derivatives in β-CD (Fig. 10). They show for a wide temperature range only a single spectral component. The g-tensor values given in Table 1 were determined from rigid limit spectra ($T = 25K$) both at 170 and 240 GHz. Interestingly, for this system we observed a systematic difference (nearly 1 G) between A_{zz} values determined as an outer splitting of the 9 GHz spectrum and the distance between the three hyperfine peaks in the Z-region of the high-field (170 or 240 GHz) spectrum. Introducing an angle of 10° between the principal axis of A- and g-tensors yields for both frequencies a common value of 33.4 G.

An angle of 8.5 degrees between the g- and A-principal axis has been reported in single crystals of TEMPOl, the source material for synthesizing our TEMPO derivatives. The g- and A-values are indicative of the extremely hydrophobic environment, more hydrophobic than that of toluene for which TEMPOyl-caprylate shows $g_{xx}, g_{yy}, g_{zz} = 2.01011, 2.00641, 2.00233$ and $A_{zz} = 34.2$ G. This extremely low polarity value may indicate that the nitroxide moiety is virtually pointing away from any neighboring atoms, as if it is effectively in "vacuum".

At higher temperatures (> 200 K) the molecular motion can be described as fast X-rotation to a high degree of accuracy. As seen in Table 3 the rotational diffusion rate is higher than those observed for doxylstearate derivatives. This observed high rate of axial rotation is unusual for large molecules in the solid phase.

The activation energy for motion about the long molecular axis can be determined from the diffusion coefficients in Table 2 by using again the Arrhenius relation (cf. above). Above 140 K in the Arrhenius coordinates (Fig. 11) the temperature dependence of R_1 gives a linear approximation of $\ln(R_1) = 24.09 - 853/T$, yielding a potential barrier of ~ 1.7 Kcal mol$^{-1}$. This value of the activation energy is well below the activation energy expected for a trans–gauche conformational change in the hydrocarbon chain, which usually ranges between 3 Kcal mol$^{-1}$ obtained by NMR for n-alkanes and 4.5 Kcal mol$^{-1}$ determined for non-terminal CH$_2$-groups of lipid hydrocarbon chains in lipid membranes. This observation, as well as the low polarity value for the nitroxide moiety, is consistent with a hub-axis model and minimal interaction of spin-labeled molecules with

- **Fig. 10** TEMPOyl caprylate in β-CD. 240 GHz and 9 GHz. Temperature dependence. 9 GHz spectra are shown with a 10 K step. Simulations are shown in ESI.

- **Fig. 11** Temperature dependence of R_1 for TEMPOyl caprylate in β-CD in Arrhenius coordinates. R_1 is determined from simulation of 240 GHz using simple model of axial anisotropic rotation.

- **Table 3** Motional dynamics parameters in the γ-CD–TEMPOyl caprylate

<table>
<thead>
<tr>
<th>Temperature/K</th>
<th>R_1/s^{-1} (240 GHz)</th>
<th>R_1/s^{-1} (9 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Rigid limit</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.5×10^8</td>
<td>3.1×10^6</td>
</tr>
<tr>
<td>130</td>
<td>4×10^8</td>
<td>1.8×10^7</td>
</tr>
<tr>
<td>140</td>
<td>6.3×10^7</td>
<td>2.6×10^7</td>
</tr>
<tr>
<td>150</td>
<td>1×10^8</td>
<td>4×10^7</td>
</tr>
<tr>
<td>160</td>
<td>1.25×10^8</td>
<td>4.5×10^7</td>
</tr>
<tr>
<td>170</td>
<td>2×10^8</td>
<td>7.2×10^7</td>
</tr>
<tr>
<td>180</td>
<td>2.5×10^8</td>
<td>9.1×10^7</td>
</tr>
<tr>
<td>190</td>
<td>3.2×10^8</td>
<td>1.1×10^8</td>
</tr>
<tr>
<td>200</td>
<td>5×10^8</td>
<td>1.32×10^8</td>
</tr>
<tr>
<td>240</td>
<td>7.9×10^8</td>
<td>1×10^8</td>
</tr>
<tr>
<td>260</td>
<td>1×10^9</td>
<td>2.5×10^8</td>
</tr>
</tbody>
</table>
their CD environment. Since rotational barriers for ester (10–15 kcal mol\(^{-1}\)) or amide bonds (18–21 kcal mol\(^{-1}\)) are even higher,\(^{29,30}\) we conclude that ester or amide groups of spin-labeled TEMPO-derivatives are not anchored by the interaction with their CD environment. This minimal interaction allows almost free rotation of the spin-labeled molecule as a whole with a much greater rate than the rate of reorientation around ester or amide groups in the latter case.

Below 140 K the Arrhenius dependence undergoes a sharp break and the molecular motion slows down (cf. Fig. 11). Over the temperature range between \(T = 100\) and 130 K two components are discernible in the spectrum (cf. Fig. 12 for 240 GHz at 110 K). Further decrease in temperature leaves only one, rigid limit-like component. However, the true rigid limit spectrum for the system is reached only below 50 K.

This mobility of spin-labeled molecules included into the solid phase of CDs at low temperatures is very interesting. Usually 77 K in ESR spectroscopy is considered to yield the rigid limit, especially for HF ESR. Fig. 12–A shows a fragment of the 9 GHz spectrum of TEMPOyl caprylate in \(\beta\)-CD at temperatures below 90 K. The position of the high field minimum of the spectrum clearly moves down-field above 50 K, indicating motional effects. For example, between \(T = 50\) K and \(T = 77\) K both high field and low field extrema move towards each other approximately by 0.5 G.

High-field ESR is at least as sensitive in detecting molecular motion at low temperature (Fig. 12–B). Since high-field ESR acts as a “faster snapshot”\(^{11,12}\) of molecular motion, it is usually considered to be less sensitive than lower frequency ESR (e.g. 9 GHz) for detecting slower motions; but, in fact the narrow lines in the Z-region of the HF spectrum in the nearly-rigid limit range allow unambiguous detection of small changes in their position. The 240 GHz spectrum becomes sensitive to motion at \(R\) values above \(4 \times 10^5\) s\(^{-1}\). For 9 GHz, however, molecular motion at a rate below \(7.5 \times 10^5\) s\(^{-1}\)

![Fig. 12](image-url)
cannot be reliably distinguished from the rigid limit. The values of \(R_1 \) at low temperatures given in Table 3 are obtained by fixing \(R_\perp \) at \(2 \times 10^3 \) s\(^{-1} \) and varying \(R_1 \) to get the correct position for the spectral extrema in the \(g_Z \)-region of the 240 GHz spectrum.

The break in the Arrhenius plot (cf. Fig. 11 and above discussion) and the apparent existence of two components at 100–130 K indicate changes in the mode of molecular motion at this temperature. We speculate that at this temperature rotation about the long molecular axis reduces to limited angle librations.

Allowing for limitations of the Brownian diffusion model in general\(^{11} \) and the model of simple axially symmetric rotation in particular, simulations of HF ESR have given acceptable fits over a wide range of temperatures above \(\sim 160 \) K. The values of \(R_\parallel \) and \(R_\perp \) are systematically increasing with temperature in accordance with the activation barrier obtained. For 9 GHz, however, attempts to simulate spectra using the model of simple axial anisotropic rotation failed. If best fits for these low-quality simulations are used to obtain the diffusion coefficients \(R_\parallel \) and \(R_\perp \), the obtained values are \(\sim 4–6 \) times lower than the values obtained from HF spectra using the same model. Besides, the values from 9 GHz (given in Table 3) do not systematically change with temperature. Importantly, some spectral features, like the more complex lineshape of the high-field \((m_I = 1)\) component (cf. Fig. 9B for 9 GHz), cannot be achieved using the simple model of axial rotation. This observation gives some insight into understanding the 9 GHz spectrum, and ultimately the nature of molecular motion in the system, as we explain in the next paragraph.

In general, the simulation of ESR spectra resulting from complex motional modes requires more sophisticated modeling, such as the slowly relaxing local structure (SRLS) model\(^{21,32} \), and a substantial computational resource. However, there are two simple limiting cases of the SRLS model, which are very common and allow one to analyze ESR spectra using more standard and efficient software. The first limiting case is the fast internal motion \((FIM)\) model, wherein the faster internal motion is considered to be so rapid that one just observes partial averaging of magnetic tensors; the second one is the MOMD \((microscopic \, order \, macroscopic \, disorder)\) model which considers the slower mode \((e.g. \, global \, tumbling \, of \, macromolecules)\) to be in the rigid limit. The slower motional mode in the FIM case and faster internal motion, for MOMD, are parameterized in terms of the relevant diffusion constants as well as local ordering potentials. It is shown that, in general,\(^ {21} \) the MOMD model is a better approximation for ESR spectra obtained at high frequency, whereas the FIM model works better at 9 GHz. In multifrequency studies of spin-labeled gramicidin in aligned membranes, we justified, by an appeal to the FIM model, the use of adjusted magnetic tensor parameters at 9 GHz.\(^ {33} \) The corresponding 170 GHz spectrum, however, could be well described by the rigid-limit magnetic tensor parameters and ordering and diffusion constants fitted using the MOMD model.

As seen in Fig. 13, a simulation based on the FIM model with partially averaged \(g \)- and \(A \)-tensor components at 9 GHz gives a good fit for TEMPO-derivatives in \(\beta \)-CD. Simulations based on the model of simple axial rotation with original tensor components yield less satisfactory fits. As one can see, the averaging includes only \(Y \)- and \(Z \)-tensor components, while the \(X \)-component does not participate in the averaging. This indicates that the fast motion occurs predominantly about the \(X \)-axis. The slower Brownian motion, as follows from diffusion constants determined from the FIM simulations, also shows the \(X \)-rotation pattern. Based on this observation, we suggest that the molecular motion in this system can be described as fast librations about the magnetic \(X \)-axis and at the same time larger angle but slower rotations around the same axis.

Effect of chain length and ester–amide substitution

To better understand the behavior of long chain organic molecules in the solid phase of CDs we studied effects of the hydrocarbon chain length and the nature of the bond between the chain and the nitroxide ring. Fig. 14 shows both effects at 9 GHz and 240 GHz. As seen in Fig. 14, an increase in the length of the hydrocarbon chain from 8 to 16 atoms does not cause any substantial changes in the ESR lineshape. On the other hand, replacement of the ester bond by an amide clearly slows down the rate of molecular motion. As we discussed above, this difference cannot be attributed to the different barriers of internal rotation for the amide and ester bonds. However, since the spin-labeled molecule rotates as a whole, transient interaction of the amide or ester group with their CD environment may affect the rotational rate. Indeed, it is known that an ester bond can form hydrogen bonds only \(via \) an acceptor mechanism, whereas the amide group forms both donor and acceptor hydrogen bonds.
bonds. Also, the amide carbonyl as acceptor forms a stronger hydrogen bond than an ester carbonyl. Amide-to-ester substitutions have been shown to be a useful method for studying the effect of backbone hydrogen bonds on the structure of proteins. Although in the case of TEMPO derivatives neither ester nor amide apparently forms stable hydrogen bonds with the CD environment, some residual effects can cause the observed difference in their motional dynamics. One could expect stronger interaction with hydroxyl groups on the CD molecule and/or crystallohydrate water for the amide group, and hence a slower rate of axial rotation.

Comparison of results in β- and γ-CDs

Generally speaking, the axial patterns for β- and γ-CDs for the same spin probes are similar. We assume that CD molecules trap the long hydrocarbon chains of spin probes. The constraints imposed by this trapping determine motional patterns for the whole molecule. In a sense, the hydrocarbon chain plays the role of an axis which spins in the hubs formed by CD molecules (cf. Fig. 7). However, one might expect a difference arising from the fact that γ-CD has a larger cavity than β-CD (i.e. 0.95 nm vs. 0.78 nm).

For 5- and 16-sasl’s in both β- and γ-CD and derivatives of TEMPO in β-CD a simple model of axial rotation gives a relatively good description of the effects observed in their HFHF ESR spectra. This motion is described by just two different diffusion coefficients R_\parallel and R_\perp, and no potential parameters were needed for semi-quantitative fitting. The more rigorous MOMD model with a high symmetrical ordering potential and higher value of R_\perp, although providing somewhat better fits (cf. ESI†), yields the same values for the rate of axial rotation, (see results for doxyl stearic acids above).

The X-rotation pattern for TEMPOyl caprylate included in γ-CD is very similar to the one observed in β-CD. As seen in Fig. 15, at temperatures above 240 K the Z- and Y-areas of the initial rigid limit spectrum merge. Also, the X-rotation rate in γ-CD is higher than in β-CD. Already at 220 K one can see a ~19 G splitting of the $Y-Z$ component, which corresponds to $(A_{xx} + A_{yy})/2$ value and is indicative of very fast ($R_\parallel > 2 \times 10^9$ s$^{-1}$) axial rotation. However, to explain all features of the 240 GHz spectrum (cf. Fig. 16) we have to use the MOMD model and assume an asymmetric potential (i.e. a rhombicity in the potential17). We speculate that due to the larger size of the γ-CD cavity the included part of the spin-
A labeled molecule is located on the side of the cavity causing asymmetric effects in axial rotation. Also, in contrast to β-CD, in γ-CD X-rotation abruptly stops below 220 K. At this temperature a second component appears in the spectrum (see 9 GHz and 240 GHz). At 200 K this component with a fraction of at least 0.9 corresponds to very slow motion with a rate of $R_{\perp} < R_{\parallel} \approx 3 \times 10^8$ s\(^{-1}\). Between 180 and 170 K the spectrum converges to the rigid limit with virtually no detectable motion. This striking difference between β- and γ-CDs also most likely could be explained by the different size of their cavities. Due to the larger cavity size the spin-labeled molecule in γ-CD may take on a conformation which does not undergo fast axial rotation, while the transition in β-CD does not occur since the conformation does not fit the narrower cavity. It would perhaps be of value to study in the future such differences in terms of free volume and/or expanded volume models previously utilized in ESR studies of molecular motions at 9 GHz.36,37

Conclusions

We studied the rotational molecular dynamics of spin-labeled derivatives of fatty acids included into the solid state of cyclodextrins using HFHF ESR and compared the results with ESR at 9 GHz. HFHF ESR allowed us to demonstrate Z- and X-axial rotation and determine the relevant rotational diffusion constants and potential barriers. Such determination at 9 GHz is either impossible (Z-rotation) or inaccurate (X-rotation). One of the interesting properties of the systems studied is an observable rate of molecular motion at temperatures down to 50 K. Based on low potential barriers of molecular rotation we suggest that spin-labeled molecules of TEMPO derivatives have minimal interaction with their CD environment. We showed how the excellent orientational resolution of HFHF ESR helps to detect and understand a number of conformational changes occurring in the system as the temperature is varied. It is found that for fatty acid ester or amide derivatives of TEMPO, an increase in the length of the hydrocarbon chain from 8 to 16 atoms does not cause any considerable changes in the ESR lineshape. On the other hand, replacement of the ester bond by an amide slows down the rate of molecular motion. We attribute the difference to the difference in transient interactions between the amide and ester groups with their cyclodextrin environment.

An important feature of HFHF ESR in a system with fast anisotropic rotation of spin-labeled molecules is its visual clarity. Once motion occurs in the system, a simple inspection of HFHF spectrum indicates about which axis the motion occurs. Most ESR spectra were analyzed using simplified models: axial rotation or FIM (for 9 GHz); but one case required (at 240 GHz) the MOMD model with an asymmetric potential. Future studies involving simultaneous analysis of multifrequency spectra (e.g. 9, 95, 170 and 240 GHz) will enable the use of the more sophisticated SRLS approach for extracting more subtle details of the molecular motions.38 We trust that the simplicity and clarity of the ESR spectra shown in this work will serve as a benchmark for future studies by ESR of motional dynamics using HFHF.
Acknowledgements

We are grateful to Indra Dev Sahu for help in low temperature 9 GHz measurements. This work was supported by Grant Number 5P41RR016292 (at Cornell) from the National Center for Research Resources (NCRR), a component of the National Institute of Health.

References

38. Z. Zhang, M. Fleissner, D. Tipikin, K. Earle, W. Hubbell and J. H. Freed, to be published.